Interaction between Plasmodium falciparum Apical Membrane Antigen 1 and the Rhoptry Neck Protein Complex Defines a Key Step in the Erythrocyte Invasion Process of Malaria Parasites

Invasion of host cells by apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii, is a multistep process. Central to invasion is the formation of a tight junction, an aperture in the host cell through which the parasite pulls itself before settling into a newly formed parasito...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2010-05, Vol.285 (19), p.14815-14822
Hauptverfasser: Richard, Dave, MacRaild, Christopher A., Riglar, David T., Chan, Jo-Anne, Foley, Michael, Baum, Jake, Ralph, Stuart A., Norton, Raymond S., Cowman, Alan F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14822
container_issue 19
container_start_page 14815
container_title The Journal of biological chemistry
container_volume 285
creator Richard, Dave
MacRaild, Christopher A.
Riglar, David T.
Chan, Jo-Anne
Foley, Michael
Baum, Jake
Ralph, Stuart A.
Norton, Raymond S.
Cowman, Alan F.
description Invasion of host cells by apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii, is a multistep process. Central to invasion is the formation of a tight junction, an aperture in the host cell through which the parasite pulls itself before settling into a newly formed parasitophorous vacuole. Two protein groups, derived from different secretory organelles, the micronemal protein AMA1 and the rhoptry proteins RON2, RON4, and RON5, have been shown to form part of this structure, with antibodies targeting P. falciparum AMA1 known to inhibit invasion, probably via disruption of its association with the PfRON proteins. Inhibitory AMA1-binding peptides have also been described that block P. falciparum merozoite invasion of the erythrocyte. One of these, R1, blocks invasion some time after initial attachment to the erythrocyte and reorientation of the merozoite to its apical pole. Here we show that the R1 peptide binds the PfAMA1 hydrophobic trough and demonstrate that binding to this region prevents its interaction with the PfRON complex. We show that this defined association between PfAMA1 and the PfRON complex occurs after reorientation and engagement of the actomyosin motor and argue that it precedes rhoptry release. We propose that the formation of the AMA1-RON complex is essential for secretion of the rhoptry contents, which then allows the establishment of parasite infection within the parasitophorous vacuole.
doi_str_mv 10.1074/jbc.M109.080770
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2863225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820549284</els_id><sourcerecordid>733280056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-b95da5b77740bca62107f969b40ac6e0f0df8b7bacfcdab78b937e8f074191983</originalsourceid><addsrcrecordid>eNqNkk9vEzEQxVcIREPhzA1845R0vP_3glSFAhENRJRK3KyxdzZx2bW3thPI9-ID4iilggMSvtjS_Gb8_PyS5DmHGYcqP7uRarbk0MyghqqCB8mEQ51Ns4J_fZhMAFI-bdKiPkmeeH8DceUNf5ycpJCmNZQwSX4uTCCHKmhrmKTwnciwVY9-sK3eDqzDXukRXTyej1phz5Y0SIeG2LkJeh1pztC0LGyIfd7YMbg9-0jqG1s5G0gbNrfD2NMP9oY6bcgzZB9oz64CjSxWD20Xbh82zqp9ILYwO_QHLbFdkffMdmyJPTqNbIUu1gL5p8mjqMvTs7v9NLl-e_Fl_n56-endYn5-OVVFmYepbIoWC1lVVQ5SYZlGy7qmbGQOqEqCDtqulpVE1akWZVXLJquo7qKxvOFNnZ0mr49zx60cqFVkgsNejE4P6PbCohZ_V4zeiLXdibQuszQt4oBXdwOcvd2SD2LQXlHfR__s1osqz0tecfgPMsvij0FRRvLsSCpnvXfU3evhIA6hEDEU4hAKcQxF7Hjx5zPu-d8piMDLI9ChFbh22ovrqxR4BrzOosI8Es2RoGj3TpMTXmkyilrtSAXRWv3P638BC4zTqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733280056</pqid></control><display><type>article</type><title>Interaction between Plasmodium falciparum Apical Membrane Antigen 1 and the Rhoptry Neck Protein Complex Defines a Key Step in the Erythrocyte Invasion Process of Malaria Parasites</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Richard, Dave ; MacRaild, Christopher A. ; Riglar, David T. ; Chan, Jo-Anne ; Foley, Michael ; Baum, Jake ; Ralph, Stuart A. ; Norton, Raymond S. ; Cowman, Alan F.</creator><creatorcontrib>Richard, Dave ; MacRaild, Christopher A. ; Riglar, David T. ; Chan, Jo-Anne ; Foley, Michael ; Baum, Jake ; Ralph, Stuart A. ; Norton, Raymond S. ; Cowman, Alan F.