Mutant p53 initiates a feedback loop that involves Egr-1/EGF receptor/ERK in prostate cancer cells

Early growth response-1 (Egr-1) is overexpressed in human prostate tumors and contributes to cancer progression. On the other hand, mutation of p53 is associated with advanced prostate cancer, as well as with metastasis and hormone independence. This study shows that in prostate cell lines in cultur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2010-05, Vol.29 (18), p.2628-2637
Hauptverfasser: Sauer, L, Gitenay, D, Vo, C, Baron, V T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2637
container_issue 18
container_start_page 2628
container_title Oncogene
container_volume 29
creator Sauer, L
Gitenay, D
Vo, C
Baron, V T
description Early growth response-1 (Egr-1) is overexpressed in human prostate tumors and contributes to cancer progression. On the other hand, mutation of p53 is associated with advanced prostate cancer, as well as with metastasis and hormone independence. This study shows that in prostate cell lines in culture, Egr-1 overexpression correlated with an alteration of p53 activity because of the expression of SV40 large T-antigen or because of a mutation in the TP53 gene. In cells containing altered p53 activity, Egr-1 expression was abolished by pharmacological inhibition or RNAi silencing of p53. Although forced expression of wild-type p53 was not sufficient to trigger Egr-1 transcription, four different mutants of p53 were shown to induce Egr-1. Direct binding of p53 to the EGR1 promoter could not be detected. Instead, Egr-1 transcription was driven by the ERK1/2 pathway, as it was abrogated by specific inhibitors of MEK. Egr-1 increased the transcription of HB-EGF (epidermal growth factor), amphiregulin and epiregulin, resulting in autocrine activation of the EGF receptor (EGFR) and downstream MEK/ERK cascade. Thus, mutant p53 initiates a feedback loop that involves ERK1/2-mediated transactivation of Egr-1, which in turn increases the secretion of EGFR ligands and stimulates the EGFR signaling pathway. Finally, p53 may further regulate this feedback loop by altering the level of EGFR expression.
doi_str_mv 10.1038/onc.2010.24
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2865566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A226568080</galeid><sourcerecordid>A226568080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c601t-4083e5dd62bc4c79fa900ca3ce550e84c13a2b825d342f12c7805d1ed5ef09cc3</originalsourceid><addsrcrecordid>eNqFkt1rFDEUxQdRbK0--S6DIj7o7N58zsyLUMq2ihVB9DlkM3e2qbPJNMku-N-bYdeulYrkISTnl3O5N6conhOYEWDN3Dszo5BPlD8ojgmvZSVEyx8Wx9AKqFrK6FHxJMZrAKhboI-Lo4y30FA4LpafN0m7VI6CldbZZHXCWOqyR-yW2vwoB-_HMl3plOWtH7ZZXaxCReaLi_MyoMEx-TBffP2U9XIMPqbsUBrtDIbS4DDEp8WjXg8Rn-33k-L7-eLb2Yfq8svFx7PTy8pIIKni0DAUXSfp0nBTt71uAYxmBoUAbLghTNNlQ0XHOO0JNXUDoiPYCeyhNYadFO93vuNmucbOoEtBD2oMdq3DT-W1VXcVZ6_Uym8VbaQQUmaDN3uD4G82GJNa2zi1oB36TVQ155IIQdv_k4wxArIWmXz5F3ntN8HlOShai5aQRk52r_4JSU44cBBwoFZ6QGVd73MXZiqsTimVQjbQTNTsHiqvDtfWeIe9zfd3HrzdPTD582LA_nZiBNQUMJUDpqaAKcoz_eLPId-yvxOVgdd7QEejhz7kJNh44GhdgyQT927HxSy5FYZDz_fV_QXR6uPl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641404050</pqid></control><display><type>article</type><title>Mutant p53 initiates a feedback loop that involves Egr-1/EGF receptor/ERK in prostate cancer cells</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sauer, L ; Gitenay, D ; Vo, C ; Baron, V T</creator><creatorcontrib>Sauer, L ; Gitenay, D ; Vo, C ; Baron, V T</creatorcontrib><description>Early growth response-1 (Egr-1) is overexpressed in human prostate tumors and contributes to cancer progression. On the other hand, mutation of p53 is associated with advanced prostate cancer, as well as with metastasis and hormone independence. This study shows that in prostate cell lines in culture, Egr-1 overexpression correlated with