LET-99 inhibits lateral posterior pulling forces during asymmetric spindle elongation in C. elegans embryos
Cortical pulling on astral microtubules positions the mitotic spindle in response to PAR polarity cues and G protein signaling in many systems. In Caenorhabditis elegans single-cell embryos, posterior spindle displacement depends on Gα and its regulators GPR-1/2 and LIN-5. GPR-1/2 and LIN-5 are nece...
Gespeichert in:
Veröffentlicht in: | The Journal of cell biology 2010-05, Vol.189 (3), p.481-495 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 495 |
---|---|
container_issue | 3 |
container_start_page | 481 |
container_title | The Journal of cell biology |
container_volume | 189 |
creator | Krueger, Lori E Wu, Jui-Ching Tsou, Meng-Fu Bryan Rose, Lesilee S |
description | Cortical pulling on astral microtubules positions the mitotic spindle in response to PAR polarity cues and G protein signaling in many systems. In Caenorhabditis elegans single-cell embryos, posterior spindle displacement depends on Gα and its regulators GPR-1/2 and LIN-5. GPR-1/2 and LIN-5 are necessary for cortical pulling forces and become enriched at the posterior cortex, which suggests that higher forces act on the posterior spindle pole compared with the anterior pole. However, the precise distribution of cortical forces and how they are regulated remains to be determined. Using spindle severing, single centrosome assays, and centrosome fragmentation, we show that both the anterior and posterior cortices generate more pulling force than the lateral-posterior region. Lateral inhibition depends on LET-99, which inhibits GPR-1/2 localization to produce a bipolar GPR-1/2 pattern. Thus, rather than two domains of cortical force, there are three. We propose that the attenuation of lateral forces prevents counterproductive pulling, resulting in a higher net force toward the posterior that contributes to spindle elongation and displacement. |
doi_str_mv | 10.1083/jcb.201001115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2867312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20698081</jstor_id><sourcerecordid>20698081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-c48be846f1455290de49d57a8a490cd33bdbee092a54164c0288f2d4a2ab404d3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EotvCkSNgceGUZcZ2Ns6lElq1gLQSB9qz5ThO6iWxg50g7X-PV1tWhZM_3k9v3ugR8gZhjSD5p71p1gwQABHLZ2SFpYBCooDnZAXAsKhLVl6Qy5T2ACAqwV-SCwaCoWDlivzc3dwVdU2df3CNmxMd9GyjHugUUr64EOm0DIPzPe1CNDbRdonHl06HcbRzdIamyfl2sNQOwfd6dsFnO7pd5w_ba5-oHZt4COkVedHpIdnXj-cVub-9udt-LXbfv3zbft4VJkedCyNkY6XYdCjKktXQWlG3ZaWlFjWYlvOmbayFmulS4EYYYFJ2rBWa6UaAaPkVuT75Tksz2tZYP-eN1BTdqONBBe3Uv4p3D6oPvxWTm4ojywYfHw1i-LXYNKvRJWOHQXsblqQqzsVxKmTyw3_kPizR5-0UwwqRSYYZKk6QiSGlaLtzFAR1LFHlEtW5xMy_e5r_TP9tLQNvT8A-zSE-0Te1BHkc-P6kdzoo3UeX1P2P7M8BJZeskvwPIxqrrg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217112821</pqid></control><display><type>article</type><title>LET-99 inhibits lateral posterior pulling forces during asymmetric spindle elongation in C. elegans embryos</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Krueger, Lori E ; Wu, Jui-Ching ; Tsou, Meng-Fu Bryan ; Rose, Lesilee S</creator><creatorcontrib>Krueger, Lori E ; Wu, Jui-Ching ; Tsou, Meng-Fu Bryan ; Rose, Lesilee S</creatorcontrib><description>Cortical pulling on astral microtubules positions the mitotic spindle in response to PAR polarity cues and G protein signaling in many systems. In Caenorhabditis elegans single-cell embryos, posterior spindle displacement depends on Gα and its regulators GPR-1/2 and LIN-5. GPR-1/2 and LIN-5 are necessary for cortical pulling forces and become enriched at the posterior cortex, which suggests that higher forces act on the posterior spindle pole compared with the anterior pole. However, the precise distribution of cortical forces and how they are regulated remains to be determined. Using spindle severing, single centrosome assays, and centrosome fragmentation, we show that both the anterior and posterior cortices generate more pulling force than the lateral-posterior region. Lateral inhibition depends on LET-99, which inhibits GPR-1/2 localization to produce a bipolar GPR-1/2 pattern. Thus, rather than two domains of cortical force, there are three. We propose that the attenuation of lateral forces prevents counterproductive pulling, resulting in a higher net force toward the posterior that contributes to spindle elongation and displacement.