Wild-type p53-induced Phosphatase 1 Dephosphorylates Histone Variant γ-H2AX and Suppresses DNA Double Strand Break Repair

In response to DNA double strand breaks, the histone variant H2AX at the break site is phosphorylated at serine 139 by DNA damage sensor kinases such as ataxia telangiectasia-mutated, forming γ-H2AX. This phosphorylation event is critical for sustained recruitment of other proteins to repair the bre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2010-04, Vol.285 (17), p.12935-12947
Hauptverfasser: Moon, Sung-Hwan, Lin, Lin, Zhang, Xinna, Nguyen, Thuy-Ai, Darlington, Yolanda, Waldman, Alan S., Lu, Xiongbin, Donehower, Lawrence A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12947
container_issue 17
container_start_page 12935
container_title The Journal of biological chemistry
container_volume 285
creator Moon, Sung-Hwan
Lin, Lin
Zhang, Xinna
Nguyen, Thuy-Ai
Darlington, Yolanda
Waldman, Alan S.
Lu, Xiongbin
Donehower, Lawrence A.
description In response to DNA double strand breaks, the histone variant H2AX at the break site is phosphorylated at serine 139 by DNA damage sensor kinases such as ataxia telangiectasia-mutated, forming γ-H2AX. This phosphorylation event is critical for sustained recruitment of other proteins to repair the break. After repair, restoration of the cell to a prestress state is associated with γ-H2AX dephosphorylation and dissolution of γ-H2AX-associated damage foci. The phosphatases PP2A and PP4 have previously been shown to dephosphorylate γ-H2AX. Here, we demonstrate that the wild-type p53-induced phosphatase 1 (WIP1) also dephosphorylates γ-H2AX at serine 139 in vitro and in vivo. Overexpression of WIP1 reduces formation of γ-H2AX foci in response to ionizing and ultraviolet radiation and blocks recruitment of MDC1 (mediator of DNA damage checkpoint 1) and 53BP1 (p53 binding protein 1) to DNA damage foci. Finally, these inhibitory effects of WIP1 on γ-H2AX are accompanied by WIP1 suppression of DNA double strand break repair. Thus, WIP1 has a homeostatic role in reversing the effects of ataxia telangiectasia-mutated phosphorylation of H2AX.
doi_str_mv 10.1074/jbc.M109.071696
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2857113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820550746</els_id><sourcerecordid>733546026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-5de1c648f03f21334b36ccf46dcda14052e10483d1a52febbe702de4e5af5e363</originalsourceid><addsrcrecordid>eNp1kctuEzEUhi0EomlgzQ68YzWpL-O5bJBCQwlSuYhQ6M7y2Gcal8nY2DOVwmvxHjwTDlMqWOCNZf2f_R_5Q-gJJQtKyvzkutGLt5TUC1LSoi7uoRklFc-4oJf30YwQRrOaieoIHcd4TdLKa_oQHTFCacVYPUPfv9jOZMPeA_aCZ7Y3owaDP2xd9Fs1qAiY4hX432cX9p0aIOK1jYPrAX9Wwap-wD9_ZGu2vMSqN3gzeh8gxoSt3i3xyo1NB3gzhEP4MoD6ij-CVzY8Qg9a1UV4fLvP0cXZq0-n6-z8_es3p8vzTAvKhkwYoLrIq5bwllHO84YXWrd5YbRRNCeCASV5xQ1VgrXQNFASZiAHoVoBvOBz9GJ614_NDoyGPs3SSR_sToW9dMrKf5PebuWVu5GsEiVNjXP0_PaB4L6NEAe5s1FD16ke3BhlybnIC8IOVScTqYOLMUB710KJPAiTSZg8CJOTsHTj6d_D3fF_DCXg2QS0ykl1FWyUF5uUcpLyiguWiHoiIH3ijYUgo7bQJ402gB6kcfa_9b8AfnawTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733546026</pqid></control><display><type>article</type><title>Wild-type p53-induced Phosphatase 1 Dephosphorylates Histone Variant γ-H2AX and Suppresses DNA Double Strand Break Repair</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Moon, Sung-Hwan ; Lin, Lin ; Zhang, Xinna ; Nguyen, Thuy-Ai ; Darlington, Yolanda ; Waldman, Alan S. ; Lu, Xiongbin ; Donehower, Lawrence A.</creator><creatorcontrib>Moon, Sung-Hwan ; Lin, Lin ; Zhang, Xinna ; Nguyen, Thuy-Ai ; Darlington, Yolanda ; Waldman, Alan S. ; Lu, Xiongbin ; Donehower, Lawrence A.</creatorcontrib><description>In response to DNA double strand breaks, the histone variant H2AX at the break site is phosphorylated at serine 139 by DNA damage sensor kinases such as ataxia telangiectasia-mutated, forming γ-H2AX. This phosphorylation event is critical for sustained recruitment of other proteins to repair the break. After repair, restoration of the cell to a prestress state is associated with γ-H2AX dephosphorylation and dissolution of γ-H2AX-associated damage foci. The phosphatases PP2A and PP4 have previously been shown to dephosphorylate γ-H2AX. Here, we demonstrate that the wild-type p53-induced phosphatase 1 (WIP1) also dephosphorylates γ-H2AX at serine 139 in vitro and in vivo. Overexpression of WIP1 reduces formation of γ-H2AX foci in response to ionizing and ultraviolet radiation and blocks recruitment of MDC1 (mediator of DNA damage checkpoint 1) and 53BP1 (p53 binding protein 1) to DNA damage foci. Finally, these inhibitory effects of WIP1 on γ-H2AX are accompanied by WIP1 suppression of DNA double strand break repair. Thus, WIP1 has a homeostatic role in reversing the effects of ataxia telangiectasia-mutated phosphorylation of H2AX.