Gain of Function Mutations in Membrane Region M2C2 of KtrB Open a Gate Controlling K+ Transport by the KtrAB System from Vibrio alginolyticus

KtrB, the K+-translocating subunit of the Na+-dependent bacterial K+ uptake system KtrAB, consists of four M1PM2 domains, in which M1 and M2 are transmembrane helices and P indicates a p-loop that folds back from the external medium into the cell membrane. The transmembrane stretch M2C is, with its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2010-04, Vol.285 (14), p.10318-10327
Hauptverfasser: Hänelt, Inga, Löchte, Sara, Sundermann, Lea, Elbers, Katharina, Vor der Brüggen, Marc, Bakker, Evert P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10327
container_issue 14
container_start_page 10318
container_title The Journal of biological chemistry
container_volume 285
creator Hänelt, Inga
Löchte, Sara
Sundermann, Lea
Elbers, Katharina
Vor der Brüggen, Marc
Bakker, Evert P.
description KtrB, the K+-translocating subunit of the Na+-dependent bacterial K+ uptake system KtrAB, consists of four M1PM2 domains, in which M1 and M2 are transmembrane helices and P indicates a p-loop that folds back from the external medium into the cell membrane. The transmembrane stretch M2C is, with its 40 residues, unusually long. It consists of three parts, the hydrophobic helices M2C1 and M2C3, which are connected by a nonhelical M2C2 region, containing conserved glycine, alanine, serine, threonine, and lysine residues. Several point mutations in M2C2 led to a huge gain of function of K+ uptake by KtrB from the bacterium Vibrio alginolyticus. This effect was exclusively due to an increase in Vmax for K+ transport. Na+ translocation by KtrB was not affected. Partial to complete deletions of M2C2 also led to enhanced Vmax values for K+ uptake via KtrB. However, several deletion variants also exhibited higher Km values for K+ uptake and at least one deletion variant, KtrBΔ326–328, also transported Na+ faster. The presence of KtrA did not suppress any of these effects. For the deletion variants, this was due to a diminished binding of KtrA to KtrB. PhoA studies indicated that M2C2 forms a flexible structure within the membrane allowing M2C3 to be directed either to the cytoplasm or (artificially) to the periplasm. These data are interpreted to mean (i) that region M2C2 forms a flexible gate controlling K+ translocation at the cytoplasmic side of KtrB, and (ii) that M2C2 is required for the interaction between KtrA and KtrB.
doi_str_mv 10.1074/jbc.M109.089870
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2856237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820746909</els_id><sourcerecordid>745634958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4090-5883ace9af2421692ab69fb94f0a0e2da9d1a14914b89659f76846494c62273a3</originalsourceid><addsrcrecordid>eNqFkctu1DAUhiMEotPCmh14xwJl6mtib5DaER1QO6pEW8TOchxn6iqxB9upNA_Rd8YhpYIFwptj6f_O9S-KNwguEazp8V2jlxsExRJywWv4rFggyElJGPr-vFhAiFEpMOMHxWGMdzA_KtDL4gBDKOqasUXxsFbWAd-Bs9HpZL0DmzGp6RNBFjZmaIJyBnw1218iXuGJPk_hFFzujAMKrFUyYOVdCr7vrduC8w_gOifFnQ8JNHuQbs2UcHIKrvYxmQF0wQ_gm22C9UD1W-t8v09Wj_FV8aJTfTSvH-NRcXP26Xr1uby4XH9ZnVyUmkIBS8Y5UdoI1WGKUSWwairRNYJ2UEGDWyVapFBelTZcVEx0dcVpRQXVFcY1UeSo-DjX3Y3NYFpt8vCql7tgBxX20isr_1acvZVbfy8xZxUmdS7w_rFA8D9GE5McbNSm7_Ot_BhlTVlFqGD8_yQhDENEaSaPZ1IHH2Mw3dM8CMrJbZndlpPbcnY7Z7z9c40n_re9GXg3A53yUm2DjfLmKncjEHEkajEtImbC5HPfWxNk1NY4bVobjE6y9faf7X8CV1_CeA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733520144</pqid></control><display><type>article</type><title>Gain of Function Mutations in Membrane Region M2C2 of KtrB Open a Gate Controlling K+ Transport by the KtrAB System from Vibrio alginolyticus</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hänelt, Inga ; Löchte, Sara ; Sundermann, Lea ; Elbers, Katharina ; Vor der Brüggen, Marc ; Bakker, Evert P.</creator><creatorcontrib>Hänelt, Inga ; Löchte, Sara ; Sundermann, Lea ; Elbers, Katharina ; Vor der Brüggen, Marc ; Bakker, Evert P.