Interaction between Plasmodium falciparum Apical Membrane Antigen 1 and the Rhoptry Neck Protein Complex Defines a Key Step in the Erythrocyte Invasion Process of Malaria Parasites
Invasion of host cells by apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii, is a multistep process. Central to invasion is the formation of a tight junction, an aperture in the host cell through which the parasite pulls itself before settling into a newly formed parasito...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2010-05, Vol.285 (19), p.14815-14822 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14822 |
---|---|
container_issue | 19 |
container_start_page | 14815 |
container_title | The Journal of biological chemistry |
container_volume | 285 |
creator | Richard, Dave MacRaild, Christopher A. Riglar, David T. Chan, Jo-Anne Foley, Michael Baum, Jake Ralph, Stuart A. Norton, Raymond S. Cowman, Alan F. |
description | Invasion of host cells by apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii, is a multistep process. Central to invasion is the formation of a tight junction, an aperture in the host cell through which the parasite pulls itself before settling into a newly formed parasitophorous vacuole. Two protein groups, derived from different secretory organelles, the micronemal protein AMA1 and the rhoptry proteins RON2, RON4, and RON5, have been shown to form part of this structure, with antibodies targeting P. falciparum AMA1 known to inhibit invasion, probably via disruption of its association with the PfRON proteins. Inhibitory AMA1-binding peptides have also been described that block P. falciparum merozoite invasion of the erythrocyte. One of these, R1, blocks invasion some time after initial attachment to the erythrocyte and reorientation of the merozoite to its apical pole. Here we show that the R1 peptide binds the PfAMA1 hydrophobic trough and demonstrate that binding to this region prevents its interaction with the PfRON complex. We show that this defined association between PfAMA1 and the PfRON complex occurs after reorientation and engagement of the actomyosin motor and argue that it precedes rhoptry release. We propose that the formation of the AMA1-RON complex is essential for secretion of the rhoptry contents, which then allows the establishment of parasite infection within the parasitophorous vacuole. |
doi_str_mv | 10.1074/jbc.M109.080770 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2863225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820549284</els_id><sourcerecordid>733280056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-b95da5b77740bca62107f969b40ac6e0f0df8b7bacfcdab78b937e8f074191983</originalsourceid><addsrcrecordid>eNqNkk9vEzEQxVcIREPhzA1845R0vP_3glSFAhENRJRK3KyxdzZx2bW3thPI9-ID4iilggMSvtjS_Gb8_PyS5DmHGYcqP7uRarbk0MyghqqCB8mEQ51Ns4J_fZhMAFI-bdKiPkmeeH8DceUNf5ycpJCmNZQwSX4uTCCHKmhrmKTwnciwVY9-sK3eDqzDXukRXTyej1phz5Y0SIeG2LkJeh1pztC0LGyIfd7YMbg9-0jqG1s5G0gbNrfD2NMP9oY6bcgzZB9oz64CjSxWD20Xbh82zqp9ILYwO_QHLbFdkffMdmyJPTqNbIUu1gL5p8mjqMvTs7v9NLl-e_Fl_n56-endYn5-OVVFmYepbIoWC1lVVQ5SYZlGy7qmbGQOqEqCDtqulpVE1akWZVXLJquo7qKxvOFNnZ0mr49zx60cqFVkgsNejE4P6PbCohZ_V4zeiLXdibQuszQt4oBXdwOcvd2SD2LQXlHfR__s1osqz0tecfgPMsvij0FRRvLsSCpnvXfU3evhIA6hEDEU4hAKcQxF7Hjx5zPu-d8piMDLI9ChFbh22ovrqxR4BrzOosI8Es2RoGj3TpMTXmkyilrtSAXRWv3P638BC4zTqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733280056</pqid></control><display><type>article</type><title>Interaction between Plasmodium falciparum Apical Membrane Antigen 1 and the Rhoptry Neck Protein Complex Defines a Key Step in the Erythrocyte Invasion Process of Malaria Parasites</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Richard, Dave ; MacRaild, Christopher A. ; Riglar, David T. ; Chan, Jo-Anne ; Foley, Michael ; Baum, Jake ; Ralph, Stuart A. ; Norton, Raymond S. ; Cowman, Alan F.</creator><creatorcontrib>Richard, Dave ; MacRaild, Christopher A. ; Riglar, David T. ; Chan, Jo-Anne ; Foley, Michael ; Baum, Jake ; Ralph, Stuart A. ; Norton, Raymond S. ; Cowman, Alan F.