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.071696</identifier><identifier>PMID: 20118229</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>53BP1 ; Adaptor Proteins, Signal Transducing ; Animals ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Chromosomal Proteins, Non-Histone ; DNA and Chromosomes ; DNA Breaks, Double-Stranded ; DNA Repair ; DNA Repair - physiology ; DNA Repair - radiation effects ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; DNA/Damage ; Gamma Rays ; H2AX ; HeLa Cells ; Histones - genetics ; Histones - metabolism ; Humans ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; MDC1 ; Mice ; Mice, Knockout ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Phosphoprotein Phosphatases - genetics ; Phosphoprotein Phosphatases - metabolism ; Phosphorylation - physiology ; Phosphorylation - radiation effects ; Phosphorylation/Phosphatases/Serine-Threonine ; PPM1D ; Protein Phosphatase 2C ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Signal Transduction ; Signal Transduction/Phosphoprotein Phosphatases ; Signal Transduction/Phosphoprotein Phosphatases/Serine/Threonine ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Tumor Suppressor p53-Binding Protein 1 ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - metabolism ; Ultraviolet Rays ; Whole-Body Irradiation ; WIP1</subject><ispartof>The Journal of biological chemistry, 2010-04, Vol.285 (17), p.12935-12947</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-5de1c648f03f21334b36ccf46dcda14052e10483d1a52febbe702de4e5af5e363</citedby><cites>FETCH-LOGICAL-c512t-5de1c648f03f21334b36ccf46dcda14052e10483d1a52febbe702de4e5af5e363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857113/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857113/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20118229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moon, Sung-Hwan</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Zhang, Xinna</creatorcontrib><creatorcontrib>Nguyen, Thuy-Ai</creatorcontrib><creatorcontrib>Darlington, Yolanda</creatorcontrib><creatorcontrib>Waldman, Alan S.</creatorcontrib><creatorcontrib>Lu, Xiongbin</creatorcontrib><creatorcontrib>Donehower, Lawrence A.</creatorcontrib><title>Wild-type p53-induced Phosphatase 1 Dephosphorylates Histone Variant γ-H2AX and Suppresses DNA Double Strand Break Repair</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>In response to DNA double strand breaks, the histone variant H2AX at the break site is phosphorylated at serine 139 by DNA damage sensor kinases such as ataxia telangiectasia-mutated, forming γ-H2AX. This phosphorylation event is critical for sustained recruitment of other proteins to repair the break. After repair, restoration of the cell to a prestress state is associated with γ-H2AX dephosphorylation and dissolution of γ-H2AX-associated damage foci. The phosphatases PP2A and PP4 have previously been shown to dephosphorylate γ-H2AX. Here, we demonstrate that the wild-type p53-induced phosphatase 1 (WIP1) also dephosphorylates γ-H2AX at serine 139 in vitro and in vivo. Overexpression of WIP1 reduces formation of γ-H2AX foci in response to ionizing and ultraviolet radiation and blocks recruitment of MDC1 (mediator of DNA damage checkpoint 1) and 53BP1 (p53 binding protein 1) to DNA damage foci. Finally, these inhibitory effects of WIP1 on γ-H2AX are accompanied by WIP1 suppression of DNA double strand break repair. Thus, WIP1 has a homeostatic role in reversing the effects of ataxia telangiectasia-mutated phosphorylation of H2AX.