</creatorcontrib><description>KtrB, the K+-translocating subunit of the Na+-dependent bacterial K+ uptake system KtrAB, consists of four M1PM2 domains, in which M1 and M2 are transmembrane helices and P indicates a p-loop that folds back from the external medium into the cell membrane. The transmembrane stretch M2C is, with its 40 residues, unusually long. It consists of three parts, the hydrophobic helices M2C1 and M2C3, which are connected by a nonhelical M2C2 region, containing conserved glycine, alanine, serine, threonine, and lysine residues. Several point mutations in M2C2 led to a huge gain of function of K+ uptake by KtrB from the bacterium Vibrio alginolyticus. This effect was exclusively due to an increase in Vmax for K+ transport. Na+ translocation by KtrB was not affected. Partial to complete deletions of M2C2 also led to enhanced Vmax values for K+ uptake via KtrB. However, several deletion variants also exhibited higher Km values for K+ uptake and at least one deletion variant, KtrBΔ326–328, also transported Na+ faster. The presence of KtrA did not suppress any of these effects. For the deletion variants, this was due to a diminished binding of KtrA to KtrB. PhoA studies indicated that M2C2 forms a flexible structure within the membrane allowing M2C3 to be directed either to the cytoplasm or (artificially) to the periplasm. These data are interpreted to mean (i) that region M2C2 forms a flexible gate controlling K+ translocation at the cytoplasmic side of KtrB, and (ii) that M2C2 is required for the interaction between KtrA and KtrB.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.089870</identifier><identifier>PMID: 20097755</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biological Transport ; Cation Transport Proteins - chemistry ; Cation Transport Proteins - genetics ; Cation Transport Proteins - metabolism ; Cell Membrane - metabolism ; Enzyme Kinetics ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Membrane Biology ; Membrane Proteins ; Molecular Sequence Data ; Mutation - genetics ; Potassium - metabolism ; Potassium Transport ; Sequence Homology, Amino Acid ; Site-directed Mutagenesis ; Sodium - metabolism ; Vibrio alginolyticus ; Vibrio alginolyticus - genetics ; Vibrio alginolyticus - metabolism</subject><ispartof>The Journal of biological chemistry, 2010-04, Vol.285 (14), p.10318-10327</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4090-5883ace9af2421692ab69fb94f0a0e2da9d1a14914b89659f76846494c62273a3</citedby><cites>FETCH-LOGICAL-c4090-5883ace9af2421692ab69fb94f0a0e2da9d1a14914b89659f76846494c62273a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856237/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856237/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20097755$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hänelt, Inga</creatorcontrib><creatorcontrib>Löchte, Sara</creatorcontrib><creatorcontrib>Sundermann, Lea</creatorcontrib><creatorcontrib>Elbers, Katharina</creatorcontrib><creatorcontrib>Vor der Brüggen, Marc</creatorcontrib><creatorcontrib>Bakker, Evert P.</creatorcontrib><title>Gain of Function Mutations in Membrane Region M2C2 of KtrB Open a Gate Controlling K+ Transport by the KtrAB System from Vibrio alginolyticus</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>KtrB, the K+-translocating subunit of the Na+-dependent bacterial K+ uptake system KtrAB, consists of four M1PM2 domains, in which M1 and M2 are transmembrane helices and P indicates a p-loop that folds back from the external medium into the cell membrane. The transmembrane stretch M2C is, with its 40 residues, unusually long. It consists of three parts, the hydrophobic helices M2C1 and M2C3, which are connected by a nonhelical M2C2 region, containing conserved glycine, alanine, serine, threonine, and lysine residues. Several point mutations in M2C2 led to a huge gain of function of K+ uptake by KtrB from the bacterium Vibrio alginolyticus. This effect was exclusively due to an increase in Vmax for K+ transport. Na+ translocation by KtrB