Thyroid Hormone-Regulated Mouse Cerebral Cortex Genes Are Differentially Dependent on the Source of the Hormone: A Study in Monocarboxylate Transporter-8- and Deiodinase-2-Deficient Mice
Thyroid hormones influence brain development through the control of gene expression. The concentration of the active hormone T3 in the brain depends on T3 transport through the blood-brain barrier, mediated in part by the monocarboxylate transporter 8 (Mct8/MCT8) and the activity of type 2 deiodinas...
Gespeichert in:
Veröffentlicht in: | Endocrinology (Philadelphia) 2010-05, Vol.151 (5), p.2381-2387 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2387 |
---|---|
container_issue | 5 |
container_start_page | 2381 |
container_title | Endocrinology (Philadelphia) |
container_volume | 151 |
creator | Morte, Beatriz Ceballos, Ainhoa Diez, Diego Grijota-Martínez, Carmen Dumitrescu, Alexandra M Di Cosmo, Caterina Galton, Valerie Anne Refetoff, Samuel Bernal, Juan |
description | Thyroid hormones influence brain development through the control of gene expression. The concentration of the active hormone T3 in the brain depends on T3 transport through the blood-brain barrier, mediated in part by the monocarboxylate transporter 8 (Mct8/MCT8) and the activity of type 2 deiodinase (D2) generating T3 from T4. The relative roles of each of these pathways in the regulation of brain gene expression is not known. To shed light on this question, we analyzed thyroid hormone-dependent gene expression in the cerebral cortex of mice with inactivated Mct8 (Slc16a2) and Dio2 genes, alone or in combination. We used 34 target genes identified to be controlled by thyroid hormone in microarray comparisons of cerebral cortex from wild-type control and hypothyroid mice on postnatal d 21. Inactivation of the Mct8 gene (Mct8KO) was without effect on the expression of 31 of these genes. Normal gene expression in the absence of the transporter was mostly due to D2 activity because the combined disruption of Mct8 and Dio2 led to similar effects as hypothyroidism on the expression of 24 genes. Dio2 disruption alone did not affect the expression of positively regulated genes, but, as in hypothyroidism, it increased that of negatively regulated genes. We conclude that gene expression in the Mct8KO cerebral cortex is compensated in part by D2-dependent mechanisms. Intriguingly, positive or negative regulation of genes by thyroid hormone is sensitive to the source of T3 because Dio2 inactivation selectively affects the expression of negatively regulated genes.
Genes positively regulated by thyroid hormones in the postnatal mouse cerebral cortex are sensitive to the T3 entering the brain from the circulation, or being locally generated by D2, whereas genes negatively regulated by the hormone are dependent mostly on locally generated T3. |
doi_str_mv | 10.1210/en.2009-0944 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2869252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1210/en.2009-0944</oup_id><sourcerecordid>3130601128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-e69872a70a472020fc937ae835f232526e5e81f50e7a9d611a105b13c00c25713</originalsourceid><addsrcrecordid>eNp1kUtv1DAURi0EotPCjjWyhBAbXPxI4oQF0mgGWqRWSHRYWx7npuMqYwc7Qc1f66_DYUILEqysKx995z4QesHoKeOMvgN3yimtCK2y7BFasCrLiWSSPkYLSpkgknN5hI5jvElllmXiKTrilDNWSbZAd5vdGLyt8bkPe--AfIXrodU91PjSDxHwCgJsg27xyocebvEZOIh4GQCvbdOkT9db3bYjXkMHrk4l9g73O8BXfggGsG9-VXP-e7zEV_1Qj9i6ZHDe6LD1t-OkxJugXewmTyAlwdrVKdX62jodgXCyhsYaOykurYFn6Emj2wjP5_cEffv0cbM6Jxdfzj6vlhfE5KXoCRRVKbmWVGcyzU0bUwmpoRR5wwXPeQE5lKzJKUhd1QVjmtF8y4Sh1PBcMnGCPhxyu2G7h9okf9qH6oLd6zAqr636-8fZnbr2PxQviyoJUsCrOSD47wPEXt2k1bjUsxJM0IIyxstEvT1QJvgYAzT3BkbVdGkFTk2XVtOlE_7yz67u4d-nTcDrGdDR6LZJuzU2PnBcCsGkTNybA-eH7n9KMivFgUx39iZYB12AGB-m-WejPwFw68_B</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130601128</pqid></control><display><type>article</type><title>Thyroid Hormone-Regulated Mouse Cerebral Cortex Genes Are Differentially Dependent on the Source of the Hormone: A Study in Monocarboxylate Transporter-8- and Deiodinase-2-Deficient Mice</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>Oxford Journals</source><creator>Morte, Beatriz ; Ceballos, Ainhoa ; Diez, Diego ; Grijota-Martínez, Carmen ; Dumitrescu, Alexandra M ; Di Cosmo, Caterina ; Galton, Valerie Anne ; Refetoff, Samuel ; Bernal, Juan</creator><creatorcontrib>Morte, Beatriz ; Ceballos, Ainhoa ; Diez, Diego ; Grijota-Martínez, Carmen ; Dumitrescu, Alexandra M ; Di Cosmo, Caterina ; Galton, Valerie Anne ; Refetoff, Samuel ; Bernal, Juan</creatorcontrib><description>Thyroid hormones influence brain development through the control of gene expression. The concentration of the active hormone T3 in the brain depends on T3 transport through the blood-brain barrier, mediated in part by the monocarboxylate transporter 8 (Mct8/MCT8) and the activity of type 2 deiodinase (D2) generating T3 from T4. The relative roles of each of these pathways in the regulation of brain gene expression is not known. To shed light on this question, we analyzed thyroid hormone-dependent gene expression in the cerebral cortex of mice with inactivated Mct8 (Slc16a2) and Dio2 genes, alone or in combination. We used 34 target genes identified to be controlled by thyroid hormone in microarray comparisons of cerebral cortex from wild-type control and hypothyroid mice on postnatal d 21. Inactivation of the Mct8 gene (Mct8KO) was without effect on the expression of 31 of these genes. Normal gene expression in the absence of the transporter was mostly due to D2 activity because the combined disruption of Mct8 and Dio2 led to similar effects as hypothyroidism on the expression of 24 genes. Dio2 disruption alone did not affect the expression of positively regulated genes, but, as in hypothyroidism, it increased that of negatively regulated genes. We conclude that gene expression in the Mct8KO cerebral cortex is compensated in part by D2-dependent mechanisms. Intriguingly, positive or negative regulation of genes by thyroid hormone is sensitive to the source of T3 because Dio2 inactivation selectively affects the expression of negatively regulated genes.
Genes positively regulated by thyroid hormones in the postnatal mouse cerebral cortex are sensitive to the T3 entering the brain from the circulation, or being locally generated by D2, whereas genes negatively regulated by the hormone are dependent mostly on locally generated T3.</description><identifier>ISSN: 0013-7227</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/en.2009-0944</identifier><identifier>PMID: 20211971</identifier><identifier>CODEN: ENDOAO</identifier><language>eng</language><publisher>Chevy Chase, MD: Endocrine Society</publisher><subject>Animals ; Animals, Newborn ; Antithyroid Agents - administration & dosage ; Biological and medical sciences ; Blood levels ; Blood-brain barrier ; Cerebral cortex ; Cerebral Cortex - embryology ; Cerebral Cortex - growth & development ; Cerebral Cortex - metabolism ; Deactivation ; Disruption ; DNA microarrays ; Female ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Developmental - drug effects ; Gene regulation ; Genes ; Hormones ; Hypothyroidism ; Hypothyroidism - genetics ; Inactivation ; Iodide peroxidase ; Iodide Peroxidase - deficiency ; Iodide Peroxidase - genetics ; Iodide Peroxidase - metabolism ; Iodothyronine Deiodinase Type II ; Male ; Membrane Transport Proteins - deficiency ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Methimazole - administration & dosage ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Monocarboxylic Acid Transporters ; Oligonucleotide Array Sequence Analysis ; Pregnancy ; Reverse Transcriptase Polymerase Chain Reaction ; Symporters ; Thyroid ; Thyroid gland ; Thyroid hormones ; Thyroid Hormones - metabolism ; Thyroxine ; Thyroxine - metabolism ; Triiodothyronine ; Triiodothyronine - metabolism ; Vertebrates: endocrinology</subject><ispartof>Endocrinology (Philadelphia), 2010-05, Vol.151 (5), p.2381-2387</ispartof><rights>Copyright © 2010 by the Endocrine Society 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 by the Endocrine Society</rights><rights>Copyright © 2010 by The Endocrine Society 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-e69872a70a472020fc937ae835f232526e5e81f50e7a9d611a105b13c00c25713</citedby><cites>FETCH-LOGICAL-c583t-e69872a70a472020fc937ae835f232526e5e81f50e7a9d611a105b13c00c25713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22733177$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20211971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morte, Beatriz</creatorcontrib><creatorcontrib>Ceballos, Ainhoa</creatorcontrib><creatorcontrib>Diez, Diego</creatorcontrib><creatorcontrib>Grijota-Martínez, Carmen</creatorcontrib><creatorcontrib>Dumitrescu, Alexandra