Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism
The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2010-06, Vol.264 (3), p.683-692 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 692 |
---|---|
container_issue | 3 |
container_start_page | 683 |
container_title | Journal of theoretical biology |
container_volume | 264 |
creator | Fleming, R.M.T. Thiele, I. Provan, G. Nasheuer, H.P. |
description | The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting
in silico predictions are tested against fluxomic data for central metabolism in
Escherichia coli and compare favourably with
in silico prediction by flux balance analysis. |
doi_str_mv | 10.1016/j.jtbi.2010.02.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2868105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519310001190</els_id><sourcerecordid>759308828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-b896427d1084cfdabd5ad32c2e6d3695e572620e1ae35330d02854c5795ba4813</originalsourceid><addsrcrecordid>eNqFUU1rGzEQFSElcdL-gRzC3nLpuiNptauFUgih-YBAL-2hJ6GVxracXSmV5ID_fWWchPSSnmaYee8xbx4hZxTmFGj7ZT1f58HNGZQBsDk0zQGZUehFLUVDD8kMgLFa0J4fk5OU1gDQN7w9IscMGAfZwIz8vvMZl1FntFXKwZmVCxPm6MznKq8wTsFuvZ6cqbS31YPzmEtfpjiOzi-rsCg01HZbShGpClcPYXRp-kg-LPSY8NNzPSW_rr__vLqt73_c3F1d3temkW2uB9m3DessLfeYhdWDFdpyZhi2lre9QNGxlgFSjVxwDhZYcWdE14tBN5LyU_Jtr_u4GSa0Bn2OelSP0U06blXQTv278W6lluFJMdlKCqIIXDwLxPBngymrySVT_GmPYZNUJ_ryLMnk_5GccypZt0OyPdLEkFLExes9FNQuPLVWu_DULjwFTJXwCun8rZNXyktaBfB1D8DyzyeHUSXj0Bu0LqLJygb3nv5fYRKs0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733318278</pqid></control><display><type>article</type><title>Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Fleming, R.M.T. ; Thiele, I. ; Provan, G. ; Nasheuer, H.P.</creator><creatorcontrib>Fleming, R.M.T. ; Thiele, I. ; Provan, G. ; Nasheuer, H.P.</creatorcontrib><description>The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting
in silico predictions are tested against fluxomic data for central metabolism in
Escherichia coli and compare favourably with
in silico prediction by flux balance analysis.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2010.02.044</identifier><identifier>PMID: 20230840</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algebraic geometry ; Algorithms ; Bacterial Physiological Phenomena ; Computational Biology ; Computer Simulation ; Constraint-based modelling ; Energy Metabolism - physiology ; Escherichia coli ; Escherichia coli - metabolism ; Escherichia coli - physiology ; Kinetics ; Linear polytope ; Logarithmic polytope ; Models, Biological ; Systems biology ; Thermodynamics</subject><ispartof>Journal of theoretical biology, 2010-06, Vol.264 (3), p.683-692</ispartof><rights>2010 Elsevier Ltd</rights><rights>Copyright (c) 2010 Elsevier Ltd. All rights reserved.</rights><rights>2009 Elsevier Ltd. All rights reserved. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-b896427d1084cfdabd5ad32c2e6d3695e572620e1ae35330d02854c5795ba4813</citedby><cites>FETCH-LOGICAL-c486t-b896427d1084cfdabd5ad32c2e6d3695e572620e1ae35330d02854c5795ba4813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2010.02.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20230840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fleming, R.M.T.</creatorcontrib><creatorcontrib>Thiele, I.</creatorcontrib><creatorcontrib>Provan, G.</creatorcontrib><creatorcontrib>Nasheuer, H.P.</creatorcontrib><title>Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting
in silico predictions are tested against fluxomic data for central metabolism in
Escherichia coli and compare favourably with