an alteration of p53 activity because of the expression of SV40 large T-antigen or because of a mutation in the TP53 gene. In cells containing altered p53 activity, Egr-1 expression was abolished by pharmacological inhibition or RNAi silencing of p53. Although forced expression of wild-type p53 was not sufficient to trigger Egr-1 transcription, four different mutants of p53 were shown to induce Egr-1. Direct binding of p53 to the EGR1 promoter could not be detected. Instead, Egr-1 transcription was driven by the ERK1/2 pathway, as it was abrogated by specific inhibitors of MEK. Egr-1 increased the transcription of HB-EGF (epidermal growth factor), amphiregulin and epiregulin, resulting in autocrine activation of the EGF receptor (EGFR) and downstream MEK/ERK cascade. Thus, mutant p53 initiates a feedback loop that involves ERK1/2-mediated transactivation of Egr-1, which in turn increases the secretion of EGFR ligands and stimulates the EGFR signaling pathway. Finally, p53 may further regulate this feedback loop by altering the level of EGFR expression.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2010.24</identifier><identifier>PMID: 20190820</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337 ; 631/45/612/1244 ; 631/80/86 ; 692/699/67/589/466 ; Amphiregulin ; Apoptosis ; Autocrine signalling ; Biological and medical sciences ; Cancer ; Cell Biology ; Cell culture ; Cell Line, Tumor ; Cell physiology ; Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes ; Cellular biology ; Development and progression ; Early Growth Response Protein 1 - analysis ; Early Growth Response Protein 1 - genetics ; Early Growth Response Protein 1 - physiology ; EGR-1 protein ; Epidermal growth factor ; Epidermal growth factor receptors ; Extracellular signal-regulated kinase ; Extracellular Signal-Regulated MAP Kinases - physiology ; Feedback ; Feedback, Physiological ; Fundamental and applied biological sciences. Psychology ; Gene mutations ; Genetic aspects ; Genetics ; Gynecology. Andrology. Obstetrics ; Health aspects ; Human Genetics ; Humans ; Internal Medicine ; Male ; Male genital diseases ; MAP Kinase Signaling System ; Medical sciences ; Medicine ; Medicine &amp; Public Health ; Metastases ; Mitogen-Activated Protein Kinase Kinases - metabolism ; Molecular and cellular biology ; Mutants ; Mutation ; Nephrology. Urinary tract diseases ; Oncology ; original-article ; p53 Protein ; Promoter Regions, Genetic ; Properties ; Prostate cancer ; Prostatic Neoplasms - pathology ; Receptor, Epidermal Growth Factor - physiology ; RNA-mediated interference ; Signal transduction ; Simian virus 40 ; Transcription ; Tumor suppressor genes ; Tumor Suppressor Protein p53 - physiology ; Tumors ; Tumors of the urinary system ; Urinary tract. Prostate gland</subject><ispartof>Oncogene, 2010-05, Vol.29 (18), p.2628-2637</ispartof><rights>Macmillan Publishers Limited 2010</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 Nature Publishing Group</rights><rights>Macmillan Publishers Limited 2010.</rights><rights>Copyright Nature Publishing Group May 6, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c601t-4083e5dd62bc4c79fa900ca3ce550e84c13a2b825d342f12c7805d1ed5ef09cc3</citedby><cites>FETCH-LOGICAL-c601t-4083e5dd62bc4c79fa900ca3ce550e84c13a2b825d342f12c7805d1ed5ef09cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/onc.2010.24$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/onc.2010.24$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22770610$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20190820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sauer, L</creatorcontrib><creatorcontrib>Gitenay, D</creatorcontrib><creatorcontrib>Vo, C</creatorcontrib><creatorcontrib>Baron, V T</creatorcontrib><title>Mutant p53 initiates a feedback loop that involves Egr-1/EGF receptor/ERK