Wild-type p53-induced Phosphatase 1 Dephosphorylates Histone Variant γ-H2AX and Suppresses DNA Double Strand Break Repair
In response to DNA double strand breaks, the histone variant H2AX at the break site is phosphorylated at serine 139 by DNA damage sensor kinases such as ataxia telangiectasia-mutated, forming γ-H2AX. This phosphorylation event is critical for sustained recruitment of other proteins to repair the bre...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2010-04, Vol.285 (17), p.12935-12947 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12947 |
---|---|
container_issue | 17 |
container_start_page | 12935 |
container_title | The Journal of biological chemistry |
container_volume | 285 |
creator | Moon, Sung-Hwan Lin, Lin Zhang, Xinna Nguyen, Thuy-Ai Darlington, Yolanda Waldman, Alan S. Lu, Xiongbin Donehower, Lawrence A. |
description | In response to DNA double strand breaks, the histone variant H2AX at the break site is phosphorylated at serine 139 by DNA damage sensor kinases such as ataxia telangiectasia-mutated, forming γ-H2AX. This phosphorylation event is critical for sustained recruitment of other proteins to repair the break. After repair, restoration of the cell to a prestress state is associated with γ-H2AX dephosphorylation and dissolution of γ-H2AX-associated damage foci. The phosphatases PP2A and PP4 have previously been shown to dephosphorylate γ-H2AX. Here, we demonstrate that the wild-type p53-induced phosphatase 1 (WIP1) also dephosphorylates γ-H2AX at serine 139 in vitro and in vivo. Overexpression of WIP1 reduces formation of γ-H2AX foci in response to ionizing and ultraviolet radiation and blocks recruitment of MDC1 (mediator of DNA damage checkpoint 1) and 53BP1 (p53 binding protein 1) to DNA damage foci. Finally, these inhibitory effects of WIP1 on γ-H2AX are accompanied by WIP1 suppression of DNA double strand break repair. Thus, WIP1 has a homeostatic role in reversing the effects of ataxia telangiectasia-mutated phosphorylation of H2AX. |
doi_str_mv | 10.1074/jbc.M109.071696 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2857113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820550746</els_id><sourcerecordid>733546026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-5de1c648f03f21334b36ccf46dcda14052e10483d1a52febbe702de4e5af5e363</originalsourceid><addsrcrecordid>eNp1kctuEzEUhi0EomlgzQ68YzWpL-O5bJBCQwlSuYhQ6M7y2Gcal8nY2DOVwmvxHjwTDlMqWOCNZf2f_R_5Q-gJJQtKyvzkutGLt5TUC1LSoi7uoRklFc-4oJf30YwQRrOaieoIHcd4TdLKa_oQHTFCacVYPUPfv9jOZMPeA_aCZ7Y3owaDP2xd9Fs1qAiY4hX432cX9p0aIOK1jYPrAX9Wwap-wD9_ZGu2vMSqN3gzeh8gxoSt3i3xyo1NB3gzhEP4MoD6ij-CVzY8Qg9a1UV4fLvP0cXZq0-n6-z8_es3p8vzTAvKhkwYoLrIq5bwllHO84YXWrd5YbRRNCeCASV5xQ1VgrXQNFASZiAHoVoBvOBz9GJ614_NDoyGPs3SSR_sToW9dMrKf5PebuWVu5GsEiVNjXP0_PaB4L6NEAe5s1FD16ke3BhlybnIC8IOVScTqYOLMUB710KJPAiTSZg8CJOTsHTj6d_D3fF_DCXg2QS0ykl1FWyUF5uUcpLyiguWiHoiIH3ijYUgo7bQJ402gB6kcfa_9b8AfnawTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733546026</pqid></control><display><type>article</type><title>Wild-type p53-induced Phosphatase 1 Dephosphorylates Histone Variant γ-H2AX and Suppresses DNA Double Strand Break Repair</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Moon, Sung-Hwan ; Lin, Lin ; Zhang, Xinna ; Nguyen, Thuy-Ai ; Darlington, Yolanda ; Waldman, Alan S. ; Lu, Xiongbin ; Donehower, Lawrence A.</creator><creatorcontrib>Moon, Sung-Hwan ; Lin, Lin ; Zhang, Xinna ; Nguyen, Thuy-Ai ; Darlington, Yolanda ; Waldman, Alan S. ; Lu, Xiongbin ; Donehower, Lawrence A.</creatorcontrib><description>In response to DNA double strand breaks, the histone variant H2AX at the break site is phosphorylated at serine 139 by DNA damage sensor kinases such as ataxia telangiectasia-mutated, forming γ-H2AX. This phosphorylation event is critical for sustained recruitment of other proteins to repair the break. After repair, restoration of the cell to a prestress state is associated with γ-H2AX dephosphorylation and dissolution of γ-H2AX-associated damage foci. The phosphatases PP2A and PP4 have previously been shown to dephosphorylate γ-H2AX. Here, we demonstrate that the wild-type p53-induced phosphatase 1 (WIP1) also dephosphorylates γ-H2AX at serine 139 in vitro and in vivo. Overexpression of WIP1 reduces formation of γ-H2AX foci in response to ionizing and ultraviolet radiation and blocks recruitment of MDC1 (mediator of DNA damage checkpoint 1) and 53BP1 (p53 binding protein 1) to DNA damage foci. Finally, these inhibitory effects of WIP1 on γ-H2AX are accompanied by WIP1 suppression of DNA double strand break repair. Thus, WIP1 has a homeostatic role in reversing the effects of ataxia telangiectasia-mutated phosphorylation of H2AX.