High-Performance Single Cell Genetic Analysis Using Microfluidic Emulsion Generator Arrays
High-throughput genetic and phenotypic analysis at the single cell level is critical to advance our understanding of the molecular mechanisms underlying cellular function and dysfunction. Here we describe a high-performance single cell genetic analysis (SCGA) technique that combines high-throughput...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2010-04, Vol.82 (8), p.3183-3190 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3190 |
---|---|
container_issue | 8 |
container_start_page | 3183 |
container_title | Analytical chemistry (Washington) |
container_volume | 82 |
creator | Zeng, Yong Novak, Richard Shuga, Joe Smith, Martyn T Mathies, Richard A |
description | High-throughput genetic and phenotypic analysis at the single cell level is critical to advance our understanding of the molecular mechanisms underlying cellular function and dysfunction. Here we describe a high-performance single cell genetic analysis (SCGA) technique that combines high-throughput microfluidic emulsion generation with single cell multiplex polymerase chain reaction (PCR). Microfabricated emulsion generator array (MEGA) devices containing 4, 32, and 96 channels are developed to confer a flexible capability of generating up to 3.4 × 106 nanoliter-volume droplets per hour. Hybrid glass-polydimethylsiloxane diaphragm micropumps integrated into the MEGA chips afford uniform droplet formation, controlled generation frequency, and effective transportation and encapsulation of primer functionalized microbeads and cells. A multiplex single cell PCR method is developed to detect and quantify both wild type and mutant/pathogenic cells. In this method, microbeads functionalized with multiple forward primers targeting specific genes from different cell types are used for solid-phase PCR in droplets. Following PCR, the droplets are lysed and the beads are pooled and rapidly analyzed by multicolor flow cytometry. Using Escherichia coli bacterial cells as a model, we show that this technique enables digital detection of pathogenic E. coli O157 cells in a high background of normal K12 cells, with a detection limit on the order of 1/105. This result demonstrates that multiplex SCGA is a promising tool for high-throughput quantitative digital analysis of genetic variation in complex populations. |
doi_str_mv | 10.1021/ac902683t |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2859697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2032326941</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527t-dce574f2849ad86889dfc7b38950ba9c0d27d44305766e23a7482bb8a10092cb3</originalsourceid><addsrcrecordid>eNplkUFv1DAUhC1ERZfCgT-AIiSEOASenTi2L0irVWkrtQIJeuFivTjO1pUTt3aCtP8eL112KZx8mE_zxjOEvKLwgQKjH9EoYI2spidkQTmDspGSPSULAKhKJgCOyfOUbgEoBdo8I8cMqGJUyAX5ce7WN-VXG_sQBxyNLb65ce1tsbLeF2d2tJMzxXJEv0kuFdcpq8WVMzH0fnZd1k6H2ScXxt9wxCnEYhkjbtILctSjT_bl7j0h159Pv6_Oy8svZxer5WWJnImp7Izlou6ZrBV2MidXXW9EW0nFoUVloGOiq-sKuGgayyoUtWRtK5ECKGba6oR8evC9m9vBZrtxiuj1XXQDxo0O6PRjZXQ3eh1-aia5apTIBu92BjHczzZNenDJ5P_jaMOctKiqmgsOdSbf_EPehjnmcpLe1ik441u79w9QLimlaPt9FAp6u5fe75XZ139n35N_BsrA2x2AyaDvY97IpQPHGiZBqgOHJh1C_X_wF_RAqV8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217875257</pqid></control><display><type>article</type><title>High-Performance Single Cell Genetic Analysis Using Microfluidic Emulsion Generator Arrays</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zeng, Yong ; Novak, Richard ; Shuga, Joe ; Smith, Martyn T ; Mathies, Richard A</creator><creatorcontrib>Zeng, Yong ; Novak, Richard ; Shuga, Joe ; Smith, Martyn T ; Mathies, Richard A</creatorcontrib><description>High-throughput genetic and phenotypic analysis at the single cell level is critical to advance our understanding of the molecular mechanisms underlying cellular function and dysfunction. Here we describe a high-performance single cell genetic analysis (SCGA) technique that combines high-throughput microfluidic emulsion generation with single cell multiplex polymerase chain reaction (PCR). Microfabricated emulsion generator array (MEGA) devices containing 4, 32, and 96 channels are developed to confer a flexible capability of generating up to 3.4 × 106 nanoliter-volume droplets per hour. Hybrid glass-polydimethylsiloxane diaphragm micropumps integrated into the MEGA chips afford uniform droplet formation, controlled generation frequency, and effective transportation and encapsulation of primer functionalized microbeads and cells. A multiplex single cell PCR method is developed to detect and quantify both wild type and mutant/pathogenic cells. In this method, microbeads functionalized with multiple forward primers targeting specific genes from different cell types are used for solid-phase PCR in droplets. Following PCR, the droplets are lysed and the beads are pooled and rapidly analyzed by multicolor flow cytometry. Using Escherichia coli bacterial cells as a model, we show that this technique enables digital detection of pathogenic E. coli O157 cells in a high background of normal K12 cells, with a detection limit on the order of 1/105. This result demonstrates that multiplex SCGA is a promising tool for high-throughput quantitative digital analysis of genetic variation in complex populations.