</creatorcontrib><description>Invasion of host cells by apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii, is a multistep process. Central to invasion is the formation of a tight junction, an aperture in the host cell through which the parasite pulls itself before settling into a newly formed parasitophorous vacuole. Two protein groups, derived from different secretory organelles, the micronemal protein AMA1 and the rhoptry proteins RON2, RON4, and RON5, have been shown to form part of this structure, with antibodies targeting P. falciparum AMA1 known to inhibit invasion, probably via disruption of its association with the PfRON proteins. Inhibitory AMA1-binding peptides have also been described that block P. falciparum merozoite invasion of the erythrocyte. One of these, R1, blocks invasion some time after initial attachment to the erythrocyte and reorientation of the merozoite to its apical pole. Here we show that the R1 peptide binds the PfAMA1 hydrophobic trough and demonstrate that binding to this region prevents its interaction with the PfRON complex. We show that this defined association between PfAMA1 and the PfRON complex occurs after reorientation and engagement of the actomyosin motor and argue that it precedes rhoptry release. We propose that the formation of the AMA1-RON complex is essential for secretion of the rhoptry contents, which then allows the establishment of parasite infection within the parasitophorous vacuole.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.080770</identifier><identifier>PMID: 20228060</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Antibodies ; Antigens, Protozoan - metabolism ; Carrier Proteins - metabolism ; Cell Biology ; Cell/Blood ; Diseases ; Diseases/Blood ; Erythrocytes - parasitology ; Humans ; Immunoprecipitation ; Magnetic Resonance Spectroscopy ; Malaria, Falciparum - genetics ; Malaria, Falciparum - immunology ; Membrane Proteins - metabolism ; Merozoites ; Microbiology ; Parasitology ; Plasmodium falciparum ; Plasmodium falciparum - growth & development ; Plasmodium falciparum - metabolism ; Plasmodium falciparum - pathogenicity ; Protein Conformation ; Protein/Protein-Protein Interactions ; Protozoan Proteins - metabolism ; Schizonts - metabolism ; Toxoplasma gondii</subject><ispartof>The Journal of biological chemistry, 2010-05, Vol.285 (19), p.14815-14822</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-b95da5b77740bca62107f969b40ac6e0f0df8b7bacfcdab78b937e8f074191983</citedby><cites>FETCH-LOGICAL-c564t-b95da5b77740bca62107f969b40ac6e0f0df8b7bacfcdab78b937e8f074191983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2863225/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2863225/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20228060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Richard, Dave</creatorcontrib><creatorcontrib>MacRaild, Christopher A.</creatorcontrib><creatorcontrib>Riglar, David T.</creatorcontrib><creatorcontrib>Chan, Jo-Anne</creatorcontrib><creatorcontrib>Foley, Michael</creatorcontrib><creatorcontrib>Baum, Jake</creatorcontrib><creatorcontrib>Ralph, Stuart A.</creatorcontrib><creatorcontrib>Norton, Raymond S.</creatorcontrib><creatorcontrib>Cowman, Alan F.</creatorcontrib><title>Interaction between Plasmodium falciparum Apical Membrane Antigen 1 and the Rhoptry Neck Protein Complex Defines a Key Step in the Erythrocyte Invasion Process of Malaria Parasites</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Invasion of host cells by apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii, is a multistep process. Central to invasion is the formation of a tight junction, an aperture in the host cell through which the parasite pulls itself before settling into a newly formed parasitophorous vacuole. Two protein groups, derived from different secretory organelles, the micronemal protein AMA1 and the rhoptry proteins RON2, RON4, and RON5, have been shown to form part of this structure, with antibodies targeting P. falciparum AMA1 known to inhibit invasion, probably via disruption of its association with the PfRON proteins. Inhibitory AMA1-binding peptides have also been described that block P. falciparum merozoite invasion of the erythrocyte. One of these, R1, blocks invasion some time after initial attachment to the erythrocyte and reorientation of the merozoite to its apical pole. Here we show that the R1 peptide binds the PfAMA1 hydrophobic trough and demonstrate that binding to this region prevents its interaction with the PfRON complex. We show that this defined association between PfAMA1 and the PfRON complex occurs after reorientation and engagement of the actomyosin motor and argue that it precedes rhoptry release. We propose that the formation of the AMA1-RON complex is essential for secretion of the rhoptry contents, which then allows the establishment of parasite infection within the parasitophorous vacuole.