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.071696</identifier><identifier>PMID: 20118229</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>53BP1 ; Adaptor Proteins, Signal Transducing ; Animals ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Chromosomal Proteins, Non-Histone ; DNA and Chromosomes ; DNA Breaks, Double-Stranded ; DNA Repair ; DNA Repair - physiology ; DNA Repair - radiation effects ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; DNA/Damage ; Gamma Rays ; H2AX ; HeLa Cells ; Histones - genetics ; Histones - metabolism ; Humans ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; MDC1 ; Mice ; Mice, Knockout ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Phosphoprotein Phosphatases - genetics ; Phosphoprotein Phosphatases - metabolism ; Phosphorylation - physiology ; Phosphorylation - radiation effects ; Phosphorylation/Phosphatases/Serine-Threonine ; PPM1D ; Protein Phosphatase 2C ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Signal Transduction ; Signal Transduction/Phosphoprotein Phosphatases ; Signal Transduction/Phosphoprotein Phosphatases/Serine/Threonine ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Tumor Suppressor p53-Binding Protein 1 ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - metabolism ; Ultraviolet Rays ; Whole-Body Irradiation ; WIP1</subject><ispartof>The Journal of biological chemistry, 2010-04, Vol.285 (17), p.12935-12947</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-5de1c648f03f21334b36ccf46dcda14052e10483d1a52febbe702de4e5af5e363</citedby><cites>FETCH-LOGICAL-c512t-5de1c648f03f21334b36ccf46dcda14052e10483d1a52febbe702de4e5af5e363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857113/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857113/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20118229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moon, Sung-Hwan</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Zhang, Xinna</creatorcontrib><creatorcontrib>Nguyen, Thuy-Ai</creatorcontrib><creatorcontrib>Darlington, Yolanda</creatorcontrib><creatorcontrib>Waldman, Alan S.</creatorcontrib><creatorcontrib>Lu, Xiongbin</creatorcontrib><creatorcontrib>Donehower, Lawrence A.</creatorcontrib><title>Wild-type p53-induced Phosphatase 1 Dephosphorylates Histone Variant γ-H2AX and Suppresses DNA Double Strand Break Repair</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>In response to DNA double strand breaks, the histone variant H2AX at the break site is phosphorylated at serine 139 by DNA damage sensor kinases such as ataxia telangiectasia-mutated, forming γ-H2AX. This phosphorylation event is critical for sustained recruitment of other proteins to repair the break. After repair, restoration of the cell to a prestress state is associated with γ-H2AX dephosphorylation and dissolution of γ-H2AX-associated damage foci. The phosphatases PP2A and PP4 have previously been shown to dephosphorylate γ-H2AX. Here, we demonstrate that the wild-type p53-induced phosphatase 1 (WIP1) also dephosphorylates γ-H2AX at serine 139 in vitro and in vivo. Overexpression of WIP1 reduces formation of γ-H2AX foci in response to ionizing and ultraviolet radiation and blocks recruitment of MDC1 (mediator of DNA damage checkpoint 1) and 53BP1 (p53 binding protein 1) to DNA damage foci. Finally, these inhibitory effects of WIP1 on γ-H2AX are accompanied by WIP1 suppression of DNA double strand break repair. Thus, WIP1 has a homeostatic role in reversing the effects of ataxia telangiectasia-mutated phosphorylation of H2AX.