Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism

The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2010-06, Vol.264 (3), p.683-692
Hauptverfasser: Fleming, R.M.T., Thiele, I., Provan, G., Nasheuer, H.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 692
container_issue 3
container_start_page 683
container_title Journal of theoretical biology
container_volume 264
creator Fleming, R.M.T.
Thiele, I.
Provan, G.
Nasheuer, H.P.
description The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in Escherichia coli and compare favourably with in silico prediction by flux balance analysis.
doi_str_mv 10.1016/j.jtbi.2010.02.044
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2868105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519310001190</els_id><sourcerecordid>759308828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-b896427d1084cfdabd5ad32c2e6d3695e572620e1ae35330d02854c5795ba4813</originalsourceid><addsrcrecordid>eNqFUU1rGzEQFSElcdL-gRzC3nLpuiNptauFUgih-YBAL-2hJ6GVxracXSmV5ID_fWWchPSSnmaYee8xbx4hZxTmFGj7ZT1f58HNGZQBsDk0zQGZUehFLUVDD8kMgLFa0J4fk5OU1gDQN7w9IscMGAfZwIz8vvMZl1FntFXKwZmVCxPm6MznKq8wTsFuvZ6cqbS31YPzmEtfpjiOzi-rsCg01HZbShGpClcPYXRp-kg-LPSY8NNzPSW_rr__vLqt73_c3F1d3temkW2uB9m3DessLfeYhdWDFdpyZhi2lre9QNGxlgFSjVxwDhZYcWdE14tBN5LyU_Jtr_u4GSa0Bn2OelSP0U06blXQTv278W6lluFJMdlKCqIIXDwLxPBngymrySVT_GmPYZNUJ_ryLMnk_5GccypZt0OyPdLEkFLExes9FNQuPLVWu_DULjwFTJXwCun8rZNXyktaBfB1D8DyzyeHUSXj0Bu0LqLJygb3nv5fYRKs0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733318278</pqid></control><display><type>article</type><title>Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Fleming, R.M.T. ; Thiele, I. ; Provan, G. ; Nasheuer, H.P.</creator><creatorcontrib>Fleming, R.M.T. ; Thiele, I. ; Provan, G. ; Nasheuer, H.P.</creatorcontrib><description>The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in Escherichia coli and compare favourably with in silico prediction by flux balance analysis.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2010.02.044</identifier><identifier>PMID: 20230840</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algebraic geometry ; Algorithms ; Bacterial Physiological Phenomena ; Computational Biology ; Computer Simulation ; Constraint-based modelling ; Energy Metabolism - physiology ; Escherichia coli ; Escherichia coli - metabolism ; Escherichia coli - physiology ; Kinetics ; Linear polytope ; Logarithmic polytope ; Models, Biological ; Systems biology ; Thermodynamics</subject><ispartof>Journal of theoretical biology, 2010-06, Vol.264 (3), p.683-692</ispartof><rights>2010 Elsevier Ltd</rights><rights>Copyright (c) 2010 Elsevier Ltd. All rights reserved.</rights><rights>2009 Elsevier Ltd. All rights reserved. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-b896427d1084cfdabd5ad32c2e6d3695e572620e1ae35330d02854c5795ba4813</citedby><cites>FETCH-LOGICAL-c486t-b896427d1084cfdabd5ad32c2e6d3695e572620e1ae35330d02854c5795ba4813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2010.02.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20230840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fleming, R.M.T.</creatorcontrib><creatorcontrib>Thiele, I.</creatorcontrib><creatorcontrib>Provan, G.</creatorcontrib><creatorcontrib>Nasheuer, H.P.</creatorcontrib><title>Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in Escherichia coli and compare favourably with in silico prediction by flux balance analysis.