was not affected. Partial to complete deletions of M2C2 also led to enhanced Vmax values for K+ uptake via KtrB. However, several deletion variants also exhibited higher Km values for K+ uptake and at least one deletion variant, KtrBΔ326–328, also transported Na+ faster. The presence of KtrA did not suppress any of these effects. For the deletion variants, this was due to a diminished binding of KtrA to KtrB. PhoA studies indicated that M2C2 forms a flexible structure within the membrane allowing M2C3 to be directed either to the cytoplasm or (artificially) to the periplasm. These data are interpreted to mean (i) that region M2C2 forms a flexible gate controlling K+ translocation at the cytoplasmic side of KtrB, and (ii) that M2C2 is required for the interaction between KtrA and KtrB.</description><subject>Amino Acid Sequence</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological Transport</subject><subject>Cation Transport Proteins - chemistry</subject><subject>Cation Transport Proteins - genetics</subject><subject>Cation Transport Proteins - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>Enzyme Kinetics</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Membrane Biology</subject><subject>Membrane Proteins</subject><subject>Molecular Sequence Data</subject><subject>Mutation - genetics</subject><subject>Potassium - metabolism</subject><subject>Potassium Transport</subject><subject>Sequence Homology, Amino Acid</subject><subject>Site-directed Mutagenesis</subject><subject>Sodium - metabolism</subject><subject>Vibrio alginolyticus</subject><subject>Vibrio alginolyticus - genetics</subject><subject>Vibrio alginolyticus - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhiMEotPCmh14xwJl6mtib5DaER1QO6pEW8TOchxn6iqxB9upNA_Rd8YhpYIFwptj6f_O9S-KNwguEazp8V2jlxsExRJywWv4rFggyElJGPr-vFhAiFEpMOMHxWGMdzA_KtDL4gBDKOqasUXxsFbWAd-Bs9HpZL0DmzGp6RNBFjZmaIJyBnw1218iXuGJPk_hFFzujAMKrFUyYOVdCr7vrduC8w_gOifFnQ8JNHuQbs2UcHIKrvYxmQF0wQ_gm22C9UD1W-t8v09Wj_FV8aJTfTSvH-NRcXP26Xr1uby4XH9ZnVyUmkIBS8Y5UdoI1WGKUSWwairRNYJ2UEGDWyVapFBelTZcVEx0dcVpRQXVFcY1UeSo-DjX3Y3NYFpt8vCql7tgBxX20isr_1acvZVbfy8xZxUmdS7w_rFA8D9GE5McbNSm7_Ot_BhlTVlFqGD8_yQhDENEaSaPZ1IHH2Mw3dM8CMrJbZndlpPbcnY7Z7z9c40n_re9GXg3A53yUm2DjfLmKncjEHEkajEtImbC5HPfWxNk1NY4bVobjE6y9faf7X8CV1_CeA</recordid><startdate>20100402</startdate><enddate>20100402</enddate><creator>Hänelt, Inga</creator><creator>Löchte, Sara</creator><creator>Sundermann, Lea</creator><creator>Elbers, Katharina</creator><creator>Vor der Brüggen, Marc</creator><creator>Bakker, Evert P.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20100402</creationdate><title>Gain of Function Mutations in Membrane Region M2C2 of KtrB Open a Gate Controlling K+ Transport by the KtrAB System from Vibrio alginolyticus</title><author>Hänelt, Inga ; Löchte, Sara ; Sundermann, Lea ; Elbers, Katharina ; Vor der Brüggen, Marc ; Bakker, Evert P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4090-5883ace9af2421692ab69fb94f0a0e2da9d1a14914b89659f76846494c62273a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino Acid Sequence</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological Transport</topic><topic>Cation Transport Proteins - chemistry</topic><topic>Cation Transport Proteins - genetics</topic><topic>Cation Transport Proteins - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>Enzyme Kinetics</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Membrane Biology</topic><topic>Membrane Proteins</topic><topic>Molecular Sequence Data</topic><topic>Mutation - genetics</topic><topic>Potassium - metabolism</topic><topic>Potassium Transport</topic><topic>Sequence Homology, Amino Acid</topic><topic>Site-directed Mutagenesis</topic><topic>Sodium - metabolism</topic><topic>Vibrio alginolyticus</topic><topic>Vibrio alginolyticus - genetics</topic><topic>Vibrio alginolyticus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hänelt, Inga</creatorcontrib><creatorcontrib>Löchte, Sara</creatorcontrib><creatorcontrib>Sundermann, Lea</creatorcontrib><creatorcontrib>Elbers, Katharina</creatorcontrib><creatorcontrib>Vor