</description><subject>53BP1</subject><subject>Adaptor Proteins, Signal Transducing</subject><subject>Animals</subject><subject>Ataxia Telangiectasia Mutated Proteins</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chromosomal Proteins, Non-Histone</subject><subject>DNA and Chromosomes</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Repair</subject><subject>DNA Repair - physiology</subject><subject>DNA Repair - radiation effects</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DNA/Damage</subject><subject>Gamma Rays</subject><subject>H2AX</subject><subject>HeLa Cells</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>MDC1</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Phosphoprotein Phosphatases - genetics</subject><subject>Phosphoprotein Phosphatases - metabolism</subject><subject>Phosphorylation - physiology</subject><subject>Phosphorylation - radiation effects</subject><subject>Phosphorylation/Phosphatases/Serine-Threonine</subject><subject>PPM1D</subject><subject>Protein Phosphatase 2C</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Signal Transduction</subject><subject>Signal Transduction/Phosphoprotein Phosphatases</subject><subject>Signal Transduction/Phosphoprotein Phosphatases/Serine/Threonine</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Tumor Suppressor p53-Binding Protein 1</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - metabolism</subject><subject>Ultraviolet Rays</subject><subject>Whole-Body Irradiation</subject><subject>WIP1</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctuEzEUhi0EomlgzQ68YzWpL-O5bJBCQwlSuYhQ6M7y2Gcal8nY2DOVwmvxHjwTDlMqWOCNZf2f_R_5Q-gJJQtKyvzkutGLt5TUC1LSoi7uoRklFc-4oJf30YwQRrOaieoIHcd4TdLKa_oQHTFCacVYPUPfv9jOZMPeA_aCZ7Y3owaDP2xd9Fs1qAiY4hX432cX9p0aIOK1jYPrAX9Wwap-wD9_ZGu2vMSqN3gzeh8gxoSt3i3xyo1NB3gzhEP4MoD6ij-CVzY8Qg9a1UV4fLvP0cXZq0-n6-z8_es3p8vzTAvKhkwYoLrIq5bwllHO84YXWrd5YbRRNCeCASV5xQ1VgrXQNFASZiAHoVoBvOBz9GJ614_NDoyGPs3SSR_sToW9dMrKf5PebuWVu5GsEiVNjXP0_PaB4L6NEAe5s1FD16ke3BhlybnIC8IOVScTqYOLMUB710KJPAiTSZg8CJOTsHTj6d_D3fF_DCXg2QS0ykl1FWyUF5uUcpLyiguWiHoiIH3ijYUgo7bQJ402gB6kcfa_9b8AfnawTA</recordid><startdate>20100423</startdate><enddate>20100423</enddate><creator>Moon, Sung-Hwan</creator><creator>Lin, Lin</creator><creator>Zhang, Xinna</creator><creator>Nguyen, Thuy-Ai</creator><creator>Darlington, Yolanda</creator><creator>Waldman, Alan S.</creator><creator>Lu, Xiongbin</creator><creator>Donehower, Lawrence A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100423</creationdate><title>Wild-type p53-induced Phosphatase 1 Dephosphorylates Histone Variant γ-H2AX and Suppresses DNA Double Strand Break Repair</title><author>Moon, Sung-Hwan ; Lin, Lin ; Zhang, Xinna ; Nguyen, Thuy-Ai ; Darlington, Yolanda ; Waldman, Alan S. ; Lu, Xiongbin ; Donehower, Lawrence A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-5de1c648f03f21334b36ccf46dcda14052e10483d1a52febbe702de4e5af5e363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>53BP1</topic><topic>Adaptor Proteins, Signal Transducing</topic><topic>Animals</topic><topic>Ataxia Telangiectasia Mutated Proteins</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chromosomal Proteins, Non-Histone</topic><topic>DNA and Chromosomes</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Repair</topic><topic>DNA Repair - physiology</topic><topic>DNA Repair - radiation effects</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DNA/Damage</topic><topic>Gamma Rays</topic><topic>H2AX</topic><topic>HeLa Cells</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>MDC1</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Phosphoprotein Phosphatases - genetics</topic><topic>Phosphoprotein Phosphatases - metabolism</topic><topic>Phosphorylation - physiology</topic><topic>Phosphorylation - radiation effects</topic><topic>Phosphorylation/Phosphatases/Serine-Threonine</topic><topic>PPM1D</topic><topic>Protein Phosphatase 2C</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Signal Transduction</topic><topic>Signal Transduction/Phosphoprotein Phosphatases</topic><topic>Signal Transduction/Phosphoprotein Phosphatases/Serine/Threonine</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Tumor Suppressor p53-Binding Protein 1</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - metabolism</topic><topic>Ultraviolet Rays</topic><topic>Whole-Body Irradiation</topic><topic>WIP1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Sung-Hwan</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Zhang, Xinna</creatorcontrib><creatorcontrib>Nguyen, Thuy-Ai</creatorcontrib><creatorcontrib>Darlington, Yolanda</creatorcontrib><creatorcontrib>Waldman, Alan S.