A Biophysical Model for Integration of Electrical, Osmotic, and pH Regulation in the Human Bronchial Epithelium
A dynamical biophysical model for the functioning of an epithelium is presented. This model integrates the electrical and osmotic behaviors of the epithelium, taking into account intracellular conditions. The specific tissue modeled is the human bronchial epithelium, which is of particular interest,...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2010-04, Vol.98 (8), p.1476-1485 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1485 |
---|---|
container_issue | 8 |
container_start_page | 1476 |
container_title | Biophysical journal |
container_volume | 98 |
creator | Falkenberg, Cibele V. Jakobsson, Eric |
description | A dynamical biophysical model for the functioning of an epithelium is presented. This model integrates the electrical and osmotic behaviors of the epithelium, taking into account intracellular conditions. The specific tissue modeled is the human bronchial epithelium, which is of particular interest, as it is the location of the most common lethal symptoms of cystic fibrosis. The model is implemented in a modular form to facilitate future application of the code to other epithelial tissue by inputting different transporters, channels, and geometric parameters. The model includes pH regulation as an integral component of overall regulation of epithelial function, through the interdependence of pH, bicarbonate concentration, and current. The procedures for specification, the validation of the model, and parametric studies are presented using available experimental data of cultured human bronchial epithelium. Parametric studies are performed to elucidate a), the contribution of basolateral chloride channels to the short-circuit current functional form, and b), the role that regulation of basolateral potassium conductance plays in epithelial function. |
doi_str_mv | 10.1016/j.bpj.2009.11.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2856173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349509060068</els_id><sourcerecordid>753751834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-20a5bd818a71aabc61958dcd14790ea7202364d8a345cb40cf5ed7151d9357163</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhiMEokvhAbggiwuXJswktpMICamtlm6lokoIzpZjO7teJXawk0p9e7zaUlEOcBrJ882v8XxZ9hahQED-cV90074oAdoCsQDKnmUrZLTMARr-PFsBAM8r2rKT7FWMewAsGeDL7KQECi3lfJX5c3Jh_bS7j1bJgXz12gyk94Fcu9lsg5ytd8T3ZD0YNYcDc0Zu4-hnq86IdJpMG_LNbJfhSFpH5p0hm2WUjlwE79TOptj1ZNPzYJfxdfail0M0bx7qafbjy_r75Sa_ub26vjy_yRWDds5LkKzTDTayRik7xbFljVYaad2CkXUJZcWpbmRFmeooqJ4ZXSND3VasRl6dZp-PudPSjUYr4-YgBzEFO8pwL7y04mnH2Z3Y-jtRNoxjXaWADw8Bwf9cTJzFaKMywyCd8UsUNatqhk1F_09WaVXOGkzk-7_IvV-CS3cQJTLecoosQXiEVPAxBtM_Lo0gDtrFXiTt4qBdIIqkPc28-_O3jxO_PSfg0xEw6eZ31gQRlTVOGW1DEiu0t_-I_wUO2L1D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215696415</pqid></control><display><type>article</type><title>A Biophysical Model for Integration of Electrical, Osmotic, and pH Regulation in the Human Bronchial Epithelium</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>PubMed Central</source><creator>Falkenberg, Cibele V. ; Jakobsson, Eric</creator><creatorcontrib>Falkenberg, Cibele V. ; Jakobsson, Eric</creatorcontrib><description>A dynamical biophysical model for the functioning of an epithelium is presented. This model integrates the electrical and osmotic behaviors of the epithelium, taking into account intracellular conditions. The specific tissue modeled is the human bronchial epithelium, which is of particular interest, as it is the location of the most common lethal symptoms of cystic fibrosis. The model is implemented in a modular form to facilitate future application of the code to other epithelial tissue by inputting different transporters, channels, and geometric parameters. The model includes pH regulation as an integral component of overall regulation of epithelial function, through the interdependence of pH, bicarbonate concentration, and current. The procedures for specification, the validation of the model, and parametric studies are presented using available experimental data of cultured human bronchial epithelium. Parametric studies are performed to elucidate a), the contribution of basolateral chloride channels to the short-circuit current functional form, and b), the role that regulation of basolateral potassium conductance plays in epithelial function.