</description><subject>53BP1</subject><subject>Adaptor Proteins, Signal Transducing</subject><subject>Animals</subject><subject>Ataxia Telangiectasia Mutated Proteins</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chromosomal Proteins, Non-Histone</subject><subject>DNA and Chromosomes</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Repair</subject><subject>DNA Repair - physiology</subject><subject>DNA Repair - radiation effects</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DNA/Damage</subject><subject>Gamma Rays</subject><subject>H2AX</subject><subject>HeLa Cells</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>MDC1</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Phosphoprotein Phosphatases - genetics</subject><subject>Phosphoprotein Phosphatases - metabolism</subject><subject>Phosphorylation - physiology</subject><subject>Phosphorylation - radiation effects</subject><subject>Phosphorylation/Phosphatases/Serine-Threonine</subject><subject>PPM1D</subject><subject>Protein Phosphatase 2C</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Signal Transduction</subject><subject>Signal Transduction/Phosphoprotein Phosphatases</subject><subject>Signal Transduction/Phosphoprotein Phosphatases/Serine/Threonine</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Tumor Suppressor p53-Binding Protein 1</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - metabolism</subject><subject>Ultraviolet Rays</subject><subject>Whole-Body Irradiation</subject><subject>WIP1</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctuEzEUhi0EomlgzQ68YzWpL-O5bJBCQwlSuYhQ6M7y2Gcal8nY2DOVwmvxHjwTDlMqWOCNZf2f_R_5Q-gJJQtKyvzkutGLt5TUC1LSoi7uoRklFc-4oJf30YwQRrOaieoIHcd4TdLKa_oQHTFCacVYPUPfv9jOZMPeA_aCZ7Y3owaDP2xd9Fs1qAiY4hX432cX9p0aIOK1jYPrAX9Wwap-wD9_ZGu2vMSqN3gzeh8gxoSt3i3xyo1NB3gzhEP4MoD6ij-CVzY8Qg9a1UV4fLvP0cXZq0-n6-z8_es3p8vzTAvKhkwYoLrIq5bwllHO84YXWrd5YbRRNCeCASV5xQ1VgrXQNFASZiAHoVoBvOBz9GJ614_NDoyGPs3SSR_sToW9dMrKf5PebuWVu5GsEiVNjXP0_PaB4L6NEAe5s1FD16ke3BhlybnIC8IOVScTqYOLMUB710KJPAiTSZg8CJOTsHTj6d_D3fF_DCXg2QS0ykl1FWyUF5uUcpLyiguWiHoiIH3ijYUgo7bQJ402gB6kcfa_9b8AfnawTA</recordid><startdate>20100423</startdate><enddate>20100423</enddate><creator>Moon, Sung-Hwan</creator><creator>Lin, Lin</creator><creator>Zhang, Xinna</creator><creator>Nguyen, Thuy-Ai</creator><creator>Darlington, Yolanda</creator><creator>Waldman, Alan S.</creator><creator>Lu, Xiongbin</creator><creator>Donehower, Lawrence A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100423</creationdate><title>Wild-type p53-induced Phosphatase 1 Dephosphorylates Histone Variant γ-H2AX and Suppresses DNA Double Strand Break Repair</title><author>Moon, Sung-Hwan ; Lin, Lin ; Zhang, Xinna ; Nguyen, Thuy-Ai ; Darlington, Yolanda ; Waldman, Alan S. ; Lu, Xiongbin ; Donehower, Lawrence A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-5de1c648f03f21334b36ccf46dcda14052e10483d1a52febbe702de4e5af5e363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>53BP1</topic><topic>Adaptor Proteins, Signal Transducing</topic><topic>Animals</topic><topic>Ataxia Telangiectasia Mutated Proteins</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chromosomal Proteins, Non-Histone</topic><topic>DNA and Chromosomes</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Repair</topic><topic>DNA Repair - physiology</topic><topic>DNA Repair - radiation effects</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DNA/Damage</topic><topic>Gamma Rays</topic><topic>H2AX</topic><topic>HeLa Cells</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>MDC1</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Phosphoprotein Phosphatases - genetics</topic><topic>Phosphoprotein Phosphatases - metabolism</topic><topic>Phosphorylation - physiology</topic><topic>Phosphorylation - radiation effects</topic><topic>Phosphorylation/Phosphatases/Serine-Threonine</topic><topic>PPM1D</topic><topic>Protein Phosphatase 2C</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Signal Transduction</topic><topic>Signal Transduction/Phosphoprotein Phosphatases</topic><topic>Signal Transduction/Phosphoprotein Phosphatases/Serine/Threonine</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Tumor Suppressor p53-Binding Protein 1</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - metabolism</topic><topic>Ultraviolet Rays</topic><topic>Whole-Body Irradiation</topic><topic>WIP1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Sung-Hwan</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Zhang, Xinna</creatorcontrib><creatorcontrib>Nguyen, Thuy-Ai</creatorcontrib><creatorcontrib>Darlington, Yolanda</creatorcontrib><creatorcontrib>Waldman, Alan S.