LET-99 inhibits lateral posterior pulling forces during asymmetric spindle elongation in C. elegans embryos

Cortical pulling on astral microtubules positions the mitotic spindle in response to PAR polarity cues and G protein signaling in many systems. In Caenorhabditis elegans single-cell embryos, posterior spindle displacement depends on Gα and its regulators GPR-1/2 and LIN-5. GPR-1/2 and LIN-5 are nece...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 2010-05, Vol.189 (3), p.481-495
Hauptverfasser: Krueger, Lori E, Wu, Jui-Ching, Tsou, Meng-Fu Bryan, Rose, Lesilee S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 495
container_issue 3
container_start_page 481
container_title The Journal of cell biology
container_volume 189
creator Krueger, Lori E
Wu, Jui-Ching
Tsou, Meng-Fu Bryan
Rose, Lesilee S
description Cortical pulling on astral microtubules positions the mitotic spindle in response to PAR polarity cues and G protein signaling in many systems. In Caenorhabditis elegans single-cell embryos, posterior spindle displacement depends on Gα and its regulators GPR-1/2 and LIN-5. GPR-1/2 and LIN-5 are necessary for cortical pulling forces and become enriched at the posterior cortex, which suggests that higher forces act on the posterior spindle pole compared with the anterior pole. However, the precise distribution of cortical forces and how they are regulated remains to be determined. Using spindle severing, single centrosome assays, and centrosome fragmentation, we show that both the anterior and posterior cortices generate more pulling force than the lateral-posterior region. Lateral inhibition depends on LET-99, which inhibits GPR-1/2 localization to produce a bipolar GPR-1/2 pattern. Thus, rather than two domains of cortical force, there are three. We propose that the attenuation of lateral forces prevents counterproductive pulling, resulting in a higher net force toward the posterior that contributes to spindle elongation and displacement.
doi_str_mv 10.1083/jcb.201001115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2867312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20698081</jstor_id><sourcerecordid>20698081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-c48be846f1455290de49d57a8a490cd33bdbee092a54164c0288f2d4a2ab404d3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EotvCkSNgceGUZcZ2Ns6lElq1gLQSB9qz5ThO6iWxg50g7X-PV1tWhZM_3k9v3ugR8gZhjSD5p71p1gwQABHLZ2SFpYBCooDnZAXAsKhLVl6Qy5T2ACAqwV-SCwaCoWDlivzc3dwVdU2df3CNmxMd9GyjHugUUr64EOm0DIPzPe1CNDbRdonHl06HcbRzdIamyfl2sNQOwfd6dsFnO7pd5w_ba5-oHZt4COkVedHpIdnXj-cVub-9udt-LXbfv3zbft4VJkedCyNkY6XYdCjKktXQWlG3ZaWlFjWYlvOmbayFmulS4EYYYFJ2rBWa6UaAaPkVuT75Tksz2tZYP-eN1BTdqONBBe3Uv4p3D6oPvxWTm4ojywYfHw1i-LXYNKvRJWOHQXsblqQqzsVxKmTyw3_kPizR5-0UwwqRSYYZKk6QiSGlaLtzFAR1LFHlEtW5xMy_e5r_TP9tLQNvT8A-zSE-0Te1BHkc-P6kdzoo3UeX1P2P7M8BJZeskvwPIxqrrg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217112821</pqid></control><display><type>article</type><title>LET-99 inhibits lateral posterior pulling forces during asymmetric spindle elongation in C. elegans embryos</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Krueger, Lori E ; Wu, Jui-Ching ; Tsou, Meng-Fu Bryan ; Rose, Lesilee S</creator><creatorcontrib>Krueger, Lori E ; Wu, Jui-Ching ; Tsou, Meng-Fu Bryan ; Rose, Lesilee S</creatorcontrib><description>Cortical pulling on astral microtubules positions the mitotic spindle in response to PAR polarity cues and G protein signaling in many systems. In Caenorhabditis elegans single-cell embryos, posterior spindle displacement depends on Gα and its regulators GPR-1/2 and LIN-5. GPR-1/2 and LIN-5 are necessary for cortical pulling forces and become enriched at the posterior cortex, which suggests that higher forces act on the posterior spindle pole compared with the anterior pole. However, the precise distribution of cortical forces and how they are regulated remains to be determined. Using spindle severing, single centrosome assays, and centrosome fragmentation, we show that both the anterior and posterior cortices generate more pulling force than the lateral-posterior region. Lateral inhibition depends on LET-99, which inhibits GPR-1/2 localization to produce a bipolar GPR-1/2 pattern. Thus, rather than two domains of cortical force, there are three. We propose that the attenuation of lateral forces prevents counterproductive pulling, resulting in a higher net force toward the posterior that contributes to spindle elongation and displacement.