M</creatorcontrib><creatorcontrib>Di Cosmo, Caterina</creatorcontrib><creatorcontrib>Galton, Valerie Anne</creatorcontrib><creatorcontrib>Refetoff, Samuel</creatorcontrib><creatorcontrib>Bernal, Juan</creatorcontrib><title>Thyroid Hormone-Regulated Mouse Cerebral Cortex Genes Are Differentially Dependent on the Source of the Hormone: A Study in Monocarboxylate Transporter-8- and Deiodinase-2-Deficient Mice</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description>Thyroid hormones influence brain development through the control of gene expression. The concentration of the active hormone T3 in the brain depends on T3 transport through the blood-brain barrier, mediated in part by the monocarboxylate transporter 8 (Mct8/MCT8) and the activity of type 2 deiodinase (D2) generating T3 from T4. The relative roles of each of these pathways in the regulation of brain gene expression is not known. To shed light on this question, we analyzed thyroid hormone-dependent gene expression in the cerebral cortex of mice with inactivated Mct8 (Slc16a2) and Dio2 genes, alone or in combination. We used 34 target genes identified to be controlled by thyroid hormone in microarray comparisons of cerebral cortex from wild-type control and hypothyroid mice on postnatal d 21. Inactivation of the Mct8 gene (Mct8KO) was without effect on the expression of 31 of these genes. Normal gene expression in the absence of the transporter was mostly due to D2 activity because the combined disruption of Mct8 and Dio2 led to similar effects as hypothyroidism on the expression of 24 genes. Dio2 disruption alone did not affect the expression of positively regulated genes, but, as in hypothyroidism, it increased that of negatively regulated genes. We conclude that gene expression in the Mct8KO cerebral cortex is compensated in part by D2-dependent mechanisms. Intriguingly, positive or negative regulation of genes by thyroid hormone is sensitive to the source of T3 because Dio2 inactivation selectively affects the expression of negatively regulated genes.
Genes positively regulated by thyroid hormones in the postnatal mouse cerebral cortex are sensitive to the T3 entering the brain from the circulation, or being locally generated by D2, whereas genes negatively regulated by the hormone are dependent mostly on locally generated T3.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Antithyroid Agents - administration & dosage</subject><subject>Biological and medical sciences</subject><subject>Blood levels</subject><subject>Blood-brain barrier</subject><subject>Cerebral cortex</subject><subject>Cerebral Cortex - embryology</subject><subject>Cerebral Cortex - growth & development</subject><subject>Cerebral Cortex - metabolism</subject><subject>Deactivation</subject><subject>Disruption</subject><subject>DNA microarrays</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Developmental - drug effects</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Hormones</subject><subject>Hypothyroidism</subject><subject>Hypothyroidism - genetics</subject><subject>Inactivation</subject><subject>Iodide peroxidase</subject><subject>Iodide Peroxidase - deficiency</subject><subject>Iodide Peroxidase - genetics</subject><subject>Iodide Peroxidase - metabolism</subject><subject>Iodothyronine Deiodinase Type II</subject><subject>Male</subject><subject>Membrane Transport Proteins - deficiency</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Methimazole - administration & dosage</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Monocarboxylic Acid Transporters</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Pregnancy</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Symporters</subject><subject>Thyroid</subject><subject>Thyroid gland</subject><subject>Thyroid hormones</subject><subject>Thyroid Hormones - metabolism</subject><subject>Thyroxine</subject><subject>Thyroxine - metabolism</subject><subject>Triiodothyronine</subject><subject>Triiodothyronine - metabolism</subject><subject>Vertebrates: endocrinology</subject><issn>0013-7227</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtv1DAURi0EotPCjjWyhBAbXPxI4oQF0mgGWqRWSHRYWx7npuMqYwc7Qc1f66_DYUILEqysKx995z4QesHoKeOMvgN3yimtCK2y7BFasCrLiWSSPkYLSpkgknN5hI5jvElllmXiKTrilDNWSbZAd5vdGLyt8bkPe--AfIXrodU91PjSDxHwCgJsg27xyocebvEZOIh4GQCvbdOkT9db3bYjXkMHrk4l9g73O8BXfggGsG9-VXP-e7zEV_1Qj9i6ZHDe6LD1t-OkxJugXewmTyAlwdrVKdX62jodgXCyhsYaOykurYFn6Emj2wjP5_cEffv0cbM6Jxdfzj6vlhfE5KXoCRRVKbmWVGcyzU0bUwmpoRR5wwXPeQE5lKzJKUhd1QVjmtF8y4Sh1PBcMnGCPhxyu2G7h9okf9qH6oLd6zAqr636-8fZnbr2PxQviyoJUsCrOSD47wPEXt2k1bjUsxJM0IIyxstEvT1QJvgYAzT3BkbVdGkFTk2XVtOlE_7yz67u4d-nTcDrGdDR6LZJuzU2PnBcCsGkTNybA-eH7n9KMivFgUx39iZYB12AGB-m-WejPwFw68_B</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Morte, Beatriz</creator><creator>Ceballos, Ainhoa</creator><creator>Diez, Diego</creator><creator>Grijota-Martínez, Carmen</creator><creator>Dumitrescu, Alexandra M</creator><creator>Di Cosmo, Caterina</creator><creator>Galton, Valerie Anne</creator><creator>Refetoff, Samuel</creator><creator>Bernal, Juan</creator><general>Endocrine Society</general><general>Oxford University Press</general><general>The Endocrine Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20100501</creationdate><title>Thyroid Hormone-Regulated Mouse Cerebral Cortex Genes Are Differentially Dependent on the Source of the Hormone: A Study in Monocarboxylate Transporter-8- and Deiodinase-2-Deficient Mice</title><author>Morte, Beatriz ; Ceballos, Ainhoa ; Diez, Diego ; Grijota-Martínez, Carmen ; Dumitrescu, Alexandra M ; Di Cosmo, Caterina ; Galton, Valerie Anne ; Refetoff, Samuel ; Bernal, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-e69872a70a472020fc937ae835f232526e5e81f50e7a9d611a105b13c00c25713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Antithyroid Agents - administration & dosage</topic><topic>Biological and medical sciences</topic><topic>Blood levels</topic><topic>Blood-brain barrier</topic><topic>Cerebral cortex</topic><topic>Cerebral Cortex - embryology</topic><topic>Cerebral Cortex - growth & development</topic><topic>Cerebral Cortex - metabolism</topic><topic>Deactivation</topic><topic>Disruption</topic><topic>DNA microarrays</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Developmental - drug effects</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Hormones</topic><topic>Hypothyroidism</topic><topic>Hypothyroidism - genetics</topic><topic>Inactivation</topic><topic>Iodide peroxidase</topic><topic>Iodide Peroxidase - deficiency</topic><topic>Iodide Peroxidase - genetics</topic><topic>Iodide Peroxidase - metabolism</topic><topic>Iodothyronine Deiodinase Type II</topic><topic>Male</topic><topic>Membrane Transport Proteins - deficiency</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Methimazole - administration & dosage</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Monocarboxylic Acid Transporters</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Pregnancy</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Symporters</topic><topic>Thyroid</topic><topic>Thyroid gland</topic><topic>Thyroid hormones</topic><topic>Thyroid Hormones - metabolism</topic><topic>Thyroxine</topic><topic>Thyroxine - metabolism</topic><topic>Triiodothyronine</topic><topic>Triiodothyronine - metabolism</topic><topic>Vertebrates: endocrinology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morte, Beatriz</creatorcontrib><creatorcontrib>Ceballos, Ainhoa</creatorcontrib><creatorcontrib>Diez, Diego</creatorcontrib><creatorcontrib>Grijota-Martínez, Carmen</creatorcontrib><creatorcontrib>Dumitrescu, Alexandra M</creatorcontrib><creatorcontrib>Di Cosmo, Caterina</creatorcontrib><creatorcontrib>Galton, Valerie Anne</creatorcontrib><creatorcontrib>Refetoff, Samuel</creatorcontrib><creatorcontrib>Bernal, Juan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morte, Beatriz</au><au>Ceballos, Ainhoa</au><au>Diez, Diego</au><au>Grijota-Martínez, Carmen</au><au>Dumitrescu, Alexandra M</au><au>Di Cosmo, Caterina</au><au>Galton, Valerie Anne</au><au>Refetoff, Samuel</au><au>Bernal, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thyroid Hormone-Regulated Mouse Cerebral Cortex Genes Are Differentially Dependent on the Source of the Hormone: A Study in Monocarboxylate Transporter-8- and Deiodinase-2-Deficient Mice</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>2010-05-01</date><risdate>2010</risdate><volume>151</volume><issue>5</issue><spage>2381</spage><epage>2387</epage><pages>2381-2387</pages><issn>0013-7227</issn><eissn>1945-7170</eissn><coden>ENDOAO</coden><abstract>Thyroid hormones influence brain development