Thyroid Hormone-Regulated Mouse Cerebral Cortex Genes Are Differentially Dependent on the Source of the Hormone: A Study in Monocarboxylate Transporter-8- and Deiodinase-2-Deficient Mice

Thyroid hormones influence brain development through the control of gene expression. The concentration of the active hormone T3 in the brain depends on T3 transport through the blood-brain barrier, mediated in part by the monocarboxylate transporter 8 (Mct8/MCT8) and the activity of type 2 deiodinas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrinology (Philadelphia) 2010-05, Vol.151 (5), p.2381-2387
Hauptverfasser: Morte, Beatriz, Ceballos, Ainhoa, Diez, Diego, Grijota-Martínez, Carmen, Dumitrescu, Alexandra M, Di Cosmo, Caterina, Galton, Valerie Anne, Refetoff, Samuel, Bernal, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2387
container_issue 5
container_start_page 2381
container_title Endocrinology (Philadelphia)
container_volume 151
creator Morte, Beatriz
Ceballos, Ainhoa
Diez, Diego
Grijota-Martínez, Carmen
Dumitrescu, Alexandra M
Di Cosmo, Caterina
Galton, Valerie Anne
Refetoff, Samuel
Bernal, Juan
description Thyroid hormones influence brain development through the control of gene expression. The concentration of the active hormone T3 in the brain depends on T3 transport through the blood-brain barrier, mediated in part by the monocarboxylate transporter 8 (Mct8/MCT8) and the activity of type 2 deiodinase (D2) generating T3 from T4. The relative roles of each of these pathways in the regulation of brain gene expression is not known. To shed light on this question, we analyzed thyroid hormone-dependent gene expression in the cerebral cortex of mice with inactivated Mct8 (Slc16a2) and Dio2 genes, alone or in combination. We used 34 target genes identified to be controlled by thyroid hormone in microarray comparisons of cerebral cortex from wild-type control and hypothyroid mice on postnatal d 21. Inactivation of the Mct8 gene (Mct8KO) was without effect on the expression of 31 of these genes. Normal gene expression in the absence of the transporter was mostly due to D2 activity because the combined disruption of Mct8 and Dio2 led to similar effects as hypothyroidism on the expression of 24 genes. Dio2 disruption alone did not affect the expression of positively regulated genes, but, as in hypothyroidism, it increased that of negatively regulated genes. We conclude that gene expression in the Mct8KO cerebral cortex is compensated in part by D2-dependent mechanisms. Intriguingly, positive or negative regulation of genes by thyroid hormone is sensitive to the source of T3 because Dio2 inactivation selectively affects the expression of negatively regulated genes. Genes positively regulated by thyroid hormones in the postnatal mouse cerebral cortex are sensitive to the T3 entering the brain from the circulation, or being locally generated by D2, whereas genes negatively regulated by the hormone are dependent mostly on locally generated T3.
doi_str_mv 10.1210/en.2009-0944
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2869252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1210/en.2009-0944</oup_id><sourcerecordid>3130601128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-e69872a70a472020fc937ae835f232526e5e81f50e7a9d611a105b13c00c25713</originalsourceid><addsrcrecordid>eNp1kUtv1DAURi0EotPCjjWyhBAbXPxI4oQF0mgGWqRWSHRYWx7npuMqYwc7Qc1f66_DYUILEqysKx995z4QesHoKeOMvgN3yimtCK2y7BFasCrLiWSSPkYLSpkgknN5hI5jvElllmXiKTrilDNWSbZAd5vdGLyt8bkPe--AfIXrodU91PjSDxHwCgJsg27xyocebvEZOIh4GQCvbdOkT9db3bYjXkMHrk4l9g73O8BXfggGsG9-VXP-e7zEV_1Qj9i6ZHDe6LD1t-OkxJugXewmTyAlwdrVKdX62jodgXCyhsYaOykurYFn6Emj2wjP5_cEffv0cbM6Jxdfzj6vlhfE5KXoCRRVKbmWVGcyzU0bUwmpoRR5wwXPeQE5lKzJKUhd1QVjmtF8y4Sh1PBcMnGCPhxyu2G7h9okf9qH6oLd6zAqr636-8fZnbr2PxQviyoJUsCrOSD47wPEXt2k1bjUsxJM0IIyxstEvT1QJvgYAzT3BkbVdGkFTk2XVtOlE_7yz67u4d-nTcDrGdDR6LZJuzU2PnBcCsGkTNybA-eH7n9KMivFgUx39iZYB12AGB-m-WejPwFw68_B</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130601128</pqid></control><display><type>article</type><title>Thyroid Hormone-Regulated Mouse Cerebral Cortex Genes Are Differentially Dependent on the Source of the Hormone: A Study in Monocarboxylate Transporter-8- and Deiodinase-2-Deficient Mice</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>Oxford Journals</source><creator>Morte, Beatriz ; Ceballos, Ainhoa ; Diez, Diego ; Grijota-Martínez, Carmen ; Dumitrescu, Alexandra M ; Di Cosmo, Caterina ; Galton, Valerie Anne ; Refetoff, Samuel ; Bernal, Juan</creator><creatorcontrib>Morte, Beatriz ; Ceballos, Ainhoa ; Diez, Diego ; Grijota-Martínez, Carmen ; Dumitrescu, Alexandra M ; Di Cosmo, Caterina ; Galton, Valerie Anne ; Refetoff, Samuel ; Bernal, Juan</creatorcontrib><description>Thyroid hormones influence brain development through the control of gene expression. The concentration of the active hormone T3 in the brain depends on T3 transport through the blood-brain barrier, mediated in part by the monocarboxylate transporter 8 (Mct8/MCT8) and the activity of type 2 deiodinase (D2) generating T3 from T4. The relative roles of each of these pathways in the regulation of brain gene expression is not known. To shed light on this question, we analyzed thyroid hormone-dependent gene expression in the cerebral cortex of mice with inactivated Mct8 (Slc16a2) and Dio2 genes, alone or in combination. We used 34 target genes identified to be controlled by thyroid hormone in microarray comparisons of cerebral cortex from wild-type control and hypothyroid mice on postnatal d 21. Inactivation of the Mct8 gene (Mct8KO) was without effect on the expression of 31 of these genes. Normal gene expression in the absence of the transporter was mostly due to D2 activity because the combined disruption of Mct8 and Dio2 led to similar effects as hypothyroidism on the expression of 24 genes. Dio2 disruption alone did not affect the expression of positively regulated genes, but, as in hypothyroidism, it increased that of negatively regulated genes. We conclude that gene expression in the Mct8KO cerebral cortex is compensated in part by D2-dependent mechanisms. Intriguingly, positive or negative regulation of genes by thyroid hormone is sensitive to the source of T3 because Dio2 inactivation selectively affects the expression of negatively regulated genes. Genes positively regulated by thyroid hormones in the postnatal mouse cerebral cortex are sensitive to the T3 entering the brain from the circulation, or being locally generated by D2, whereas genes negatively regulated by the hormone are dependent mostly on locally generated T3.</description><identifier>ISSN: 0013-7227</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/en.2009-0944</identifier><identifier>PMID: 20211971</identifier><identifier>CODEN: ENDOAO</identifier><language>eng</language><publisher>Chevy Chase, MD: Endocrine Society</publisher><subject>Animals ; Animals, Newborn ; Antithyroid Agents - administration &amp; dosage ; Biological and medical sciences ; Blood levels ; Blood-brain barrier ; Cerebral cortex ; Cerebral Cortex - embryology ; Cerebral Cortex - growth &amp; development ; Cerebral Cortex - metabolism ; Deactivation ; Disruption ; DNA microarrays ; Female ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Developmental - drug effects ; Gene regulation ; Genes ; Hormones ; Hypothyroidism ; Hypothyroidism - genetics ; Inactivation ; Iodide peroxidase ; Iodide Peroxidase - deficiency ; Iodide Peroxidase - genetics ; Iodide Peroxidase - metabolism ; Iodothyronine Deiodinase Type II ; Male ; Membrane Transport Proteins - deficiency ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Methimazole - administration &amp; dosage ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Monocarboxylic Acid Transporters ; Oligonucleotide Array Sequence Analysis ; Pregnancy ; Reverse Transcriptase Polymerase Chain Reaction ; Symporters ; Thyroid ; Thyroid gland ; Thyroid hormones ; Thyroid Hormones - metabolism ; Thyroxine ; Thyroxine - metabolism ; Triiodothyronine ; Triiodothyronine - metabolism ; Vertebrates: endocrinology</subject><ispartof>Endocrinology (Philadelphia), 2010-05, Vol.151 (5), p.2381-2387</ispartof><rights>Copyright © 2010 by the Endocrine Society 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 by the Endocrine Society</rights><rights>Copyright © 2010 by The Endocrine Society 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-e69872a70a472020fc937ae835f232526e5e81f50e7a9d611a105b13c00c25713</citedby><cites>FETCH-LOGICAL-c583t-e69872a70a472020fc937ae835f232526e5e81f50e7a9d611a105b13c00c25713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22733177$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20211971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morte, Beatriz</creatorcontrib><creatorcontrib>Ceballos, Ainhoa</creatorcontrib><creatorcontrib>Diez, Diego</creatorcontrib><creatorcontrib>Grijota-Martínez, Carmen</creatorcontrib><creatorcontrib>Dumitrescu, Alexandra