THE DISTRIBUTION AND HYPOTHESIS TESTING OF EIGENVALUES FROM THE CANONICAL ANALYSIS OF THE GAMMA MATRIX OF QUADRATIC AND CORRELATIONAL SELECTION GRADIENTS

Canonical analysis measures nonlinear selection on latent axes from a rotation of the gamma matrix (γ) of quadratic and correlation selection gradients. Here, we document that the conventional method of testing eigenvalues (double regression) under the null hypothesis of no nonlinear selection is in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolution 2010-04, Vol.64 (4), p.1076-1085
Hauptverfasser: Reynolds, Richard J., Childers, Douglas K., Pajewski, Nicholas M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1085
container_issue 4
container_start_page 1076
container_title Evolution
container_volume 64
creator Reynolds, Richard J.
Childers, Douglas K.
Pajewski, Nicholas M.
description Canonical analysis measures nonlinear selection on latent axes from a rotation of the gamma matrix (γ) of quadratic and correlation selection gradients. Here, we document that the conventional method of testing eigenvalues (double regression) under the null hypothesis of no nonlinear selection is incorrect. Through simulation we demonstrate that under the null the expectation of some eigenvalues from canonical analysis will be nonzero, which leads to unacceptably high type 1 error rates. Using a two-trait example, we prove that the expectations for both eigenvalues depend on the sampling variability of the estimates in γ. An appropriate test is to slightly modify the double regression method by calculating permutation P-values for the ordered eigenvalues, which maintains correct type 1 error rates. Using simulated data of nonlinear selection on male guppy ornamentation, we show that the statistical power to detect curvature with canonical analysis is higher compared to relying on the estimates from γ alone. We provide a simple R script for permutation testing of the eigenvalues to distinguish curvature in the selection surface induced by nonlinear selection from curvature induced by random processes.
doi_str_mv 10.1111/j.1558-5646.2009.00874.x
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2857515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27784072</jstor_id><sourcerecordid>27784072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5104-aea214e1869fec7461da4eea8310b2facbc8b6b1d962e9afb92dc8f40704984f3</originalsourceid><addsrcrecordid>eNpdUm2PkzAAJkbjzdOfoCF-8ROzLS2UxJj0oGNEBh6w0_vUFFY85jZO2O52P8V_a9nO-dIvbfq89eUxDBOCMdTj_XIMCaEWcbAzRgB4YwCoi8f7J8boBDw1RgBAbNkUgTPjRd8vgWYS6D03zqBHHZtQPDJ-FlNuBlFeZNHFvIjSxGRJYE6vP6cayKPcLHheRElophOTRyFPrlg857k5ydKZOWh9lqRJ5LNYC1l8PUg0dUBCNpsxc8a09ddh73LOgowVkX-I8NMs4zEbIrU25zH3D_FhxoKIJ0X-0nhWy1WvXj3O58Z8wgt_asVpOORZFYEAW1JJBLGC1PFqVbnYgQuJlZLUhqBEtazKipZOCReeg5Qn69JDi4rWGLgAexTX9rnx8eh7uyvXalGpzbaTK3HbNWvZPYhWNuJfZNPciG_tnUCUuAQSbfDu0aBrf-xUvxXrpq_UaiU3qt31wrVt4iEbO5r59j_mst11G307gZALCHWgrUlv_j7P6SC__0wTPhwJ981KPfzBgRi6IZZiqIAYKiCGbohDN8Re8KtUL7T89VG-7Ldtd5Ij16X6UZDGrSPe9Fu1P-Gy-y4c13aJ-JKEoph8Ci5xcCGw_Qvwerpx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>227058613</pqid></control><display><type>article</type><title>THE DISTRIBUTION AND HYPOTHESIS TESTING OF EIGENVALUES FROM THE CANONICAL ANALYSIS OF THE GAMMA MATRIX OF QUADRATIC AND CORRELATIONAL SELECTION GRADIENTS</title><source>MEDLINE</source><source>Wiley Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Reynolds, Richard J. ; Childers, Douglas K. ; Pajewski, Nicholas M.</creator><creatorcontrib>Reynolds, Richard J. ; Childers, Douglas K. ; Pajewski, Nicholas M.</creatorcontrib><description>Canonical analysis measures nonlinear selection on latent axes from a rotation of the gamma matrix (γ) of quadratic and correlation selection gradients. Here, we document that the conventional method of testing eigenvalues (double regression) under the null hypothesis of no nonlinear selection is incorrect. Through simulation we demonstrate that under the null the expectation of some eigenvalues from canonical analysis will be nonzero, which leads to unacceptably high type 1 error rates. Using a two-trait example, we prove that the expectations for both eigenvalues depend on the sampling variability of the estimates in γ. An appropriate test is to slightly modify the double regression method by calculating permutation P-values for the ordered eigenvalues, which maintains correct type 1 error rates. Using simulated data of nonlinear selection on male guppy ornamentation, we show that the statistical power to detect curvature with canonical analysis is higher compared to relying on the estimates from γ alone. We provide a simple R script for permutation testing of the eigenvalues to distinguish curvature in the selection surface induced by nonlinear selection from curvature induced by random processes.