</creatorcontrib><description>Invasion of host cells by apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii, is a multistep process. Central to invasion is the formation of a tight junction, an aperture in the host cell through which the parasite pulls itself before settling into a newly formed parasitophorous vacuole. Two protein groups, derived from different secretory organelles, the micronemal protein AMA1 and the rhoptry proteins RON2, RON4, and RON5, have been shown to form part of this structure, with antibodies targeting P. falciparum AMA1 known to inhibit invasion, probably via disruption of its association with the PfRON proteins. Inhibitory AMA1-binding peptides have also been described that block P. falciparum merozoite invasion of the erythrocyte. One of these, R1, blocks invasion some time after initial attachment to the erythrocyte and reorientation of the merozoite to its apical pole. Here we show that the R1 peptide binds the PfAMA1 hydrophobic trough and demonstrate that binding to this region prevents its interaction with the PfRON complex. We show that this defined association between PfAMA1 and the PfRON complex occurs after reorientation and engagement of the actomyosin motor and argue that it precedes rhoptry release. We propose that the formation of the AMA1-RON complex is essential for secretion of the rhoptry contents, which then allows the establishment of parasite infection within the parasitophorous vacuole.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.080770</identifier><identifier>PMID: 20228060</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Antibodies ; Antigens, Protozoan - metabolism ; Carrier Proteins - metabolism ; Cell Biology ; Cell/Blood ; Diseases ; Diseases/Blood ; Erythrocytes - parasitology ; Humans ; Immunoprecipitation ; Magnetic Resonance Spectroscopy ; Malaria, Falciparum - genetics ; Malaria, Falciparum - immunology ; Membrane Proteins - metabolism ; Merozoites ; Microbiology ; Parasitology ; Plasmodium falciparum ; Plasmodium falciparum - growth &amp; development ; Plasmodium falciparum - metabolism ; Plasmodium falciparum - pathogenicity ; Protein Conformation ; Protein/Protein-Protein Interactions ; Protozoan Proteins - metabolism ; Schizonts - metabolism ; Toxoplasma gondii</subject><ispartof>The Journal of biological chemistry, 2010-05, Vol.285 (19), p.14815-14822</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-b95da5b77740bca62107f969b40ac6e0f0df8b7bacfcdab78b937e8f074191983</citedby><cites>FETCH-LOGICAL-c564t-b95da5b77740bca62107f969b40ac6e0f0df8b7bacfcdab78b937e8f074191983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2863225/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2863225/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20228060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Richard, Dave</creatorcontrib><creatorcontrib>MacRaild, Christopher A.</creatorcontrib><creatorcontrib>Riglar, David T.</creatorcontrib><creatorcontrib>Chan, Jo-Anne</creatorcontrib><creatorcontrib>Foley, Michael</creatorcontrib><creatorcontrib>Baum, Jake</creatorcontrib><creatorcontrib>Ralph, Stuart A.</creatorcontrib><creatorcontrib>Norton, Raymond S.</creatorcontrib><creatorcontrib>Cowman, Alan F.</creatorcontrib><title>Interaction between Plasmodium falciparum Apical Membrane Antigen 1 and the Rhoptry Neck Protein Complex Defines a Key Step in the Erythrocyte Invasion Process of Malaria Parasites</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Invasion of host cells by apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii, is a multistep process. Central to invasion is the formation of a tight junction, an aperture in the host cell through which the parasite pulls itself before settling into a newly formed parasitophorous vacuole. Two protein groups, derived from different secretory organelles, the micronemal protein AMA1 and the rhoptry proteins RON2, RON4, and RON5, have been shown to form part of this structure, with antibodies targeting P. falciparum AMA1 known to inhibit invasion, probably via disruption of its association with the PfRON proteins. Inhibitory AMA1-binding peptides have also been described that block P. falciparum merozoite invasion of the erythrocyte. One of these, R1, blocks invasion some time after initial attachment to the erythrocyte and reorientation of the merozoite to its apical pole. Here we show that the R1 peptide binds the PfAMA1 hydrophobic trough and demonstrate that binding to this region prevents its interaction with the PfRON complex. We show that this defined association between PfAMA1 and the PfRON complex occurs after reorientation and engagement of the actomyosin motor and argue that it precedes rhoptry release. We propose that the formation of the AMA1-RON complex is essential for secretion of the rhoptry contents, which then allows the establishment of parasite infection within the parasitophorous vacuole.