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac902683t</identifier><identifier>PMID: 20192178</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Cells ; Chemistry ; Escherichia coli - genetics ; Escherichia coli - isolation & purification ; Exact sciences and technology ; Genetics ; Genotype & phenotype ; High-Throughput Screening Assays ; Microemulsions ; Microfluidic Analytical Techniques - methods ; Molecular structure ; Polymerase Chain Reaction</subject><ispartof>Analytical chemistry (Washington), 2010-04, Vol.82 (8), p.3183-3190</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Apr 15, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a527t-dce574f2849ad86889dfc7b38950ba9c0d27d44305766e23a7482bb8a10092cb3</citedby><cites>FETCH-LOGICAL-a527t-dce574f2849ad86889dfc7b38950ba9c0d27d44305766e23a7482bb8a10092cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac902683t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac902683t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22628089$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20192178$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Yong</creatorcontrib><creatorcontrib>Novak, Richard</creatorcontrib><creatorcontrib>Shuga, Joe</creatorcontrib><creatorcontrib>Smith, Martyn T</creatorcontrib><creatorcontrib>Mathies, Richard A</creatorcontrib><title>High-Performance Single Cell Genetic Analysis Using Microfluidic Emulsion Generator Arrays</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>High-throughput genetic and phenotypic analysis at the single cell level is critical to advance our understanding of the molecular mechanisms underlying cellular function and dysfunction. Here we describe a high-performance single cell genetic analysis (SCGA) technique that combines high-throughput microfluidic emulsion generation with single cell multiplex polymerase chain reaction (PCR). Microfabricated emulsion generator array (MEGA) devices containing 4, 32, and 96 channels are developed to confer a flexible capability of generating up to 3.4 × 106 nanoliter-volume droplets per hour. Hybrid glass-polydimethylsiloxane diaphragm micropumps integrated into the MEGA chips afford uniform droplet formation, controlled generation frequency, and effective transportation and encapsulation of primer functionalized microbeads and cells. A multiplex single cell PCR method is developed to detect and quantify both wild type and mutant/pathogenic cells. In this method, microbeads functionalized with multiple forward primers targeting specific genes from different cell types are used for solid-phase PCR in droplets. Following PCR, the droplets are lysed and the beads are pooled and rapidly analyzed by multicolor flow cytometry. Using Escherichia coli bacterial cells as a model, we show that this technique enables digital detection of pathogenic E. coli O157 cells in a high background of normal K12 cells, with a detection limit on the order of 1/105. This result demonstrates that multiplex SCGA is a promising tool for high-throughput quantitative digital analysis of genetic variation in complex populations.</description><subject>Analytical chemistry</subject><subject>Cells</subject><subject>Chemistry</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - isolation & purification</subject><subject>Exact sciences and technology</subject><subject>Genetics</subject><subject>Genotype & phenotype</subject><subject>High-Throughput Screening Assays</subject><subject>Microemulsions</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Molecular structure</subject><subject>Polymerase Chain Reaction</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkUFv1DAUhC1ERZfCgT-AIiSEOASenTi2L0irVWkrtQIJeuFivTjO1pUTt3aCtP8eL112KZx8mE_zxjOEvKLwgQKjH9EoYI2spidkQTmDspGSPSULAKhKJgCOyfOUbgEoBdo8I8cMqGJUyAX5ce7WN-VXG_sQBxyNLb65ce1tsbLeF2d2tJMzxXJEv0kuFdcpq8WVMzH0fnZd1k6H2ScXxt9wxCnEYhkjbtILctSjT_bl7j0h159Pv6_Oy8svZxer5WWJnImp7Izlou6ZrBV2MidXXW9EW0nFoUVloGOiq-sKuGgayyoUtWRtK5ECKGba6oR8evC9m9vBZrtxiuj1XXQDxo0O6PRjZXQ3eh1-aia5apTIBu92BjHczzZNenDJ5P_jaMOctKiqmgsOdSbf_EPehjnmcpLe1ik441u79w9QLimlaPt9FAp6u5fe75XZ139n35N_BsrA2x2AyaDvY97IpQPHGiZBqgOHJh1C_X_wF_RAqV8</recordid><startdate>20100415</startdate><enddate>20100415</enddate><creator>Zeng, Yong</creator><creator>Novak, Richard</creator><creator>Shuga, Joe</creator><creator>Smith, Martyn