in prostate cancer cells</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Early growth response-1 (Egr-1) is overexpressed in human prostate tumors and contributes to cancer progression. On the other hand, mutation of p53 is associated with advanced prostate cancer, as well as with metastasis and hormone independence. This study shows that in prostate cell lines in culture, Egr-1 overexpression correlated with an alteration of p53 activity because of the expression of SV40 large T-antigen or because of a mutation in the TP53 gene. In cells containing altered p53 activity, Egr-1 expression was abolished by pharmacological inhibition or RNAi silencing of p53. Although forced expression of wild-type p53 was not sufficient to trigger Egr-1 transcription, four different mutants of p53 were shown to induce Egr-1. Direct binding of p53 to the EGR1 promoter could not be detected. Instead, Egr-1 transcription was driven by the ERK1/2 pathway, as it was abrogated by specific inhibitors of MEK. Egr-1 increased the transcription of HB-EGF (epidermal growth factor), amphiregulin and epiregulin, resulting in autocrine activation of the EGF receptor (EGFR) and downstream MEK/ERK cascade. Thus, mutant p53 initiates a feedback loop that involves ERK1/2-mediated transactivation of Egr-1, which in turn increases the secretion of EGFR ligands and stimulates the EGFR signaling pathway. Finally, p53 may further regulate this feedback loop by altering the level of EGFR expression.</description><subject>631/337</subject><subject>631/45/612/1244</subject><subject>631/80/86</subject><subject>692/699/67/589/466</subject><subject>Amphiregulin</subject><subject>Apoptosis</subject><subject>Autocrine signalling</subject><subject>Biological and medical sciences</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Cell culture</subject><subject>Cell Line, Tumor</subject><subject>Cell physiology</subject><subject>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</subject><subject>Cellular biology</subject><subject>Development and progression</subject><subject>Early Growth Response Protein 1 - analysis</subject><subject>Early Growth Response Protein 1 - genetics</subject><subject>Early Growth Response Protein 1 - physiology</subject><subject>EGR-1 protein</subject><subject>Epidermal growth factor</subject><subject>Epidermal growth factor receptors</subject><subject>Extracellular signal-regulated kinase</subject><subject>Extracellular Signal-Regulated MAP Kinases - physiology</subject><subject>Feedback</subject><subject>Feedback, Physiological</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Gynecology. Andrology. Obstetrics</subject><subject>Health aspects</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Male</subject><subject>Male genital diseases</subject><subject>MAP Kinase Signaling System</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metastases</subject><subject>Mitogen-Activated Protein Kinase Kinases - metabolism</subject><subject>Molecular and cellular biology</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Nephrology. Urinary tract diseases</subject><subject>Oncology</subject><subject>original-article</subject><subject>p53 Protein</subject><subject>Promoter Regions, Genetic</subject><subject>Properties</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Receptor, Epidermal Growth Factor - physiology</subject><subject>RNA-mediated interference</subject><subject>Signal transduction</subject><subject>Simian virus 40</subject><subject>Transcription</subject><subject>Tumor suppressor genes</subject><subject>Tumor Suppressor Protein p53 - physiology</subject><subject>Tumors</subject><subject>Tumors of the urinary system</subject><subject>Urinary tract. Prostate