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.201001115</identifier><identifier>PMID: 20421425</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: The Rockefeller University Press</publisher><subject>Anaphase ; Animals ; Biochemistry ; Caenorhabditis elegans - embryology ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - analysis ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Cell cycle ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cells ; Centrosomes ; Embryo, Nonmammalian - metabolism ; Embryos ; Geodetic position ; Lasers ; Metaphase ; Microtubules ; Mitosis - physiology ; Mitotic spindle apparatus ; Nematodes ; Proteins ; Spindle Apparatus - physiology ; Travel</subject><ispartof>The Journal of cell biology, 2010-05, Vol.189 (3), p.481-495</ispartof><rights>Copyright Rockefeller University Press May 3, 2010</rights><rights>2010 Krueger et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-c48be846f1455290de49d57a8a490cd33bdbee092a54164c0288f2d4a2ab404d3</citedby><cites>FETCH-LOGICAL-c525t-c48be846f1455290de49d57a8a490cd33bdbee092a54164c0288f2d4a2ab404d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20421425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krueger, Lori E</creatorcontrib><creatorcontrib>Wu, Jui-Ching</creatorcontrib><creatorcontrib>Tsou, Meng-Fu Bryan</creatorcontrib><creatorcontrib>Rose, Lesilee S</creatorcontrib><title>LET-99 inhibits lateral posterior pulling forces during asymmetric spindle elongation in C. elegans embryos</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Cortical pulling on astral microtubules positions the mitotic spindle in response to PAR polarity cues and G protein signaling in many systems. In Caenorhabditis elegans single-cell embryos, posterior spindle displacement depends on Gα and its regulators GPR-1/2 and LIN-5. GPR-1/2 and LIN-5 are necessary for cortical pulling forces and become enriched at the posterior cortex, which suggests that higher forces act on the posterior spindle pole compared with the anterior pole. However, the precise distribution of cortical forces and how they are regulated remains to be determined. Using spindle severing, single centrosome assays, and centrosome fragmentation, we show that both the anterior and posterior cortices generate more pulling force than the lateral-posterior region. Lateral inhibition depends on LET-99, which inhibits GPR-1/2 localization to produce a bipolar GPR-1/2 pattern. Thus, rather than two domains of cortical force, there are three. We propose that the attenuation of lateral forces prevents counterproductive pulling, resulting in a higher net force toward the posterior that contributes to spindle elongation and displacement.</description><subject>Anaphase</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Caenorhabditis elegans - embryology</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - analysis</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cells</subject><subject>Centrosomes</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Embryos</subject><subject>Geodetic position</subject><subject>Lasers</subject><subject>Metaphase</subject><subject>Microtubules</subject><subject>Mitosis - physiology</subject><subject>Mitotic spindle apparatus</subject><subject>Nematodes</subject><subject>Proteins</subject><subject>Spindle Apparatus - physiology</subject><subject>Travel</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EotvCkSNgceGUZcZ2Ns6lElq1gLQSB9qz5ThO6iWxg50g7X-PV1tWhZM_3k9v3ugR8gZhjSD5p71p1gwQABHLZ2SFpYBCooDnZAXAsKhLVl6Qy5T2ACAqwV-SCwaCoWDlivzc3dwVdU2df3CNmxMd9GyjHugUUr64EOm0DIPzPe1CNDbRdonHl06HcbRzdIamyfl2sNQOwfd6dsFnO7pd5w_ba5-oHZt4COkVedHpIdnXj-cVub-9udt-LXbfv3zbft4VJkedCyNkY6XYdCjKktXQWlG3ZaWlFjWYlvOmbayFmulS4EYYYFJ2rBWa6UaAaPkVuT75Tksz2tZYP-eN1BTdqONBBe3Uv4p3D6oPvxWTm4ojywYfHw1i-LXYNKvRJWOHQXsblqQqzsVxKmTyw3_kPizR5-0UwwqRSYYZKk6QiSGlaLtzFAR1LFHlEtW5xMy_e5r_TP9tLQNvT8A-zSE-0Te1BHkc-P6kdzoo3UeX1P2P7M8BJZeskvwPIxqrrg</recordid><startdate>20100503</startdate><enddate>20100503</enddate><creator>Krueger, Lori E</creator><creator>Wu, Jui-Ching</creator><creator>Tsou, Meng-Fu Bryan</creator><creator>Rose, Lesilee S</creator><general>The Rockefeller University Press</general><general>Rockefeller University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100503</creationdate><title>LET-99 inhibits lateral posterior pulling forces during asymmetric spindle elongation in C. elegans