</description><identifier>ISSN: 0014-3820</identifier><identifier>EISSN: 1558-5646</identifier><identifier>DOI: 10.1111/j.1558-5646.2009.00874.x</identifier><identifier>PMID: 19863584</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Animals ; Birds ; Computer Simulation ; Curvature ; Datasets ; Eigenvalues ; Evolution ; False positive errors ; Fitness surface ; Flowers - genetics ; Hypotheses ; Models, Genetic ; nonlinear selection ; Null hypothesis ; Phenotype ; phenotypic selection ; Phenotypic traits ; Regression Analysis ; Sample Size ; selection surface ; Selection, Genetic ; Silene - genetics ; Stabilizing selection ; Statistics</subject><ispartof>Evolution, 2010-04, Vol.64 (4), p.1076-1085</ispartof><rights>2010 Society for the Study of Evolution</rights><rights>2009 The Author(s). Journal compilation © 2009 The Society for the Study of Evolution</rights><rights>Copyright Society for the Study of Evolution Apr 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5104-aea214e1869fec7461da4eea8310b2facbc8b6b1d962e9afb92dc8f40704984f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27784072$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27784072$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,1417,27924,27925,45574,45575,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19863584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reynolds, Richard J.</creatorcontrib><creatorcontrib>Childers, Douglas K.</creatorcontrib><creatorcontrib>Pajewski, Nicholas M.</creatorcontrib><title>THE DISTRIBUTION AND HYPOTHESIS TESTING OF EIGENVALUES FROM THE CANONICAL ANALYSIS OF THE GAMMA MATRIX OF QUADRATIC AND CORRELATIONAL SELECTION GRADIENTS</title><title>Evolution</title><addtitle>Evolution</addtitle><description>Canonical analysis measures nonlinear selection on latent axes from a rotation of the gamma matrix (γ) of quadratic and correlation selection gradients. Here, we document that the conventional method of testing eigenvalues (double regression) under the null hypothesis of no nonlinear selection is incorrect. Through simulation we demonstrate that under the null the expectation of some eigenvalues from canonical analysis will be nonzero, which leads to unacceptably high type 1 error rates. Using a two-trait example, we prove that the expectations for both eigenvalues depend on the sampling variability of the estimates in γ. An appropriate test is to slightly modify the double regression method by calculating permutation P-values for the ordered eigenvalues, which maintains correct type 1 error rates. Using simulated data of nonlinear selection on male guppy ornamentation, we show that the statistical power to detect curvature with canonical analysis is higher compared to relying on the estimates from γ alone. We provide a simple R script for permutation testing of the eigenvalues to distinguish curvature in the selection surface induced by nonlinear selection from curvature induced by random processes.</description><subject>Animals</subject><subject>Birds</subject><subject>Computer Simulation</subject><subject>Curvature</subject><subject>Datasets</subject><subject>Eigenvalues</subject><subject>Evolution</subject><subject>False positive errors</subject><subject>Fitness surface</subject><subject>Flowers - genetics</subject><subject>Hypotheses</subject><subject>Models, Genetic</subject><subject>nonlinear selection</subject><subject>Null hypothesis</subject><subject>Phenotype</subject><subject>phenotypic selection</subject><subject>Phenotypic traits</subject><subject>Regression Analysis</subject><subject>Sample Size</subject><subject>selection surface</subject><subject>Selection, Genetic</subject><subject>Silene - genetics</subject><subject>Stabilizing selection</subject><subject>Statistics</subject><issn>0014-3820</issn><issn>1558-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUm2PkzAAJkbjzdOfoCF-8ROzLS2UxJj0oGNEBh6w0_vUFFY85jZO2O52P8V_a9nO-dIvbfq89eUxDBOCMdTj_XIMCaEWcbAzRgB4YwCoi8f7J8boBDw1RgBAbNkUgTPjRd8vgWYS6D03zqBHHZtQPDJ-FlNuBlFeZNHFvIjSxGRJYE6vP6cayKPcLHheRElophOTRyFPrlg857k5ydKZOWh9lqRJ5LNYC1l8PUg0dUBCNpsxc8a09ddh73LOgowVkX-I8NMs4zEbIrU25zH3D_FhxoKIJ0X-0nhWy1WvXj3O58Z8wgt_asVpOORZFYEAW1JJBLGC1PFqVbnYgQuJlZLUhqBEtazKipZOCReeg5Qn69JDi4rWGLgAexTX9rnx8eh7uyvXalGpzbaTK3HbNWvZPYhWNuJfZNPciG_tnUCUuAQSbfDu0aBrf-xUvxXrpq_UaiU3qt31wrVt4iEbO5r59j_mst11G307gZALCHWgrUlv_j7P6SC__0wTPhwJ981KPfzBgRi6IZZiqIAYKiCGbohDN8Re8KtUL7T89VG-7Ldtd5Ij16X6UZDGrSPe9Fu1P-Gy-y4c13aJ-JKEoph8Ci5xcCGw_Qvwerpx</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Reynolds, Richard J.</creator><creator>Childers, Douglas K.</creator><creator>Pajewski, Nicholas M.