gland</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkt1rFDEUxQdRbK0--S6DIj7o7N58zsyLUMq2ihVB9DlkM3e2qbPJNMku-N-bYdeulYrkISTnl3O5N6conhOYEWDN3Dszo5BPlD8ojgmvZSVEyx8Wx9AKqFrK6FHxJMZrAKhboI-Lo4y30FA4LpafN0m7VI6CldbZZHXCWOqyR-yW2vwoB-_HMl3plOWtH7ZZXaxCReaLi_MyoMEx-TBffP2U9XIMPqbsUBrtDIbS4DDEp8WjXg8Rn-33k-L7-eLb2Yfq8svFx7PTy8pIIKni0DAUXSfp0nBTt71uAYxmBoUAbLghTNNlQ0XHOO0JNXUDoiPYCeyhNYadFO93vuNmucbOoEtBD2oMdq3DT-W1VXcVZ6_Uym8VbaQQUmaDN3uD4G82GJNa2zi1oB36TVQ155IIQdv_k4wxArIWmXz5F3ntN8HlOShai5aQRk52r_4JSU44cBBwoFZ6QGVd73MXZiqsTimVQjbQTNTsHiqvDtfWeIe9zfd3HrzdPTD582LA_nZiBNQUMJUDpqaAKcoz_eLPId-yvxOVgdd7QEejhz7kJNh44GhdgyQT927HxSy5FYZDz_fV_QXR6uPl</recordid><startdate>20100506</startdate><enddate>20100506</enddate><creator>Sauer, L</creator><creator>Gitenay, D</creator><creator>Vo, C</creator><creator>Baron, V T</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100506</creationdate><title>Mutant p53 initiates a feedback loop that involves Egr-1/EGF receptor/ERK in prostate cancer cells</title><author>Sauer, L ; Gitenay, D ; Vo, C ; Baron, V T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c601t-4083e5dd62bc4c79fa900ca3ce550e84c13a2b825d342f12c7805d1ed5ef09cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>631/337</topic><topic>631/45/612/1244</topic><topic>631/80/86</topic><topic>692/699/67/589/466</topic><topic>Amphiregulin</topic><topic>Apoptosis</topic><topic>Autocrine signalling</topic><topic>Biological and medical sciences</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Cell culture</topic><topic>Cell Line, Tumor</topic><topic>Cell physiology</topic><topic>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</topic><topic>Cellular biology</topic><topic>Development and progression</topic><topic>Early Growth Response Protein 1 - analysis</topic><topic>Early Growth Response Protein 1 - genetics</topic><topic>Early Growth Response Protein 1 - physiology</topic><topic>EGR-1 protein</topic><topic>Epidermal growth factor</topic><topic>Epidermal growth factor receptors</topic><topic>Extracellular signal-regulated kinase</topic><topic>Extracellular Signal-Regulated MAP Kinases - physiology</topic><topic>Feedback</topic><topic>Feedback, Physiological</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Gynecology. Andrology. Obstetrics</topic><topic>Health aspects</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Male</topic><topic>Male genital diseases</topic><topic>MAP Kinase Signaling System</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metastases</topic><topic>Mitogen-Activated Protein Kinase Kinases - metabolism</topic><topic>Molecular and cellular biology</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Nephrology. Urinary tract diseases</topic><topic>Oncology</topic><topic>original-article</topic><topic>p53 Protein</topic><topic>Promoter Regions, Genetic</topic><topic>Properties</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Receptor, Epidermal Growth Factor - physiology</topic><topic>RNA-mediated interference</topic><topic>Signal transduction</topic><topic>Simian virus 40</topic><topic>Transcription</topic><topic>Tumor suppressor genes</topic><topic>Tumor Suppressor Protein p53 - physiology</topic><topic>Tumors</topic><topic>Tumors of the urinary system</topic><topic>Urinary tract. Prostate gland</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sauer, L</creatorcontrib><creatorcontrib>Gitenay, D</creatorcontrib><creatorcontrib>Vo, C</creatorcontrib><creatorcontrib>Baron, V T</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sauer, L</au><au>Gitenay, D</au><au>Vo, C</au><au>Baron, V T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutant p53 initiates a feedback loop that involves Egr-1/EGF receptor/ERK in prostate cancer cells</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2010-05-06</date><risdate>2010</risdate><volume>29</volume><issue>18</issue><spage>2628</spage><epage>2637</epage><pages>2628-2637</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>Early