through the control of gene expression. The concentration of the active hormone T3 in the brain depends on T3 transport through the blood-brain barrier, mediated in part by the monocarboxylate transporter 8 (Mct8/MCT8) and the activity of type 2 deiodinase (D2) generating T3 from T4. The relative roles of each of these pathways in the regulation of brain gene expression is not known. To shed light on this question, we analyzed thyroid hormone-dependent gene expression in the cerebral cortex of mice with inactivated Mct8 (Slc16a2) and Dio2 genes, alone or in combination. We used 34 target genes identified to be controlled by thyroid hormone in microarray comparisons of cerebral cortex from wild-type control and hypothyroid mice on postnatal d 21. Inactivation of the Mct8 gene (Mct8KO) was without effect on the expression of 31 of these genes. Normal gene expression in the absence of the transporter was mostly due to D2 activity because the combined disruption of Mct8 and Dio2 led to similar effects as hypothyroidism on the expression of 24 genes. Dio2 disruption alone did not affect the expression of positively regulated genes, but, as in hypothyroidism, it increased that of negatively regulated genes. We conclude that gene expression in the Mct8KO cerebral cortex is compensated in part by D2-dependent mechanisms. Intriguingly, positive or negative regulation of genes by thyroid hormone is sensitive to the source of T3 because Dio2 inactivation selectively affects the expression of negatively regulated genes.
Genes positively regulated by thyroid hormones in the postnatal mouse cerebral cortex are sensitive to the T3 entering the brain from the circulation, or being locally generated by D2, whereas genes negatively regulated by the hormone are dependent mostly on locally generated T3.</abstract><cop>Chevy Chase, MD</cop><pub>Endocrine Society</pub><pmid>20211971</pmid><doi>10.1210/en.2009-0944</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-7227 |
ispartof | Endocrinology (Philadelphia), 2010-05, Vol.151 (5), p.2381-2387 |
issn | 0013-7227 1945-7170 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2869252 |
source | MEDLINE; Alma/SFX Local Collection; EZB Electronic Journals Library; Oxford Journals |
subjects | Animals Animals, Newborn Antithyroid Agents - administration & dosage Biological and medical sciences Blood levels Blood-brain barrier Cerebral cortex Cerebral Cortex - embryology Cerebral Cortex - growth & development Cerebral Cortex - metabolism Deactivation Disruption DNA microarrays Female Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Profiling Gene Expression Regulation, Developmental - drug effects Gene regulation Genes Hormones Hypothyroidism Hypothyroidism - genetics Inactivation Iodide peroxidase Iodide Peroxidase - deficiency Iodide Peroxidase - genetics Iodide Peroxidase - metabolism Iodothyronine Deiodinase Type II Male Membrane Transport Proteins - deficiency Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Methimazole - administration & dosage Mice Mice, Inbred C57BL Mice, Knockout Monocarboxylic Acid Transporters Oligonucleotide Array Sequence Analysis Pregnancy Reverse Transcriptase Polymerase Chain Reaction Symporters Thyroid Thyroid gland Thyroid hormones Thyroid Hormones - metabolism Thyroxine Thyroxine - metabolism Triiodothyronine Triiodothyronine - metabolism Vertebrates: endocrinology |
title | Thyroid Hormone-Regulated Mouse Cerebral Cortex Genes Are Differentially Dependent on the Source of the Hormone: A Study in Monocarboxylate Transporter-8- and Deiodinase-2-Deficient Mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A13%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thyroid%20Hormone-Regulated%20Mouse%20Cerebral%20Cortex%20Genes%20Are%20Differentially%20Dependent%20on%20the%20Source%20of%20the%20Hormone:%20A%20Study%20in%20Monocarboxylate%20Transporter-8-%20and%20Deiodinase-2-Deficient%20Mice&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Morte,%20Beatriz&rft.date=2010-05-01&rft.volume=151&rft.issue=5&rft.spage=2381&rft.epage=2387&rft.pages=2381-2387&rft.issn=0013-7227&rft.eissn=1945-7170&rft.coden=ENDOAO&rft_id=info:doi/10.1210/en.2009-0944&rft_dat=%3Cproquest_pubme%3E3130601128%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130601128&rft_id=info:pmid/20211971&rft_oup_id=10.1210/en.2009-0944&rfr_iscdi=true |