</description><subject>Algebraic geometry</subject><subject>Algorithms</subject><subject>Bacterial Physiological Phenomena</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Constraint-based modelling</subject><subject>Energy Metabolism - physiology</subject><subject>Escherichia coli</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli - physiology</subject><subject>Kinetics</subject><subject>Linear polytope</subject><subject>Logarithmic polytope</subject><subject>Models, Biological</subject><subject>Systems biology</subject><subject>Thermodynamics</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1rGzEQFSElcdL-gRzC3nLpuiNptauFUgih-YBAL-2hJ6GVxracXSmV5ID_fWWchPSSnmaYee8xbx4hZxTmFGj7ZT1f58HNGZQBsDk0zQGZUehFLUVDD8kMgLFa0J4fk5OU1gDQN7w9IscMGAfZwIz8vvMZl1FntFXKwZmVCxPm6MznKq8wTsFuvZ6cqbS31YPzmEtfpjiOzi-rsCg01HZbShGpClcPYXRp-kg-LPSY8NNzPSW_rr__vLqt73_c3F1d3temkW2uB9m3DessLfeYhdWDFdpyZhi2lre9QNGxlgFSjVxwDhZYcWdE14tBN5LyU_Jtr_u4GSa0Bn2OelSP0U06blXQTv278W6lluFJMdlKCqIIXDwLxPBngymrySVT_GmPYZNUJ_ryLMnk_5GccypZt0OyPdLEkFLExes9FNQuPLVWu_DULjwFTJXwCun8rZNXyktaBfB1D8DyzyeHUSXj0Bu0LqLJygb3nv5fYRKs0g</recordid><startdate>20100607</startdate><enddate>20100607</enddate><creator>Fleming, R.M.T.</creator><creator>Thiele, I.</creator><creator>Provan, G.</creator><creator>Nasheuer, H.P.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20100607</creationdate><title>Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism</title><author>Fleming, R.M.T. ; Thiele, I. ; Provan, G. ; Nasheuer, H.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-b896427d1084cfdabd5ad32c2e6d3695e572620e1ae35330d02854c5795ba4813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebraic geometry</topic><topic>Algorithms</topic><topic>Bacterial Physiological Phenomena</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Constraint-based modelling</topic><topic>Energy Metabolism - physiology</topic><topic>Escherichia coli</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli - physiology</topic><topic>Kinetics</topic><topic>Linear polytope</topic><topic>Logarithmic polytope</topic><topic>Models, Biological</topic><topic>Systems biology</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleming, R.M.T.</creatorcontrib><creatorcontrib>Thiele, I.</creatorcontrib><creatorcontrib>Provan, G.</creatorcontrib><creatorcontrib>Nasheuer, H.P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fleming, R.M.T.</au><au>Thiele, I.</au><au>Provan, G.</au><au>Nasheuer, H.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2010-06-07</date><risdate>2010</risdate><volume>264</volume><issue>3</issue><spage>683</spage><epage>692</epage><pages>683-692</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in Escherichia coli and compare favourably with in silico prediction by flux balance analysis.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>20230840</pmid><doi>10.1016/j.jtbi.2010.02.044</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2010-06, Vol.264 (3), p.683-692
issn 0022-5193
1095-8541
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2868105
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algebraic geometry
Algorithms
Bacterial Physiological Phenomena
Computational Biology
Computer Simulation
Constraint-based modelling
Energy Metabolism - physiology
Escherichia coli
Escherichia coli - metabolism
Escherichia coli - physiology
Kinetics
Linear polytope
Logarithmic polytope
Models, Biological
Systems biology
Thermodynamics
title Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20stoichiometric,%20thermodynamic%20and%20kinetic%20modelling%20of%20steady%20state%20metabolism&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Fleming,%20R.M.T.&rft.date=2010-06-07&rft.volume=264&rft.issue=3&rft.spage=683&rft.epage=692&rft.pages=683-692&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2010.02.044&rft_dat=%3Cproquest_pubme%3E759308828%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733318278&rft_id=info:pmid/20230840&rft_els_id=S0022519310001190&rfr_iscdi=true