M</creatorcontrib><creatorcontrib>Di Cosmo, Caterina</creatorcontrib><creatorcontrib>Galton, Valerie Anne</creatorcontrib><creatorcontrib>Refetoff, Samuel</creatorcontrib><creatorcontrib>Bernal, Juan</creatorcontrib><title>Thyroid Hormone-Regulated Mouse Cerebral Cortex Genes Are Differentially Dependent on the Source of the Hormone: A Study in Monocarboxylate Transporter-8- and Deiodinase-2-Deficient Mice</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description>Thyroid hormones influence brain development through the control of gene expression. The concentration of the active hormone T3 in the brain depends on T3 transport through the blood-brain barrier, mediated in part by the monocarboxylate transporter 8 (Mct8/MCT8) and the activity of type 2 deiodinase (D2) generating T3 from T4. The relative roles of each of these pathways in the regulation of brain gene expression is not known. To shed light on this question, we analyzed thyroid hormone-dependent gene expression in the cerebral cortex of mice with inactivated Mct8 (Slc16a2) and Dio2 genes, alone or in combination. We used 34 target genes identified to be controlled by thyroid hormone in microarray comparisons of cerebral cortex from wild-type control and hypothyroid mice on postnatal d 21. Inactivation of the Mct8 gene (Mct8KO) was without effect on the expression of 31 of these genes. Normal gene expression in the absence of the transporter was mostly due to D2 activity because the combined disruption of Mct8 and Dio2 led to similar effects as hypothyroidism on the expression of 24 genes. Dio2 disruption alone did not affect the expression of positively regulated genes, but, as in hypothyroidism, it increased that of negatively regulated genes. We conclude that gene expression in the Mct8KO cerebral cortex is compensated in part by D2-dependent mechanisms. Intriguingly, positive or negative regulation of genes by thyroid hormone is sensitive to the source of T3 because Dio2 inactivation selectively affects the expression of negatively regulated genes. Genes positively regulated by thyroid hormones in the postnatal mouse cerebral cortex are sensitive to the T3 entering the brain from the circulation, or being locally generated by D2, whereas genes negatively regulated by the hormone are dependent mostly on locally generated T3.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Antithyroid Agents - administration &amp; dosage</subject><subject>Biological and medical sciences</subject><subject>Blood levels</subject><subject>Blood-brain barrier</subject><subject>Cerebral cortex</subject><subject>Cerebral Cortex - embryology</subject><subject>Cerebral Cortex - growth &amp; development</subject><subject>Cerebral Cortex - metabolism</subject><subject>Deactivation</subject><subject>Disruption</subject><subject>DNA microarrays</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Developmental - drug effects</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Hormones</subject><subject>Hypothyroidism</subject><subject>Hypothyroidism - genetics</subject><subject>Inactivation</subject><subject>Iodide peroxidase</subject><subject>Iodide Peroxidase - deficiency</subject><subject>Iodide Peroxidase - genetics</subject><subject>Iodide Peroxidase - metabolism</subject><subject>Iodothyronine Deiodinase Type II</subject><subject>Male</subject><subject>Membrane Transport Proteins - deficiency</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Methimazole - administration &amp; dosage</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Monocarboxylic Acid Transporters</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Pregnancy</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Symporters</subject><subject>Thyroid</subject><subject>Thyroid gland</subject><subject>Thyroid hormones</subject><subject>Thyroid Hormones - metabolism</subject><subject>Thyroxine</subject><subject>Thyroxine - metabolism</subject><subject>Triiodothyronine</subject><subject>Triiodothyronine - metabolism</subject><subject>Vertebrates: endocrinology</subject><issn>0013-7227</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtv1DAURi0EotPCjjWyhBAbXPxI4oQF0mgGWqRWSHRYWx7npuMqYwc7Qc1f66_DYUILEqysKx995z4QesHoKeOMvgN3yimtCK2y7BFasCrLiWSSPkYLSpkgknN5hI5jvElllmXiKTrilDNWSbZAd5vdGLyt8bkPe--AfIXrodU91PjSDxHwCgJsg27xyocebvEZOIh4GQCvbdOkT9db3bYjXkMHrk4l9g73O8BXfggGsG9-VXP-e7zEV_1Qj9i6ZHDe6LD1t-OkxJugXewmTyAlwdrVKdX62jodgXCyhsYaOykurYFn6Emj2wjP5_cEffv0cbM6Jxdfzj6vlhfE5KXoCRRVKbmWVGcyzU0bUwmpoRR5wwXPeQE5lKzJKUhd1QVjmtF8y4Sh1PBcMnGCPhxyu2G7h9okf9qH6oLd6zAqr636-8fZnbr2PxQviyoJUsCrOSD47wPEXt2k1bjUsxJM0IIyxstEvT1QJvgYAzT3BkbVdGkFTk2XVtOlE_7yz67u4d-nTcDrGdDR6LZJuzU2PnBcCsGkTNybA-eH7n9KMivFgUx39iZYB12AGB-m-WejPwFw68_B</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Morte, Beatriz</creator><creator>Ceballos, Ainhoa</creator><creator>Diez, Diego</creator><creator>Grijota-Martínez, Carmen</creator><creator>Dumitrescu, Alexandra M</creator><creator>Di Cosmo, Caterina</creator><creator>Galton, Valerie Anne</creator><creator>Refetoff, Samuel</creator><creator>Bernal, Juan</creator><general>Endocrine Society</general><general>Oxford University Press</general><general>The Endocrine Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20100501</creationdate><title>Thyroid Hormone-Regulated Mouse Cerebral Cortex Genes Are Differentially Dependent on the Source of the Hormone: A Study in Monocarboxylate Transporter-8- and Deiodinase-2-Deficient Mice</title><author>Morte, Beatriz ; Ceballos, Ainhoa ; Diez, Diego ; Grijota-Martínez, Carmen ; Dumitrescu, Alexandra M ; Di Cosmo, Caterina ; Galton, Valerie Anne ; Refetoff, Samuel ; Bernal, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-e69872a70a472020fc937ae835f232526e5e81f50e7a9d611a105b13c00c25713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Antithyroid Agents - administration &amp; dosage</topic><topic>Biological and medical sciences</topic><topic>Blood levels</topic><topic>Blood-brain barrier</topic><topic>Cerebral cortex</topic><topic>Cerebral Cortex - embryology</topic><topic>Cerebral Cortex - growth &amp; development</topic><topic>Cerebral Cortex - metabolism</topic><topic>Deactivation</topic><topic>Disruption</topic><topic>DNA microarrays</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Developmental - drug effects</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Hormones</topic><topic>Hypothyroidism</topic><topic>Hypothyroidism - genetics</topic><topic>Inactivation</topic><topic>Iodide peroxidase</topic><topic>Iodide Peroxidase - deficiency</topic><topic>Iodide Peroxidase - genetics</topic><topic>Iodide Peroxidase - metabolism</topic><topic>Iodothyronine Deiodinase Type II</topic><topic>Male</topic><topic>Membrane Transport Proteins - deficiency</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Methimazole - administration &amp; dosage</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Monocarboxylic Acid Transporters</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Pregnancy</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Symporters</topic><topic>Thyroid</topic><topic>Thyroid gland</topic><topic>Thyroid hormones</topic><topic>Thyroid Hormones - metabolism</topic><topic>Thyroxine</topic><topic>Thyroxine - metabolism</topic><topic>Triiodothyronine</topic><topic>Triiodothyronine - metabolism</topic><topic>Vertebrates: endocrinology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morte, Beatriz</creatorcontrib><creatorcontrib>Ceballos, Ainhoa</creatorcontrib><creatorcontrib>Diez, Diego</creatorcontrib><creatorcontrib>Grijota-Martínez, Carmen</creatorcontrib><creatorcontrib>Dumitrescu, Alexandra M</creatorcontrib><creatorcontrib>Di Cosmo, Caterina</creatorcontrib><creatorcontrib>Galton, Valerie Anne</creatorcontrib><creatorcontrib>Refetoff, Samuel</creatorcontrib><creatorcontrib>Bernal, Juan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morte, Beatriz</au><au>Ceballos, Ainhoa</au><au>Diez, Diego</au><au>Grijota-Martínez, Carmen</au><au>Dumitrescu, Alexandra M</au><au>Di Cosmo, Caterina</au><au>Galton, Valerie Anne</au><au>Refetoff, Samuel</au><au>Bernal, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thyroid Hormone-Regulated Mouse Cerebral Cortex Genes Are Differentially Dependent on the Source of the Hormone: A Study in Monocarboxylate Transporter-8- and Deiodinase-2-Deficient Mice</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>2010-05-01</date><risdate>2010</risdate><volume>151</volume><issue>5</issue><spage>2381</spage><epage>2387</epage><pages>2381-2387</pages><issn>0013-7227</issn><eissn>1945-7170</eissn><coden>ENDOAO</coden><abstract>Thyroid