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.201001115</identifier><identifier>PMID: 20421425</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: The Rockefeller University Press</publisher><subject>Anaphase ; Animals ; Biochemistry ; Caenorhabditis elegans - embryology ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - analysis ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Cell cycle ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cells ; Centrosomes ; Embryo, Nonmammalian - metabolism ; Embryos ; Geodetic position ; Lasers ; Metaphase ; Microtubules ; Mitosis - physiology ; Mitotic spindle apparatus ; Nematodes ; Proteins ; Spindle Apparatus - physiology ; Travel</subject><ispartof>The Journal of cell biology, 2010-05, Vol.189 (3), p.481-495</ispartof><rights>Copyright Rockefeller University Press May 3, 2010</rights><rights>2010 Krueger et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-c48be846f1455290de49d57a8a490cd33bdbee092a54164c0288f2d4a2ab404d3</citedby><cites>FETCH-LOGICAL-c525t-c48be846f1455290de49d57a8a490cd33bdbee092a54164c0288f2d4a2ab404d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20421425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krueger, Lori E</creatorcontrib><creatorcontrib>Wu, Jui-Ching</creatorcontrib><creatorcontrib>Tsou, Meng-Fu Bryan</creatorcontrib><creatorcontrib>Rose, Lesilee S</creatorcontrib><title>LET-99 inhibits lateral posterior pulling forces during asymmetric spindle elongation in C. elegans embryos</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Cortical pulling on astral microtubules positions the mitotic spindle in response to PAR polarity cues and G protein signaling in many systems. In Caenorhabditis elegans single-cell embryos, posterior spindle displacement depends on Gα and its regulators GPR-1/2 and LIN-5. GPR-1/2 and LIN-5 are necessary for cortical pulling forces and become enriched at the posterior cortex, which suggests that higher forces act on the posterior spindle pole compared with the anterior pole. However, the precise distribution of cortical forces and how they are regulated remains to be determined. Using spindle severing, single centrosome assays, and centrosome fragmentation, we show that both the anterior and posterior cortices generate more pulling force than the lateral-posterior region. Lateral inhibition depends on LET-99, which inhibits GPR-1/2 localization to produce a bipolar GPR-1/2 pattern. Thus, rather than two domains of cortical force, there are three. We propose that the attenuation of lateral forces prevents counterproductive pulling, resulting in a higher net force toward the posterior that contributes to spindle elongation and displacement.</description><subject>Anaphase</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Caenorhabditis elegans - embryology</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - analysis</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cells</subject><subject>Centrosomes</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Embryos</subject><subject>Geodetic position</subject><subject>Lasers</subject><subject>Metaphase</subject><subject>Microtubules</subject><subject>Mitosis - physiology</subject><subject>Mitotic spindle apparatus</subject><subject>Nematodes</subject><subject>Proteins</subject><subject>Spindle Apparatus - physiology</subject><subject>Travel</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EotvCkSNgceGUZcZ2Ns6lElq1gLQSB9qz5ThO6iWxg50g7X-PV1tWhZM_3k9v3ugR8gZhjSD5p71p1gwQABHLZ2SFpYBCooDnZAXAsKhLVl6Qy5T2ACAqwV-SCwaCoWDlivzc3dwVdU2df3CNmxMd9GyjHugUUr64EOm0DIPzPe1CNDbRdonHl06HcbRzdIamyfl2sNQOwfd6dsFnO7pd5w_ba5-oHZt4COkVedHpIdnXj-cVub-9udt-LXbfv3zbft4VJkedCyNkY6XYdCjKktXQWlG3ZaWlFjWYlvOmbayFmulS4EYYYFJ2rBWa6UaAaPkVuT75Tksz2tZYP-eN1BTdqONBBe3Uv4p3D6oPvxWTm4ojywYfHw1i-LXYNKvRJWOHQXsblqQqzsVxKmTyw3_kPizR5-0UwwqRSYYZKk6QiSGlaLtzFAR1LFHlEtW5xMy_e5r_TP9tLQNvT8A-zSE-0Te1BHkc-P6kdzoo3UeX1P2P7M8BJZeskvwPIxqrrg</recordid><startdate>20100503</startdate><enddate>20100503</enddate><creator>Krueger, Lori E</creator><creator>Wu, Jui-Ching</creator><creator>Tsou, Meng-Fu Bryan</creator><creator>Rose, Lesilee S</creator><general>The Rockefeller University Press</general><general>Rockefeller University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100503</creationdate><title>LET-99 inhibits lateral posterior pulling