</creatorcontrib><creatorcontrib>Lu, Xiongbin</creatorcontrib><creatorcontrib>Donehower, Lawrence A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Sung-Hwan</au><au>Lin, Lin</au><au>Zhang, Xinna</au><au>Nguyen, Thuy-Ai</au><au>Darlington, Yolanda</au><au>Waldman, Alan S.</au><au>Lu, Xiongbin</au><au>Donehower, Lawrence A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wild-type p53-induced Phosphatase 1 Dephosphorylates Histone Variant γ-H2AX and Suppresses DNA Double Strand Break Repair</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-04-23</date><risdate>2010</risdate><volume>285</volume><issue>17</issue><spage>12935</spage><epage>12947</epage><pages>12935-12947</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>In response to DNA double strand breaks, the histone variant H2AX at the break site is phosphorylated at serine 139 by DNA damage sensor kinases such as ataxia telangiectasia-mutated, forming γ-H2AX. This phosphorylation event is critical for sustained recruitment of other proteins to repair the break. After repair, restoration of the cell to a prestress state is associated with γ-H2AX dephosphorylation and dissolution of γ-H2AX-associated damage foci. The phosphatases PP2A and PP4 have previously been shown to dephosphorylate γ-H2AX. Here, we demonstrate that the wild-type p53-induced phosphatase 1 (WIP1) also dephosphorylates γ-H2AX at serine 139 in vitro and in vivo. Overexpression of WIP1 reduces formation of γ-H2AX foci in response to ionizing and ultraviolet radiation and blocks recruitment of MDC1 (mediator of DNA damage checkpoint 1) and 53BP1 (p53 binding protein 1) to DNA damage foci. Finally, these inhibitory effects of WIP1 on γ-H2AX are accompanied by WIP1 suppression of DNA double strand break repair. Thus, WIP1 has a homeostatic role in reversing the effects of ataxia telangiectasia-mutated phosphorylation of H2AX.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20118229</pmid><doi>10.1074/jbc.M109.071696</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2010-04, Vol.285 (17), p.12935-12947 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2857113 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | 53BP1 Adaptor Proteins, Signal Transducing Animals Ataxia Telangiectasia Mutated Proteins Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Chromosomal Proteins, Non-Histone DNA and Chromosomes DNA Breaks, Double-Stranded DNA Repair DNA Repair - physiology DNA Repair - radiation effects DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism DNA/Damage Gamma Rays H2AX HeLa Cells Histones - genetics Histones - metabolism Humans Intracellular Signaling Peptides and Proteins - genetics Intracellular Signaling Peptides and Proteins - metabolism MDC1 Mice Mice, Knockout Nuclear Proteins - genetics Nuclear Proteins - metabolism Phosphoprotein Phosphatases - genetics Phosphoprotein Phosphatases - metabolism Phosphorylation - physiology Phosphorylation - radiation effects Phosphorylation/Phosphatases/Serine-Threonine PPM1D Protein Phosphatase 2C Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism Signal Transduction Signal Transduction/Phosphoprotein Phosphatases Signal Transduction/Phosphoprotein Phosphatases/Serine/Threonine Trans-Activators - genetics Trans-Activators - metabolism Tumor Suppressor p53-Binding Protein 1 Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism Tumor Suppressor Proteins - genetics Tumor Suppressor Proteins - metabolism Ultraviolet Rays Whole-Body Irradiation WIP1 |
title | Wild-type p53-induced Phosphatase 1 Dephosphorylates Histone Variant γ-H2AX and Suppresses DNA Double Strand Break Repair |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wild-type%20p53-induced%20Phosphatase%201%20Dephosphorylates%20Histone%20Variant%20%CE%B3-H2AX%20and%20Suppresses%20DNA%20Double%20Strand%20Break%20Repair&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Moon,%20Sung-Hwan&rft.date=2010-04-23&rft.volume=285&rft.issue=17&rft.spage=12935&rft.epage=12947&rft.pages=12935-12947&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.071696&rft_dat=%3Cproquest_pubme%3E733546026%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733546026&rft_id=info:pmid/20118229&rft_els_id=S0021925820550746&rfr_iscdi=true |