growth response-1 (Egr-1) is overexpressed in human prostate tumors and contributes to cancer progression. On the other hand, mutation of p53 is associated with advanced prostate cancer, as well as with metastasis and hormone independence. This study shows that in prostate cell lines in culture, Egr-1 overexpression correlated with an alteration of p53 activity because of the expression of SV40 large T-antigen or because of a mutation in the TP53 gene. In cells containing altered p53 activity, Egr-1 expression was abolished by pharmacological inhibition or RNAi silencing of p53. Although forced expression of wild-type p53 was not sufficient to trigger Egr-1 transcription, four different mutants of p53 were shown to induce Egr-1. Direct binding of p53 to the EGR1 promoter could not be detected. Instead, Egr-1 transcription was driven by the ERK1/2 pathway, as it was abrogated by specific inhibitors of MEK. Egr-1 increased the transcription of HB-EGF (epidermal growth factor), amphiregulin and epiregulin, resulting in autocrine activation of the EGF receptor (EGFR) and downstream MEK/ERK cascade. Thus, mutant p53 initiates a feedback loop that involves ERK1/2-mediated transactivation of Egr-1, which in turn increases the secretion of EGFR ligands and stimulates the EGFR signaling pathway. Finally, p53 may further regulate this feedback loop by altering the level of EGFR expression.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20190820</pmid><doi>10.1038/onc.2010.24</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2010-05, Vol.29 (18), p.2628-2637
issn 0950-9232
1476-5594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2865566
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 631/337
631/45/612/1244
631/80/86
692/699/67/589/466
Amphiregulin
Apoptosis
Autocrine signalling
Biological and medical sciences
Cancer
Cell Biology
Cell culture
Cell Line, Tumor
Cell physiology
Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes
Cellular biology
Development and progression
Early Growth Response Protein 1 - analysis
Early Growth Response Protein 1 - genetics
Early Growth Response Protein 1 - physiology
EGR-1 protein
Epidermal growth factor
Epidermal growth factor receptors
Extracellular signal-regulated kinase
Extracellular Signal-Regulated MAP Kinases - physiology
Feedback
Feedback, Physiological
Fundamental and applied biological sciences. Psychology
Gene mutations
Genetic aspects
Genetics
Gynecology. Andrology. Obstetrics
Health aspects
Human Genetics
Humans
Internal Medicine
Male
Male genital diseases
MAP Kinase Signaling System
Medical sciences
Medicine
Medicine & Public Health
Metastases
Mitogen-Activated Protein Kinase Kinases - metabolism
Molecular and cellular biology
Mutants
Mutation
Nephrology. Urinary tract diseases
Oncology
original-article
p53 Protein
Promoter Regions, Genetic
Properties
Prostate cancer
Prostatic Neoplasms - pathology
Receptor, Epidermal Growth Factor - physiology
RNA-mediated interference
Signal transduction
Simian virus 40
Transcription
Tumor suppressor genes
Tumor Suppressor Protein p53 - physiology
Tumors
Tumors of the urinary system
Urinary tract. Prostate gland
title Mutant p53 initiates a feedback loop that involves Egr-1/EGF receptor/ERK in prostate cancer cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutant%20p53%20initiates%20a%20feedback%20loop%20that%20involves%20Egr-1/EGF%20receptor/ERK%20in%20prostate%20cancer%20cells&rft.jtitle=Oncogene&rft.au=Sauer,%20L&rft.date=2010-05-06&rft.volume=29&rft.issue=18&rft.spage=2628&rft.epage=2637&rft.pages=2628-2637&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/onc.2010.24&rft_dat=%3Cgale_pubme%3EA226568080%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641404050&rft_id=info:pmid/20190820&rft_galeid=A226568080&rfr_iscdi=true