in silico prediction by flux balance analysis.</description><subject>Algebraic geometry</subject><subject>Algorithms</subject><subject>Bacterial Physiological Phenomena</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Constraint-based modelling</subject><subject>Energy Metabolism - physiology</subject><subject>Escherichia coli</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli - physiology</subject><subject>Kinetics</subject><subject>Linear polytope</subject><subject>Logarithmic polytope</subject><subject>Models, Biological</subject><subject>Systems biology</subject><subject>Thermodynamics</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1rGzEQFSElcdL-gRzC3nLpuiNptauFUgih-YBAL-2hJ6GVxracXSmV5ID_fWWchPSSnmaYee8xbx4hZxTmFGj7ZT1f58HNGZQBsDk0zQGZUehFLUVDD8kMgLFa0J4fk5OU1gDQN7w9IscMGAfZwIz8vvMZl1FntFXKwZmVCxPm6MznKq8wTsFuvZ6cqbS31YPzmEtfpjiOzi-rsCg01HZbShGpClcPYXRp-kg-LPSY8NNzPSW_rr__vLqt73_c3F1d3temkW2uB9m3DessLfeYhdWDFdpyZhi2lre9QNGxlgFSjVxwDhZYcWdE14tBN5LyU_Jtr_u4GSa0Bn2OelSP0U06blXQTv278W6lluFJMdlKCqIIXDwLxPBngymrySVT_GmPYZNUJ_ryLMnk_5GccypZt0OyPdLEkFLExes9FNQuPLVWu_DULjwFTJXwCun8rZNXyktaBfB1D8DyzyeHUSXj0Bu0LqLJygb3nv5fYRKs0g</recordid><startdate>20100607</startdate><enddate>20100607</enddate><creator>Fleming, R.M.T.</creator><creator>Thiele, I.</creator><creator>Provan, G.</creator><creator>Nasheuer, H.P.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20100607</creationdate><title>Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism</title><author>Fleming, R.M.T. ; Thiele, I. ; Provan, G. ; Nasheuer, H.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-b896427d1084cfdabd5ad32c2e6d3695e572620e1ae35330d02854c5795ba4813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebraic geometry</topic><topic>Algorithms</topic><topic>Bacterial Physiological Phenomena</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Constraint-based modelling</topic><topic>Energy Metabolism - physiology</topic><topic>Escherichia coli</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli - physiology</topic><topic>Kinetics</topic><topic>Linear polytope</topic><topic>Logarithmic polytope</topic><topic>Models, Biological</topic><topic>Systems biology</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleming, R.M.T.</creatorcontrib><creatorcontrib>Thiele, I.</creatorcontrib><creatorcontrib>Provan, G.</creatorcontrib><creatorcontrib>Nasheuer, H.P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fleming, R.M.T.</au><au>Thiele, I.</au><au>Provan, G.</au><au>Nasheuer, H.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2010-06-07</date><risdate>2010</risdate><volume>264</volume><issue>3</issue><spage>683</spage><epage>692</epage><pages>683-692</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting
in silico predictions are tested against fluxomic data for central metabolism in
Escherichia coli and compare favourably with
in silico prediction by flux balance analysis.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>20230840</pmid><doi>10.1016/j.jtbi.2010.02.044</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2010-06, Vol.264 (3), p.683-692 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2868105 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Algebraic geometry Algorithms Bacterial Physiological Phenomena Computational Biology Computer Simulation Constraint-based modelling Energy Metabolism - physiology Escherichia coli Escherichia coli - metabolism Escherichia coli - physiology Kinetics Linear polytope Logarithmic polytope Models, Biological Systems biology Thermodynamics |
title | Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20stoichiometric,%20thermodynamic%20and%20kinetic%20modelling%20of%20steady%20state%20metabolism&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Fleming,%20R.M.T.&rft.date=2010-06-07&rft.volume=264&rft.issue=3&rft.spage=683&rft.epage=692&rft.pages=683-692&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2010.02.044&rft_dat=%3Cproquest_pubme%3E759308828%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733318278&rft_id=info:pmid/20230840&rft_els_id=S0022519310001190&rfr_iscdi=true |