hormones influence brain development through the control of gene expression. The concentration of the active hormone T3 in the brain depends on T3 transport through the blood-brain barrier, mediated in part by the monocarboxylate transporter 8 (Mct8/MCT8) and the activity of type 2 deiodinase (D2) generating T3 from T4. The relative roles of each of these pathways in the regulation of brain gene expression is not known. To shed light on this question, we analyzed thyroid hormone-dependent gene expression in the cerebral cortex of mice with inactivated Mct8 (Slc16a2) and Dio2 genes, alone or in combination. We used 34 target genes identified to be controlled by thyroid hormone in microarray comparisons of cerebral cortex from wild-type control and hypothyroid mice on postnatal d 21. Inactivation of the Mct8 gene (Mct8KO) was without effect on the expression of 31 of these genes. Normal gene expression in the absence of the transporter was mostly due to D2 activity because the combined disruption of Mct8 and Dio2 led to similar effects as hypothyroidism on the expression of 24 genes. Dio2 disruption alone did not affect the expression of positively regulated genes, but, as in hypothyroidism, it increased that of negatively regulated genes. We conclude that gene expression in the Mct8KO cerebral cortex is compensated in part by D2-dependent mechanisms. Intriguingly, positive or negative regulation of genes by thyroid hormone is sensitive to the source of T3 because Dio2 inactivation selectively affects the expression of negatively regulated genes. Genes positively regulated by thyroid hormones in the postnatal mouse cerebral cortex are sensitive to the T3 entering the brain from the circulation, or being locally generated by D2, whereas genes negatively regulated by the hormone are dependent mostly on locally generated T3.</abstract><cop>Chevy Chase, MD</cop><pub>Endocrine Society</pub><pmid>20211971</pmid><doi>10.1210/en.2009-0944</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-7227
ispartof Endocrinology (Philadelphia), 2010-05, Vol.151 (5), p.2381-2387
issn 0013-7227
1945-7170
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2869252
source MEDLINE; Alma/SFX Local Collection; EZB Electronic Journals Library; Oxford Journals
subjects Animals
Animals, Newborn
Antithyroid Agents - administration & dosage
Biological and medical sciences
Blood levels
Blood-brain barrier
Cerebral cortex
Cerebral Cortex - embryology
Cerebral Cortex - growth & development
Cerebral Cortex - metabolism
Deactivation
Disruption
DNA microarrays
Female
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Developmental - drug effects
Gene regulation
Genes
Hormones
Hypothyroidism
Hypothyroidism - genetics
Inactivation
Iodide peroxidase
Iodide Peroxidase - deficiency
Iodide Peroxidase - genetics
Iodide Peroxidase - metabolism
Iodothyronine Deiodinase Type II
Male
Membrane Transport Proteins - deficiency
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Methimazole - administration & dosage
Mice
Mice, Inbred C57BL
Mice, Knockout
Monocarboxylic Acid Transporters
Oligonucleotide Array Sequence Analysis
Pregnancy
Reverse Transcriptase Polymerase Chain Reaction
Symporters
Thyroid
Thyroid gland
Thyroid hormones
Thyroid Hormones - metabolism
Thyroxine
Thyroxine - metabolism
Triiodothyronine
Triiodothyronine - metabolism
Vertebrates: endocrinology
title Thyroid Hormone-Regulated Mouse Cerebral Cortex Genes Are Differentially Dependent on the Source of the Hormone: A Study in Monocarboxylate Transporter-8- and Deiodinase-2-Deficient Mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A13%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thyroid%20Hormone-Regulated%20Mouse%20Cerebral%20Cortex%20Genes%20Are%20Differentially%20Dependent%20on%20the%20Source%20of%20the%20Hormone:%20A%20Study%20in%20Monocarboxylate%20Transporter-8-%20and%20Deiodinase-2-Deficient%20Mice&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Morte,%20Beatriz&rft.date=2010-05-01&rft.volume=151&rft.issue=5&rft.spage=2381&rft.epage=2387&rft.pages=2381-2387&rft.issn=0013-7227&rft.eissn=1945-7170&rft.coden=ENDOAO&rft_id=info:doi/10.1210/en.2009-0944&rft_dat=%3Cproquest_pubme%3E3130601128%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130601128&rft_id=info:pmid/20211971&rft_oup_id=10.1210/en.2009-0944&rfr_iscdi=true