</creatorcontrib><creatorcontrib>Lu, Xiongbin</creatorcontrib><creatorcontrib>Donehower, Lawrence A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Sung-Hwan</au><au>Lin, Lin</au><au>Zhang, Xinna</au><au>Nguyen, Thuy-Ai</au><au>Darlington, Yolanda</au><au>Waldman, Alan S.</au><au>Lu, Xiongbin</au><au>Donehower, Lawrence A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wild-type p53-induced Phosphatase 1 Dephosphorylates Histone Variant γ-H2AX and Suppresses DNA Double Strand Break Repair</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-04-23</date><risdate>2010</risdate><volume>285</volume><issue>17</issue><spage>12935</spage><epage>12947</epage><pages>12935-12947</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>In response to DNA double strand breaks, the histone variant H2AX at the break site is phosphorylated at serine 139 by DNA damage sensor kinases such as ataxia telangiectasia-mutated, forming γ-H2AX. This phosphorylation event is critical for sustained recruitment of other proteins to repair the break. After repair, restoration of the cell to a prestress state is associated with γ-H2AX dephosphorylation and dissolution of γ-H2AX-associated damage foci. The phosphatases PP2A and PP4 have previously been shown to dephosphorylate γ-H2AX. Here, we demonstrate that the wild-type p53-induced phosphatase 1 (WIP1) also dephosphorylates γ-H2AX at serine 139 in vitro and in vivo. Overexpression of WIP1 reduces formation of γ-H2AX foci in response to ionizing and ultraviolet radiation and blocks recruitment of MDC1 (mediator of DNA damage checkpoint 1) and 53BP1 (p53 binding protein 1) to DNA damage foci. Finally, these inhibitory effects of WIP1 on γ-H2AX are accompanied by WIP1 suppression of DNA double strand break repair. Thus, WIP1 has a homeostatic role in reversing the effects of ataxia telangiectasia-mutated phosphorylation of H2AX.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20118229</pmid><doi>10.1074/jbc.M109.071696</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2010-04, Vol.285 (17), p.12935-12947
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2857113
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects 53BP1
Adaptor Proteins, Signal Transducing
Animals
Ataxia Telangiectasia Mutated Proteins
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Chromosomal Proteins, Non-Histone
DNA and Chromosomes
DNA Breaks, Double-Stranded
DNA Repair
DNA Repair - physiology
DNA Repair - radiation effects
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
DNA/Damage
Gamma Rays
H2AX
HeLa Cells
Histones - genetics
Histones - metabolism
Humans
Intracellular Signaling Peptides and Proteins - genetics
Intracellular Signaling Peptides and Proteins - metabolism
MDC1
Mice
Mice, Knockout
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Phosphoprotein Phosphatases - genetics
Phosphoprotein Phosphatases - metabolism
Phosphorylation - physiology
Phosphorylation - radiation effects
Phosphorylation/Phosphatases/Serine-Threonine
PPM1D
Protein Phosphatase 2C
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Signal Transduction
Signal Transduction/Phosphoprotein Phosphatases
Signal Transduction/Phosphoprotein Phosphatases/Serine/Threonine
Trans-Activators - genetics
Trans-Activators - metabolism
Tumor Suppressor p53-Binding Protein 1
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - metabolism
Ultraviolet Rays
Whole-Body Irradiation
WIP1
title Wild-type p53-induced Phosphatase 1 Dephosphorylates Histone Variant γ-H2AX and Suppresses DNA Double Strand Break Repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wild-type%20p53-induced%20Phosphatase%201%20Dephosphorylates%20Histone%20Variant%20%CE%B3-H2AX%20and%20Suppresses%20DNA%20Double%20Strand%20Break%20Repair&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Moon,%20Sung-Hwan&rft.date=2010-04-23&rft.volume=285&rft.issue=17&rft.spage=12935&rft.epage=12947&rft.pages=12935-12947&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.071696&rft_dat=%3Cproquest_pubme%3E733546026%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733546026&rft_id=info:pmid/20118229&rft_els_id=S0021925820550746&rfr_iscdi=true