der Brüggen, Marc</creatorcontrib><creatorcontrib>Bakker, Evert P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hänelt, Inga</au><au>Löchte, Sara</au><au>Sundermann, Lea</au><au>Elbers, Katharina</au><au>Vor der Brüggen, Marc</au><au>Bakker, Evert P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gain of Function Mutations in Membrane Region M2C2 of KtrB Open a Gate Controlling K+ Transport by the KtrAB System from Vibrio alginolyticus</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-04-02</date><risdate>2010</risdate><volume>285</volume><issue>14</issue><spage>10318</spage><epage>10327</epage><pages>10318-10327</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>KtrB, the K+-translocating subunit of the Na+-dependent bacterial K+ uptake system KtrAB, consists of four M1PM2 domains, in which M1 and M2 are transmembrane helices and P indicates a p-loop that folds back from the external medium into the cell membrane. The transmembrane stretch M2C is, with its 40 residues, unusually long. It consists of three parts, the hydrophobic helices M2C1 and M2C3, which are connected by a nonhelical M2C2 region, containing conserved glycine, alanine, serine, threonine, and lysine residues. Several point mutations in M2C2 led to a huge gain of function of K+ uptake by KtrB from the bacterium Vibrio alginolyticus. This effect was exclusively due to an increase in Vmax for K+ transport. Na+ translocation by KtrB was not affected. Partial to complete deletions of M2C2 also led to enhanced Vmax values for K+ uptake via KtrB. However, several deletion variants also exhibited higher Km values for K+ uptake and at least one deletion variant, KtrBΔ326–328, also transported Na+ faster. The presence of KtrA did not suppress any of these effects. For the deletion variants, this was due to a diminished binding of KtrA to KtrB. PhoA studies indicated that M2C2 forms a flexible structure within the membrane allowing M2C3 to be directed either to the cytoplasm or (artificially) to the periplasm. These data are interpreted to mean (i) that region M2C2 forms a flexible gate controlling K+ translocation at the cytoplasmic side of KtrB, and (ii) that M2C2 is required for the interaction between KtrA and KtrB.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20097755</pmid><doi>10.1074/jbc.M109.089870</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2010-04, Vol.285 (14), p.10318-10327
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2856237
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Amino Acid Sequence
Bacteria
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biological Transport
Cation Transport Proteins - chemistry
Cation Transport Proteins - genetics
Cation Transport Proteins - metabolism
Cell Membrane - metabolism
Enzyme Kinetics
Escherichia coli - genetics
Escherichia coli - metabolism
Membrane Biology
Membrane Proteins
Molecular Sequence Data
Mutation - genetics
Potassium - metabolism
Potassium Transport
Sequence Homology, Amino Acid
Site-directed Mutagenesis
Sodium - metabolism
Vibrio alginolyticus
Vibrio alginolyticus - genetics
Vibrio alginolyticus - metabolism
title Gain of Function Mutations in Membrane Region M2C2 of KtrB Open a Gate Controlling K+ Transport by the KtrAB System from Vibrio alginolyticus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gain%20of%20Function%20Mutations%20in%20Membrane%20Region%20M2C2%20of%20KtrB%20Open%20a%20Gate%20Controlling%20K+%20Transport%20by%20the%20KtrAB%20System%20from%20Vibrio%20alginolyticus&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=H%C3%A4nelt,%20Inga&rft.date=2010-04-02&rft.volume=285&rft.issue=14&rft.spage=10318&rft.epage=10327&rft.pages=10318-10327&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.089870&rft_dat=%3Cproquest_pubme%3E745634958%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733520144&rft_id=info:pmid/20097755&rft_els_id=S0021925820746909&rfr_iscdi=true