</description><subject>Antibodies</subject><subject>Antigens, Protozoan - metabolism</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Biology</subject><subject>Cell/Blood</subject><subject>Diseases</subject><subject>Diseases/Blood</subject><subject>Erythrocytes - parasitology</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Malaria, Falciparum - genetics</subject><subject>Malaria, Falciparum - immunology</subject><subject>Membrane Proteins - metabolism</subject><subject>Merozoites</subject><subject>Microbiology</subject><subject>Parasitology</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - growth & development</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Plasmodium falciparum - pathogenicity</subject><subject>Protein Conformation</subject><subject>Protein/Protein-Protein Interactions</subject><subject>Protozoan Proteins - metabolism</subject><subject>Schizonts - metabolism</subject><subject>Toxoplasma gondii</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk9vEzEQxVcIREPhzA1845R0vP_3glSFAhENRJRK3KyxdzZx2bW3thPI9-ID4iilggMSvtjS_Gb8_PyS5DmHGYcqP7uRarbk0MyghqqCB8mEQ51Ns4J_fZhMAFI-bdKiPkmeeH8DceUNf5ycpJCmNZQwSX4uTCCHKmhrmKTwnciwVY9-sK3eDqzDXukRXTyej1phz5Y0SIeG2LkJeh1pztC0LGyIfd7YMbg9-0jqG1s5G0gbNrfD2NMP9oY6bcgzZB9oz64CjSxWD20Xbh82zqp9ILYwO_QHLbFdkffMdmyJPTqNbIUu1gL5p8mjqMvTs7v9NLl-e_Fl_n56-endYn5-OVVFmYepbIoWC1lVVQ5SYZlGy7qmbGQOqEqCDtqulpVE1akWZVXLJquo7qKxvOFNnZ0mr49zx60cqFVkgsNejE4P6PbCohZ_V4zeiLXdibQuszQt4oBXdwOcvd2SD2LQXlHfR__s1osqz0tecfgPMsvij0FRRvLsSCpnvXfU3evhIA6hEDEU4hAKcQxF7Hjx5zPu-d8piMDLI9ChFbh22ovrqxR4BrzOosI8Es2RoGj3TpMTXmkyilrtSAXRWv3P638BC4zTqw</recordid><startdate>20100507</startdate><enddate>20100507</enddate><creator>Richard, Dave</creator><creator>MacRaild, Christopher A.</creator><creator>Riglar, David T.</creator><creator>Chan, Jo-Anne</creator><creator>Foley, Michael</creator><creator>Baum, Jake</creator><creator>Ralph, Stuart A.</creator><creator>Norton, Raymond S.</creator><creator>Cowman, Alan F.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>5PM</scope></search><sort><creationdate>20100507</creationdate><title>Interaction between Plasmodium falciparum Apical Membrane Antigen 1 and the Rhoptry Neck Protein Complex Defines a Key Step in the Erythrocyte Invasion Process of Malaria Parasites</title><author>Richard, Dave ; MacRaild, Christopher A. ; Riglar, David T. ; Chan, Jo-Anne ; Foley, Michael ; Baum, Jake ; Ralph, Stuart A. ; Norton, Raymond S. ; Cowman, Alan F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-b95da5b77740bca62107f969b40ac6e0f0df8b7bacfcdab78b937e8f074191983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Antibodies</topic><topic>Antigens, Protozoan - metabolism</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Biology</topic><topic>Cell/Blood</topic><topic>Diseases</topic><topic>Diseases/Blood</topic><topic>Erythrocytes - parasitology</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Malaria, Falciparum - genetics</topic><topic>Malaria, Falciparum - immunology</topic><topic>Membrane Proteins - metabolism</topic><topic>Merozoites</topic><topic>Microbiology</topic><topic>Parasitology</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - growth & development</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Plasmodium falciparum - pathogenicity</topic><topic>Protein Conformation</topic><topic>Protein/Protein-Protein Interactions</topic><topic>Protozoan Proteins - metabolism</topic><topic>Schizonts - metabolism</topic><topic>Toxoplasma gondii</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richard, Dave</creatorcontrib><creatorcontrib>MacRaild, Christopher A.</creatorcontrib><creatorcontrib>Riglar, David T.