forces during asymmetric spindle elongation in C. elegans embryos</title><author>Krueger, Lori E ; Wu, Jui-Ching ; Tsou, Meng-Fu Bryan ; Rose, Lesilee S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-c48be846f1455290de49d57a8a490cd33bdbee092a54164c0288f2d4a2ab404d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anaphase</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Caenorhabditis elegans - embryology</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - analysis</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cells</topic><topic>Centrosomes</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Embryos</topic><topic>Geodetic position</topic><topic>Lasers</topic><topic>Metaphase</topic><topic>Microtubules</topic><topic>Mitosis - physiology</topic><topic>Mitotic spindle apparatus</topic><topic>Nematodes</topic><topic>Proteins</topic><topic>Spindle Apparatus - physiology</topic><topic>Travel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krueger, Lori E</creatorcontrib><creatorcontrib>Wu, Jui-Ching</creatorcontrib><creatorcontrib>Tsou, Meng-Fu Bryan</creatorcontrib><creatorcontrib>Rose, Lesilee S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krueger, Lori E</au><au>Wu, Jui-Ching</au><au>Tsou, Meng-Fu Bryan</au><au>Rose, Lesilee S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LET-99 inhibits lateral posterior pulling forces during asymmetric spindle elongation in C. elegans embryos</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2010-05-03</date><risdate>2010</risdate><volume>189</volume><issue>3</issue><spage>481</spage><epage>495</epage><pages>481-495</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>Cortical pulling on astral microtubules positions the mitotic spindle in response to PAR polarity cues and G protein signaling in many systems. In Caenorhabditis elegans single-cell embryos, posterior spindle displacement depends on Gα and its regulators GPR-1/2 and LIN-5. GPR-1/2 and LIN-5 are necessary for cortical pulling forces and become enriched at the posterior cortex, which suggests that higher forces act on the posterior spindle pole compared with the anterior pole. However, the precise distribution of cortical forces and how they are regulated remains to be determined. Using spindle severing, single centrosome assays, and centrosome fragmentation, we show that both the anterior and posterior cortices generate more pulling force than the lateral-posterior region. Lateral inhibition depends on LET-99, which inhibits GPR-1/2 localization to produce a bipolar GPR-1/2 pattern. Thus, rather than two domains of cortical force, there are three. We propose that the attenuation of lateral forces prevents counterproductive pulling, resulting in a higher net force toward the posterior that contributes to spindle elongation and displacement.</abstract><cop>United States</cop><pub>The Rockefeller University Press</pub><pmid>20421425</pmid><doi>10.1083/jcb.201001115</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9525
ispartof The Journal of cell biology, 2010-05, Vol.189 (3), p.481-495
issn 0021-9525
1540-8140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2867312
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Anaphase
Animals
Biochemistry
Caenorhabditis elegans - embryology
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - analysis
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
Cell cycle
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cells
Centrosomes
Embryo, Nonmammalian - metabolism
Embryos
Geodetic position
Lasers
Metaphase
Microtubules
Mitosis - physiology
Mitotic spindle apparatus
Nematodes
Proteins
Spindle Apparatus - physiology
Travel
title LET-99 inhibits lateral posterior pulling forces during asymmetric spindle elongation in C. elegans embryos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A23%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LET-99%20inhibits%20lateral%20posterior%20pulling%20forces%20during%20asymmetric%20spindle%20elongation%20in%20C.%20elegans%20embryos&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Krueger,%20Lori%20E&rft.date=2010-05-03&rft.volume=189&rft.issue=3&rft.spage=481&rft.epage=495&rft.pages=481-495&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.201001115&rft_dat=%3Cjstor_pubme%3E20698081%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217112821&rft_id=info:pmid/20421425&rft_jstor_id=20698081&rfr_iscdi=true