THE DISTRIBUTION AND HYPOTHESIS TESTING OF EIGENVALUES FROM THE CANONICAL ANALYSIS OF THE GAMMA MATRIX OF QUADRATIC AND CORRELATIONAL SELECTION GRADIENTS
Canonical analysis measures nonlinear selection on latent axes from a rotation of the gamma matrix (γ) of quadratic and correlation selection gradients. Here, we document that the conventional method of testing eigenvalues (double regression) under the null hypothesis of no nonlinear selection is in...
Gespeichert in:
Veröffentlicht in: | Evolution 2010-04, Vol.64 (4), p.1076-1085 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1085 |
---|---|
container_issue | 4 |
container_start_page | 1076 |
container_title | Evolution |
container_volume | 64 |
creator | Reynolds, Richard J. Childers, Douglas K. Pajewski, Nicholas M. |
description | Canonical analysis measures nonlinear selection on latent axes from a rotation of the gamma matrix (γ) of quadratic and correlation selection gradients. Here, we document that the conventional method of testing eigenvalues (double regression) under the null hypothesis of no nonlinear selection is incorrect. Through simulation we demonstrate that under the null the expectation of some eigenvalues from canonical analysis will be nonzero, which leads to unacceptably high type 1 error rates. Using a two-trait example, we prove that the expectations for both eigenvalues depend on the sampling variability of the estimates in γ. An appropriate test is to slightly modify the double regression method by calculating permutation P-values for the ordered eigenvalues, which maintains correct type 1 error rates. Using simulated data of nonlinear selection on male guppy ornamentation, we show that the statistical power to detect curvature with canonical analysis is higher compared to relying on the estimates from γ alone. We provide a simple R script for permutation testing of the eigenvalues to distinguish curvature in the selection surface induced by nonlinear selection from curvature induced by random processes. |
doi_str_mv | 10.1111/j.1558-5646.2009.00874.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2857515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27784072</jstor_id><sourcerecordid>27784072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5104-aea214e1869fec7461da4eea8310b2facbc8b6b1d962e9afb92dc8f40704984f3</originalsourceid><addsrcrecordid>eNpdUm2PkzAAJkbjzdOfoCF-8ROzLS2UxJj0oGNEBh6w0_vUFFY85jZO2O52P8V_a9nO-dIvbfq89eUxDBOCMdTj_XIMCaEWcbAzRgB4YwCoi8f7J8boBDw1RgBAbNkUgTPjRd8vgWYS6D03zqBHHZtQPDJ-FlNuBlFeZNHFvIjSxGRJYE6vP6cayKPcLHheRElophOTRyFPrlg857k5ydKZOWh9lqRJ5LNYC1l8PUg0dUBCNpsxc8a09ddh73LOgowVkX-I8NMs4zEbIrU25zH3D_FhxoKIJ0X-0nhWy1WvXj3O58Z8wgt_asVpOORZFYEAW1JJBLGC1PFqVbnYgQuJlZLUhqBEtazKipZOCReeg5Qn69JDi4rWGLgAexTX9rnx8eh7uyvXalGpzbaTK3HbNWvZPYhWNuJfZNPciG_tnUCUuAQSbfDu0aBrf-xUvxXrpq_UaiU3qt31wrVt4iEbO5r59j_mst11G307gZALCHWgrUlv_j7P6SC__0wTPhwJ981KPfzBgRi6IZZiqIAYKiCGbohDN8Re8KtUL7T89VG-7Ldtd5Ij16X6UZDGrSPe9Fu1P-Gy-y4c13aJ-JKEoph8Ci5xcCGw_Qvwerpx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>227058613</pqid></control><display><type>article</type><title>THE DISTRIBUTION AND HYPOTHESIS TESTING OF EIGENVALUES FROM THE CANONICAL ANALYSIS OF THE GAMMA MATRIX OF QUADRATIC AND CORRELATIONAL SELECTION GRADIENTS</title><source>MEDLINE</source><source>Wiley Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Reynolds, Richard J. ; Childers, Douglas K. ; Pajewski, Nicholas M.</creator><creatorcontrib>Reynolds, Richard J. ; Childers, Douglas K. ; Pajewski, Nicholas M.</creatorcontrib><description>Canonical analysis measures nonlinear selection on latent axes from a rotation of the gamma matrix (γ) of quadratic and correlation selection gradients. Here, we document that the conventional method of testing eigenvalues (double regression) under the null hypothesis of no nonlinear selection is incorrect. Through simulation we demonstrate that under the null the expectation of some eigenvalues from canonical analysis will be nonzero, which leads to unacceptably high type 1 error rates. Using a two-trait example, we prove that the expectations for both eigenvalues depend on the sampling variability of the estimates in γ. An appropriate test is to slightly modify the double regression method by calculating permutation P-values for the ordered eigenvalues, which maintains correct type 1 error rates. Using simulated data of nonlinear selection on male guppy ornamentation, we show that the statistical power to detect curvature with canonical analysis is higher compared to relying on the estimates from γ alone. We provide a simple R script for permutation testing of the eigenvalues to distinguish curvature in the selection surface induced by nonlinear selection from curvature induced by random processes.