</creatorcontrib><creatorcontrib>Chan, Jo-Anne</creatorcontrib><creatorcontrib>Foley, Michael</creatorcontrib><creatorcontrib>Baum, Jake</creatorcontrib><creatorcontrib>Ralph, Stuart A.</creatorcontrib><creatorcontrib>Norton, Raymond S.</creatorcontrib><creatorcontrib>Cowman, Alan F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richard, Dave</au><au>MacRaild, Christopher A.</au><au>Riglar, David T.</au><au>Chan, Jo-Anne</au><au>Foley, Michael</au><au>Baum, Jake</au><au>Ralph, Stuart A.</au><au>Norton, Raymond S.</au><au>Cowman, Alan F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction between Plasmodium falciparum Apical Membrane Antigen 1 and the Rhoptry Neck Protein Complex Defines a Key Step in the Erythrocyte Invasion Process of Malaria Parasites</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-05-07</date><risdate>2010</risdate><volume>285</volume><issue>19</issue><spage>14815</spage><epage>14822</epage><pages>14815-14822</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Invasion of host cells by apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii, is a multistep process. Central to invasion is the formation of a tight junction, an aperture in the host cell through which the parasite pulls itself before settling into a newly formed parasitophorous vacuole. Two protein groups, derived from different secretory organelles, the micronemal protein AMA1 and the rhoptry proteins RON2, RON4, and RON5, have been shown to form part of this structure, with antibodies targeting P. falciparum AMA1 known to inhibit invasion, probably via disruption of its association with the PfRON proteins. Inhibitory AMA1-binding peptides have also been described that block P. falciparum merozoite invasion of the erythrocyte. One of these, R1, blocks invasion some time after initial attachment to the erythrocyte and reorientation of the merozoite to its apical pole. Here we show that the R1 peptide binds the PfAMA1 hydrophobic trough and demonstrate that binding to this region prevents its interaction with the PfRON complex. We show that this defined association between PfAMA1 and the PfRON complex occurs after reorientation and engagement of the actomyosin motor and argue that it precedes rhoptry release. We propose that the formation of the AMA1-RON complex is essential for secretion of the rhoptry contents, which then allows the establishment of parasite infection within the parasitophorous vacuole.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20228060</pmid><doi>10.1074/jbc.M109.080770</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2010-05, Vol.285 (19), p.14815-14822 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2863225 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Antibodies Antigens, Protozoan - metabolism Carrier Proteins - metabolism Cell Biology Cell/Blood Diseases Diseases/Blood Erythrocytes - parasitology Humans Immunoprecipitation Magnetic Resonance Spectroscopy Malaria, Falciparum - genetics Malaria, Falciparum - immunology Membrane Proteins - metabolism Merozoites Microbiology Parasitology Plasmodium falciparum Plasmodium falciparum - growth & development Plasmodium falciparum - metabolism Plasmodium falciparum - pathogenicity Protein Conformation Protein/Protein-Protein Interactions Protozoan Proteins - metabolism Schizonts - metabolism Toxoplasma gondii |
title | Interaction between Plasmodium falciparum Apical Membrane Antigen 1 and the Rhoptry Neck Protein Complex Defines a Key Step in the Erythrocyte Invasion Process of Malaria Parasites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20between%20Plasmodium%20falciparum%20Apical%20Membrane%20Antigen%201%20and%20the%20Rhoptry%20Neck%20Protein%20Complex%20Defines%20a%20Key%20Step%20in%20the%20Erythrocyte%20Invasion%20Process%20of%20Malaria%20Parasites&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Richard,%20Dave&rft.date=2010-05-07&rft.volume=285&rft.issue=19&rft.spage=14815&rft.epage=14822&rft.pages=14815-14822&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.080770&rft_dat=%3Cproquest_pubme%3E733280056%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733280056&rft_id=info:pmid/20228060&rft_els_id=S0021925820549284&rfr_iscdi=true |