</creator><general>Blackwell Publishing Inc</general><general>Wiley Subscription Services</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201004</creationdate><title>THE DISTRIBUTION AND HYPOTHESIS TESTING OF EIGENVALUES FROM THE CANONICAL ANALYSIS OF THE GAMMA MATRIX OF QUADRATIC AND CORRELATIONAL SELECTION GRADIENTS</title><author>Reynolds, Richard J. ; Childers, Douglas K. ; Pajewski, Nicholas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5104-aea214e1869fec7461da4eea8310b2facbc8b6b1d962e9afb92dc8f40704984f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Birds</topic><topic>Computer Simulation</topic><topic>Curvature</topic><topic>Datasets</topic><topic>Eigenvalues</topic><topic>Evolution</topic><topic>False positive errors</topic><topic>Fitness surface</topic><topic>Flowers - genetics</topic><topic>Hypotheses</topic><topic>Models, Genetic</topic><topic>nonlinear selection</topic><topic>Null hypothesis</topic><topic>Phenotype</topic><topic>phenotypic selection</topic><topic>Phenotypic traits</topic><topic>Regression Analysis</topic><topic>Sample Size</topic><topic>selection surface</topic><topic>Selection, Genetic</topic><topic>Silene - genetics</topic><topic>Stabilizing selection</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reynolds, Richard J.</creatorcontrib><creatorcontrib>Childers, Douglas K.</creatorcontrib><creatorcontrib>Pajewski, Nicholas M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reynolds, Richard J.</au><au>Childers, Douglas K.</au><au>Pajewski, Nicholas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE DISTRIBUTION AND HYPOTHESIS TESTING OF EIGENVALUES FROM THE CANONICAL ANALYSIS OF THE GAMMA MATRIX OF QUADRATIC AND CORRELATIONAL SELECTION GRADIENTS</atitle><jtitle>Evolution</jtitle><addtitle>Evolution</addtitle><date>2010-04</date><risdate>2010</risdate><volume>64</volume><issue>4</issue><spage>1076</spage><epage>1085</epage><pages>1076-1085</pages><issn>0014-3820</issn><eissn>1558-5646</eissn><abstract>Canonical analysis measures nonlinear selection on latent axes from a rotation of the gamma matrix (γ) of quadratic and correlation selection gradients. Here, we document that the conventional method of testing eigenvalues (double regression) under the null hypothesis of no nonlinear selection is incorrect. Through simulation we demonstrate that under the null the expectation of some eigenvalues from canonical analysis will be nonzero, which leads to unacceptably high type 1 error rates. Using a two-trait example, we prove that the expectations for both eigenvalues depend on the sampling variability of the estimates in γ. An appropriate test is to slightly modify the double regression method by calculating permutation P-values for the ordered eigenvalues, which maintains correct type 1 error rates. Using simulated data of nonlinear selection on male guppy ornamentation, we show that the statistical power to detect curvature with canonical analysis is higher compared to relying on the estimates from γ alone. We provide a simple R script for permutation testing of the eigenvalues to distinguish curvature in the selection surface induced by nonlinear selection from curvature induced by random processes.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>19863584</pmid><doi>10.1111/j.1558-5646.2009.00874.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-3820
ispartof Evolution, 2010-04, Vol.64 (4), p.1076-1085
issn 0014-3820
1558-5646
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2857515
source MEDLINE; Wiley Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Animals
Birds
Computer Simulation
Curvature
Datasets
Eigenvalues
Evolution
False positive errors
Fitness surface
Flowers - genetics
Hypotheses
Models, Genetic
nonlinear selection
Null hypothesis
Phenotype
phenotypic selection
Phenotypic traits
Regression Analysis
Sample Size
selection surface
Selection, Genetic
Silene - genetics
Stabilizing selection
Statistics
title THE DISTRIBUTION AND HYPOTHESIS TESTING OF EIGENVALUES FROM THE CANONICAL ANALYSIS OF THE GAMMA MATRIX OF QUADRATIC AND CORRELATIONAL SELECTION GRADIENTS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20DISTRIBUTION%20AND%20HYPOTHESIS%20TESTING%20OF%20EIGENVALUES%20FROM%20THE%20CANONICAL%20ANALYSIS%20OF%20THE%20GAMMA%20MATRIX%20OF%20QUADRATIC%20AND%20CORRELATIONAL%20SELECTION%20GRADIENTS&rft.jtitle=Evolution&rft.au=Reynolds,%20Richard%20J.&rft.date=2010-04&rft.volume=64&rft.issue=4&rft.spage=1076&rft.epage=1085&rft.pages=1076-1085&rft.issn=0014-3820&rft.eissn=1558-5646&rft_id=info:doi/10.1111/j.1558-5646.2009.00874.x&rft_dat=%3Cjstor_pubme%3E27784072%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=227058613&rft_id=info:pmid/19863584&rft_jstor_id=27784072&rfr_iscdi=true