</description><subject>Antibodies</subject><subject>Antigens, Protozoan - metabolism</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Biology</subject><subject>Cell/Blood</subject><subject>Diseases</subject><subject>Diseases/Blood</subject><subject>Erythrocytes - parasitology</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Malaria, Falciparum - genetics</subject><subject>Malaria, Falciparum - immunology</subject><subject>Membrane Proteins - metabolism</subject><subject>Merozoites</subject><subject>Microbiology</subject><subject>Parasitology</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - growth &amp; development</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Plasmodium falciparum - pathogenicity</subject><subject>Protein Conformation</subject><subject>Protein/Protein-Protein Interactions</subject><subject>Protozoan Proteins - metabolism</subject><subject>Schizonts - metabolism</subject><subject>Toxoplasma gondii</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk9vEzEQxVcIREPhzA1845R0vP_3glSFAhENRJRK3KyxdzZx2bW3thPI9-ID4iilggMSvtjS_Gb8_PyS5DmHGYcqP7uRarbk0MyghqqCB8mEQ51Ns4J_fZhMAFI-bdKiPkmeeH8DceUNf5ycpJCmNZQwSX4uTCCHKmhrmKTwnciwVY9-sK3eDqzDXukRXTyej1phz5Y0SIeG2LkJeh1pztC0LGyIfd7YMbg9-0jqG1s5G0gbNrfD2NMP9oY6bcgzZB9oz64CjSxWD20Xbh82zqp9ILYwO_QHLbFdkffMdmyJPTqNbIUu1gL5p8mjqMvTs7v9NLl-e_Fl_n56-endYn5-OVVFmYepbIoWC1lVVQ5SYZlGy7qmbGQOqEqCDtqulpVE1akWZVXLJquo7qKxvOFNnZ0mr49zx60cqFVkgsNejE4P6PbCohZ_V4zeiLXdibQuszQt4oBXdwOcvd2SD2LQXlHfR__s1osqz0tecfgPMsvij0FRRvLsSCpnvXfU3evhIA6hEDEU4hAKcQxF7Hjx5zPu-d8piMDLI9ChFbh22ovrqxR4BrzOosI8Es2RoGj3TpMTXmkyilrtSAXRWv3P638BC4zTqw</recordid><startdate>20100507</startdate><enddate>20100507</enddate><creator>Richard, Dave</creator><creator>MacRaild, Christopher A.</creator><creator>Riglar, David T.</creator><creator>Chan, Jo-Anne</creator><creator>Foley, Michael</creator><creator>Baum, Jake</creator><creator>Ralph, Stuart A.</creator><creator>Norton, Raymond S.</creator><creator>Cowman, Alan F.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>5PM</scope></search><sort><creationdate>20100507</creationdate><title>Interaction between Plasmodium falciparum Apical Membrane Antigen 1 and the Rhoptry Neck Protein Complex Defines a Key Step in the Erythrocyte Invasion Process of Malaria Parasites</title><author>Richard, Dave ; MacRaild, Christopher A. ; Riglar, David T. ; Chan, Jo-Anne ; Foley, Michael ; Baum, Jake ; Ralph, Stuart A. ; Norton, Raymond S. ; Cowman, Alan F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-b95da5b77740bca62107f969b40ac6e0f0df8b7bacfcdab78b937e8f074191983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Antibodies</topic><topic>Antigens, Protozoan - metabolism</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Biology</topic><topic>Cell/Blood</topic><topic>Diseases</topic><topic>Diseases/Blood</topic><topic>Erythrocytes - parasitology</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Malaria, Falciparum - genetics</topic><topic>Malaria, Falciparum - immunology</topic><topic>Membrane Proteins - metabolism</topic><topic>Merozoites</topic><topic>Microbiology</topic><topic>Parasitology</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - growth &amp; development</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Plasmodium falciparum - pathogenicity</topic><topic>Protein Conformation</topic><topic>Protein/Protein-Protein Interactions</topic><topic>Protozoan Proteins - metabolism</topic><topic>Schizonts - metabolism</topic><topic>Toxoplasma gondii</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richard, Dave</creatorcontrib><creatorcontrib>MacRaild, Christopher A.