</description><identifier>ISSN: 0014-3820</identifier><identifier>EISSN: 1558-5646</identifier><identifier>DOI: 10.1111/j.1558-5646.2009.00874.x</identifier><identifier>PMID: 19863584</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Animals ; Birds ; Computer Simulation ; Curvature ; Datasets ; Eigenvalues ; Evolution ; False positive errors ; Fitness surface ; Flowers - genetics ; Hypotheses ; Models, Genetic ; nonlinear selection ; Null hypothesis ; Phenotype ; phenotypic selection ; Phenotypic traits ; Regression Analysis ; Sample Size ; selection surface ; Selection, Genetic ; Silene - genetics ; Stabilizing selection ; Statistics</subject><ispartof>Evolution, 2010-04, Vol.64 (4), p.1076-1085</ispartof><rights>2010 Society for the Study of Evolution</rights><rights>2009 The Author(s). Journal compilation © 2009 The Society for the Study of Evolution</rights><rights>Copyright Society for the Study of Evolution Apr 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5104-aea214e1869fec7461da4eea8310b2facbc8b6b1d962e9afb92dc8f40704984f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27784072$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27784072$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,1417,27924,27925,45574,45575,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19863584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reynolds, Richard J.</creatorcontrib><creatorcontrib>Childers, Douglas K.</creatorcontrib><creatorcontrib>Pajewski, Nicholas M.</creatorcontrib><title>THE DISTRIBUTION AND HYPOTHESIS TESTING OF EIGENVALUES FROM THE CANONICAL ANALYSIS OF THE GAMMA MATRIX OF QUADRATIC AND CORRELATIONAL SELECTION GRADIENTS</title><title>Evolution</title><addtitle>Evolution</addtitle><description>Canonical analysis measures nonlinear selection on latent axes from a rotation of the gamma matrix (γ) of quadratic and correlation selection gradients. Here, we document that the conventional method of testing eigenvalues (double regression) under the null hypothesis of no nonlinear selection is incorrect. Through simulation we demonstrate that under the null the expectation of some eigenvalues from canonical analysis will be nonzero, which leads to unacceptably high type 1 error rates. Using a two-trait example, we prove that the expectations for both eigenvalues depend on the sampling variability of the estimates in γ. An appropriate test is to slightly modify the double regression method by calculating permutation P-values for the ordered eigenvalues, which maintains correct type 1 error rates. Using simulated data of nonlinear selection on male guppy ornamentation, we show that the statistical power to detect curvature with canonical analysis is higher compared to relying on the estimates from γ alone. We provide a simple R script for permutation testing of the eigenvalues to distinguish curvature in the selection surface induced by nonlinear selection from curvature induced by random processes.</description><subject>Animals</subject><subject>Birds</subject><subject>Computer Simulation</subject><subject>Curvature</subject><subject>Datasets</subject><subject>Eigenvalues</subject><subject>Evolution</subject><subject>False positive errors</subject><subject>Fitness surface</subject><subject>Flowers - genetics</subject><subject>Hypotheses</subject><subject>Models, Genetic</subject><subject>nonlinear selection</subject><subject>Null hypothesis</subject><subject>Phenotype</subject><subject>phenotypic selection</subject><subject>Phenotypic traits</subject><subject>Regression Analysis</subject><subject>Sample Size</subject><subject>selection surface</subject><subject>Selection, Genetic</subject><subject>Silene - genetics</subject><subject>Stabilizing selection</subject><subject>Statistics</subject><issn>0014-3820</issn><issn>1558-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUm2PkzAAJkbjzdOfoCF-8ROzLS2UxJj0oGNEBh6w0_vUFFY85jZO2O52P8V_a9nO-dIvbfq89eUxDBOCMdTj_XIMCaEWcbAzRgB4YwCoi8f7J8boBDw1RgBAbNkUgTPjRd8vgWYS6D03zqBHHZtQPDJ-FlNuBlFeZNHFvIjSxGRJYE6vP6cayKPcLHheRElophOTRyFPrlg857k5ydKZOWh9lqRJ5LNYC1l8PUg0dUBCNpsxc8a09ddh73LOgowVkX-I8NMs4zEbIrU25zH3D_FhxoKIJ0X-0nhWy1WvXj3O58Z8wgt_asVpOORZFYEAW1JJBLGC1PFqVbnYgQuJlZLUhqBEtazKipZOCReeg5Qn69JDi4rWGLgAexTX9rnx8eh7uyvXalGpzbaTK3HbNWvZPYhWNuJfZNPciG_tnUCUuAQSbfDu0aBrf-xUvxXrpq_UaiU3qt31wrVt4iEbO5r59j_mst11G307gZALCHWgrUlv_j7P6SC__0wTPhwJ981KPfzBgRi6IZZiqIAYKiCGbohDN8Re8KtUL7T89VG-7Ldtd5Ij16X6UZDGrSPe9Fu1P-Gy-y4c13aJ-JKEoph8Ci5xcCGw_Qvwerpx</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Reynolds, Richard J.</creator><creator>Childers, Douglas K.</creator><creator>Pajewski, Nicholas M.