embryos</title><author>Krueger, Lori E ; Wu, Jui-Ching ; Tsou, Meng-Fu Bryan ; Rose, Lesilee S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-c48be846f1455290de49d57a8a490cd33bdbee092a54164c0288f2d4a2ab404d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anaphase</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Caenorhabditis elegans - embryology</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - analysis</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cells</topic><topic>Centrosomes</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Embryos</topic><topic>Geodetic position</topic><topic>Lasers</topic><topic>Metaphase</topic><topic>Microtubules</topic><topic>Mitosis - physiology</topic><topic>Mitotic spindle apparatus</topic><topic>Nematodes</topic><topic>Proteins</topic><topic>Spindle Apparatus - physiology</topic><topic>Travel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krueger, Lori E</creatorcontrib><creatorcontrib>Wu, Jui-Ching</creatorcontrib><creatorcontrib>Tsou, Meng-Fu Bryan</creatorcontrib><creatorcontrib>Rose, Lesilee S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krueger, Lori E</au><au>Wu, Jui-Ching</au><au>Tsou, Meng-Fu Bryan</au><au>Rose, Lesilee S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LET-99 inhibits lateral posterior pulling forces during asymmetric spindle elongation in C. elegans embryos</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2010-05-03</date><risdate>2010</risdate><volume>189</volume><issue>3</issue><spage>481</spage><epage>495</epage><pages>481-495</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>Cortical pulling on astral microtubules positions the mitotic spindle in response to PAR polarity cues and G protein signaling in many systems. In Caenorhabditis elegans single-cell embryos, posterior spindle displacement depends on Gα and its regulators GPR-1/2 and LIN-5. GPR-1/2 and LIN-5 are necessary for cortical pulling forces and become enriched at the posterior cortex, which suggests that higher forces act on the posterior spindle pole compared with the anterior pole. However, the precise distribution of cortical forces and how they are regulated remains to be determined. Using spindle severing, single centrosome assays, and centrosome fragmentation, we show that both the anterior and posterior cortices generate more pulling force than the lateral-posterior region. Lateral inhibition depends on LET-99, which inhibits GPR-1/2 localization to produce a bipolar GPR-1/2 pattern. Thus, rather than two domains of cortical force, there are three. We propose that the attenuation of lateral forces prevents counterproductive pulling, resulting in a higher net force toward the posterior that contributes to spindle elongation and displacement.</abstract><cop>United States</cop><pub>The Rockefeller University Press</pub><pmid>20421425</pmid><doi>10.1083/jcb.201001115</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9525 |
ispartof | The Journal of cell biology, 2010-05, Vol.189 (3), p.481-495 |
issn | 0021-9525 1540-8140 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2867312 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Anaphase Animals Biochemistry Caenorhabditis elegans - embryology Caenorhabditis elegans - metabolism Caenorhabditis elegans Proteins - analysis Caenorhabditis elegans Proteins - genetics Caenorhabditis elegans Proteins - metabolism Cell cycle Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cells Centrosomes Embryo, Nonmammalian - metabolism Embryos Geodetic position Lasers Metaphase Microtubules Mitosis - physiology Mitotic spindle apparatus Nematodes Proteins Spindle Apparatus - physiology Travel |
title | LET-99 inhibits lateral posterior pulling forces during asymmetric spindle elongation in C. elegans embryos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A23%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LET-99%20inhibits%20lateral%20posterior%20pulling%20forces%20during%20asymmetric%20spindle%20elongation%20in%20C.%20elegans%20embryos&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Krueger,%20Lori%20E&rft.date=2010-05-03&rft.volume=189&rft.issue=3&rft.spage=481&rft.epage=495&rft.pages=481-495&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.201001115&rft_dat=%3Cjstor_pubme%3E20698081%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217112821&rft_id=info:pmid/20421425&rft_jstor_id=20698081&rfr_iscdi=true |