T</creator><creator>Mathies, Richard A</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100415</creationdate><title>High-Performance Single Cell Genetic Analysis Using Microfluidic Emulsion Generator Arrays</title><author>Zeng, Yong ; Novak, Richard ; Shuga, Joe ; Smith, Martyn T ; Mathies, Richard A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527t-dce574f2849ad86889dfc7b38950ba9c0d27d44305766e23a7482bb8a10092cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical chemistry</topic><topic>Cells</topic><topic>Chemistry</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - isolation & purification</topic><topic>Exact sciences and technology</topic><topic>Genetics</topic><topic>Genotype & phenotype</topic><topic>High-Throughput Screening Assays</topic><topic>Microemulsions</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Molecular structure</topic><topic>Polymerase Chain Reaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Yong</creatorcontrib><creatorcontrib>Novak, Richard</creatorcontrib><creatorcontrib>Shuga, Joe</creatorcontrib><creatorcontrib>Smith, Martyn T</creatorcontrib><creatorcontrib>Mathies, Richard A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Yong</au><au>Novak, Richard</au><au>Shuga, Joe</au><au>Smith, Martyn T</au><au>Mathies, Richard A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Single Cell Genetic Analysis Using Microfluidic Emulsion Generator Arrays</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2010-04-15</date><risdate>2010</risdate><volume>82</volume><issue>8</issue><spage>3183</spage><epage>3190</epage><pages>3183-3190</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>High-throughput genetic and phenotypic analysis at the single cell level is critical to advance our understanding of the molecular mechanisms underlying cellular function and dysfunction. Here we describe a high-performance single cell genetic analysis (SCGA) technique that combines high-throughput microfluidic emulsion generation with single cell multiplex polymerase chain reaction (PCR). Microfabricated emulsion generator array (MEGA) devices containing 4, 32, and 96 channels are developed to confer a flexible capability of generating up to 3.4 × 106 nanoliter-volume droplets per hour. Hybrid glass-polydimethylsiloxane diaphragm micropumps integrated into the MEGA chips afford uniform droplet formation, controlled generation frequency, and effective transportation and encapsulation of primer functionalized microbeads and cells. A multiplex single cell PCR method is developed to detect and quantify both wild type and mutant/pathogenic cells. In this method, microbeads functionalized with multiple forward primers targeting specific genes from different cell types are used for solid-phase PCR in droplets. Following PCR, the droplets are lysed and the beads are pooled and rapidly analyzed by multicolor flow cytometry. Using Escherichia coli bacterial cells as a model, we show that this technique enables digital detection of pathogenic E. coli O157 cells in a high background of normal K12 cells, with a detection limit on the order of 1/105. This result demonstrates that multiplex SCGA is a promising tool for high-throughput quantitative digital analysis of genetic variation in complex populations.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20192178</pmid><doi>10.1021/ac902683t</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2010-04, Vol.82 (8), p.3183-3190 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2859697 |
source | MEDLINE; ACS Publications |
subjects | Analytical chemistry Cells Chemistry Escherichia coli - genetics Escherichia coli - isolation & purification Exact sciences and technology Genetics Genotype & phenotype High-Throughput Screening Assays Microemulsions Microfluidic Analytical Techniques - methods Molecular structure Polymerase Chain Reaction |
title | High-Performance Single Cell Genetic Analysis Using Microfluidic Emulsion Generator Arrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Single%20Cell%20Genetic%20Analysis%20Using%20Microfluidic%20Emulsion%20Generator%20Arrays&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Zeng,%20Yong&rft.date=2010-04-15&rft.volume=82&rft.issue=8&rft.spage=3183&rft.epage=3190&rft.pages=3183-3190&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac902683t&rft_dat=%3Cproquest_pubme%3E2032326941%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217875257&rft_id=info:pmid/20192178&rfr_iscdi=true |