</creator><general>Blackwell Publishing Inc</general><general>Wiley Subscription Services</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201004</creationdate><title>THE DISTRIBUTION AND HYPOTHESIS TESTING OF EIGENVALUES FROM THE CANONICAL ANALYSIS OF THE GAMMA MATRIX OF QUADRATIC AND CORRELATIONAL SELECTION GRADIENTS</title><author>Reynolds, Richard J. ; Childers, Douglas K. ; Pajewski, Nicholas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5104-aea214e1869fec7461da4eea8310b2facbc8b6b1d962e9afb92dc8f40704984f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Birds</topic><topic>Computer Simulation</topic><topic>Curvature</topic><topic>Datasets</topic><topic>Eigenvalues</topic><topic>Evolution</topic><topic>False positive errors</topic><topic>Fitness surface</topic><topic>Flowers - genetics</topic><topic>Hypotheses</topic><topic>Models, Genetic</topic><topic>nonlinear selection</topic><topic>Null hypothesis</topic><topic>Phenotype</topic><topic>phenotypic selection</topic><topic>Phenotypic traits</topic><topic>Regression Analysis</topic><topic>Sample Size</topic><topic>selection surface</topic><topic>Selection, Genetic</topic><topic>Silene - genetics</topic><topic>Stabilizing selection</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reynolds, Richard J.</creatorcontrib><creatorcontrib>Childers, Douglas K.</creatorcontrib><creatorcontrib>Pajewski, Nicholas M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reynolds, Richard J.</au><au>Childers, Douglas K.</au><au>Pajewski, Nicholas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE DISTRIBUTION AND HYPOTHESIS TESTING OF EIGENVALUES FROM THE CANONICAL ANALYSIS OF THE GAMMA MATRIX OF QUADRATIC AND CORRELATIONAL SELECTION GRADIENTS</atitle><jtitle>Evolution</jtitle><addtitle>Evolution</addtitle><date>2010-04</date><risdate>2010</risdate><volume>64</volume><issue>4</issue><spage>1076</spage><epage>1085</epage><pages>1076-1085</pages><issn>0014-3820</issn><eissn>1558-5646</eissn><abstract>Canonical analysis measures nonlinear selection on latent axes from a rotation of the gamma matrix (γ) of quadratic and correlation selection gradients. Here, we document that the conventional method of testing eigenvalues (double regression) under the null hypothesis of no nonlinear selection is incorrect. Through simulation we demonstrate that under the null the expectation of some eigenvalues from canonical analysis will be nonzero, which leads to unacceptably high type 1 error rates. Using a two-trait example, we prove that the expectations for both eigenvalues depend on the sampling variability of the estimates in γ. An appropriate test is to slightly modify the double regression method by calculating permutation P-values for the ordered eigenvalues, which maintains correct type 1 error rates. Using simulated data of nonlinear selection on male guppy ornamentation, we show that the statistical power to detect curvature with canonical analysis is higher compared to relying on the estimates from γ alone. We provide a simple R script for permutation testing of the eigenvalues to distinguish curvature in the selection surface induced by nonlinear selection from curvature induced by random processes.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>19863584</pmid><doi>10.1111/j.1558-5646.2009.00874.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-3820 |
ispartof | Evolution, 2010-04, Vol.64 (4), p.1076-1085 |
issn | 0014-3820 1558-5646 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2857515 |
source | MEDLINE; Wiley Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current) |
subjects | Animals Birds Computer Simulation Curvature Datasets Eigenvalues Evolution False positive errors Fitness surface Flowers - genetics Hypotheses Models, Genetic nonlinear selection Null hypothesis Phenotype phenotypic selection Phenotypic traits Regression Analysis Sample Size selection surface Selection, Genetic Silene - genetics Stabilizing selection Statistics |
title | THE DISTRIBUTION AND HYPOTHESIS TESTING OF EIGENVALUES FROM THE CANONICAL ANALYSIS OF THE GAMMA MATRIX OF QUADRATIC AND CORRELATIONAL SELECTION GRADIENTS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20DISTRIBUTION%20AND%20HYPOTHESIS%20TESTING%20OF%20EIGENVALUES%20FROM%20THE%20CANONICAL%20ANALYSIS%20OF%20THE%20GAMMA%20MATRIX%20OF%20QUADRATIC%20AND%20CORRELATIONAL%20SELECTION%20GRADIENTS&rft.jtitle=Evolution&rft.au=Reynolds,%20Richard%20J.&rft.date=2010-04&rft.volume=64&rft.issue=4&rft.spage=1076&rft.epage=1085&rft.pages=1076-1085&rft.issn=0014-3820&rft.eissn=1558-5646&rft_id=info:doi/10.1111/j.1558-5646.2009.00874.x&rft_dat=%3Cjstor_pubme%3E27784072%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=227058613&rft_id=info:pmid/19863584&rft_jstor_id=27784072&rfr_iscdi=true |