</creatorcontrib><creatorcontrib>Riglar, David T.</creatorcontrib><creatorcontrib>Chan, Jo-Anne</creatorcontrib><creatorcontrib>Foley, Michael</creatorcontrib><creatorcontrib>Baum, Jake</creatorcontrib><creatorcontrib>Ralph, Stuart A.</creatorcontrib><creatorcontrib>Norton, Raymond S.</creatorcontrib><creatorcontrib>Cowman, Alan F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richard, Dave</au><au>MacRaild, Christopher A.</au><au>Riglar, David T.</au><au>Chan, Jo-Anne</au><au>Foley, Michael</au><au>Baum, Jake</au><au>Ralph, Stuart A.</au><au>Norton, Raymond S.</au><au>Cowman, Alan F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction between Plasmodium falciparum Apical Membrane Antigen 1 and the Rhoptry Neck Protein Complex Defines a Key Step in the Erythrocyte Invasion Process of Malaria Parasites</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-05-07</date><risdate>2010</risdate><volume>285</volume><issue>19</issue><spage>14815</spage><epage>14822</epage><pages>14815-14822</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Invasion of host cells by apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii, is a multistep process. Central to invasion is the formation of a tight junction, an aperture in the host cell through which the parasite pulls itself before settling into a newly formed parasitophorous vacuole. Two protein groups, derived from different secretory organelles, the micronemal protein AMA1 and the rhoptry proteins RON2, RON4, and RON5, have been shown to form part of this structure, with antibodies targeting P. falciparum AMA1 known to inhibit invasion, probably via disruption of its association with the PfRON proteins. Inhibitory AMA1-binding peptides have also been described that block P. falciparum merozoite invasion of the erythrocyte. One of these, R1, blocks invasion some time after initial attachment to the erythrocyte and reorientation of the merozoite to its apical pole. Here we show that the R1 peptide binds the PfAMA1 hydrophobic trough and demonstrate that binding to this region prevents its interaction with the PfRON complex. We show that this defined association between PfAMA1 and the PfRON complex occurs after reorientation and engagement of the actomyosin motor and argue that it precedes rhoptry release. We propose that the formation of the AMA1-RON complex is essential for secretion of the rhoptry contents, which then allows the establishment of parasite infection within the parasitophorous vacuole.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20228060</pmid><doi>10.1074/jbc.M109.080770</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2010-05, Vol.285 (19), p.14815-14822
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2863225
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Antibodies
Antigens, Protozoan - metabolism
Carrier Proteins - metabolism
Cell Biology
Cell/Blood
Diseases
Diseases/Blood
Erythrocytes - parasitology
Humans
Immunoprecipitation
Magnetic Resonance Spectroscopy
Malaria, Falciparum - genetics
Malaria, Falciparum - immunology
Membrane Proteins - metabolism
Merozoites
Microbiology
Parasitology
Plasmodium falciparum
Plasmodium falciparum - growth & development
Plasmodium falciparum - metabolism
Plasmodium falciparum - pathogenicity
Protein Conformation
Protein/Protein-Protein Interactions
Protozoan Proteins - metabolism
Schizonts - metabolism
Toxoplasma gondii
title Interaction between Plasmodium falciparum Apical Membrane Antigen 1 and the Rhoptry Neck Protein Complex Defines a Key Step in the Erythrocyte Invasion Process of Malaria Parasites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20between%20Plasmodium%20falciparum%20Apical%20Membrane%20Antigen%201%20and%20the%20Rhoptry%20Neck%20Protein%20Complex%20Defines%20a%20Key%20Step%20in%20the%20Erythrocyte%20Invasion%20Process%20of%20Malaria%20Parasites&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Richard,%20Dave&rft.date=2010-05-07&rft.volume=285&rft.issue=19&rft.spage=14815&rft.epage=14822&rft.pages=14815-14822&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.080770&rft_dat=%3Cproquest_pubme%3E733280056%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733280056&rft_id=info:pmid/20228060&rft_els_id=S0021925820549284&rfr_iscdi=true