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2009.11.045</identifier><identifier>PMID: 20409466</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biophysical Phenomena ; Biophysics ; Bronchi - physiology ; Cells ; Cellular Biophysics and Electrophysiology ; Channels ; Computer Simulation ; Control ; Cystic fibrosis ; Electricity ; Epithelium ; Epithelium - physiology ; Human ; Humans ; Hydrogen-Ion Concentration ; Mathematical models ; Membrane Potentials - physiology ; Models, Biological ; Osmosis - physiology ; Potassium ; Specifications ; Tissues</subject><ispartof>Biophysical journal, 2010-04, Vol.98 (8), p.1476-1485</ispartof><rights>2010 Biophysical Society</rights><rights>Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Apr 21, 2010</rights><rights>2010 by the Biophysical Society.. 2010 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-20a5bd818a71aabc61958dcd14790ea7202364d8a345cb40cf5ed7151d9357163</citedby><cites>FETCH-LOGICAL-c509t-20a5bd818a71aabc61958dcd14790ea7202364d8a345cb40cf5ed7151d9357163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856173/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2009.11.045$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20409466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Falkenberg, Cibele V.</creatorcontrib><creatorcontrib>Jakobsson, Eric</creatorcontrib><title>A Biophysical Model for Integration of Electrical, Osmotic, and pH Regulation in the Human Bronchial Epithelium</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>A dynamical biophysical model for the functioning of an epithelium is presented. This model integrates the electrical and osmotic behaviors of the epithelium, taking into account intracellular conditions. The specific tissue modeled is the human bronchial epithelium, which is of particular interest, as it is the location of the most common lethal symptoms of cystic fibrosis. The model is implemented in a modular form to facilitate future application of the code to other epithelial tissue by inputting different transporters, channels, and geometric parameters. The model includes pH regulation as an integral component of overall regulation of epithelial function, through the interdependence of pH, bicarbonate concentration, and current. The procedures for specification, the validation of the model, and parametric studies are presented using available experimental data of cultured human bronchial epithelium. Parametric studies are performed to elucidate a), the contribution of basolateral chloride channels to the short-circuit current functional form, and b), the role that regulation of basolateral potassium conductance plays in epithelial function.</description><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Bronchi - physiology</subject><subject>Cells</subject><subject>Cellular Biophysics and Electrophysiology</subject><subject>Channels</subject><subject>Computer Simulation</subject><subject>Control</subject><subject>Cystic fibrosis</subject><subject>Electricity</subject><subject>Epithelium</subject><subject>Epithelium - physiology</subject><subject>Human</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Mathematical models</subject><subject>Membrane Potentials - physiology</subject><subject>Models, Biological</subject><subject>Osmosis - physiology</subject><subject>Potassium</subject><subject>Specifications</subject><subject>Tissues</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAQhiMEokvhAbggiwuXJswktpMICamtlm6lokoIzpZjO7teJXawk0p9e7zaUlEOcBrJ882v8XxZ9hahQED-cV90074oAdoCsQDKnmUrZLTMARr-PFsBAM8r2rKT7FWMewAsGeDL7KQECi3lfJX5c3Jh_bS7j1bJgXz12gyk94Fcu9lsg5ytd8T3ZD0YNYcDc0Zu4-hnq86IdJpMG_LNbJfhSFpH5p0hm2WUjlwE79TOptj1ZNPzYJfxdfail0M0bx7qafbjy_r75Sa_ub26vjy_yRWDds5LkKzTDTayRik7xbFljVYaad2CkXUJZcWpbmRFmeooqJ4ZXSND3VasRl6dZp-PudPSjUYr4-YgBzEFO8pwL7y04mnH2Z3Y-jtRNoxjXaWADw8Bwf9cTJzFaKMywyCd8UsUNatqhk1F_09WaVXOGkzk-7_IvV-CS3cQJTLecoosQXiEVPAxBtM_Lo0gDtrFXiTt4qBdIIqkPc28-_O3jxO_PSfg0xEw6eZ31gQRlTVOGW1DEiu0t_-I_wUO2L1D</recordid><startdate>20100421</startdate><enddate>20100421</enddate><creator>Falkenberg, Cibele V.</creator><creator>Jakobsson, Eric</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20100421</creationdate><title>A Biophysical Model for Integration of Electrical, Osmotic, and pH Regulation in the Human Bronchial Epithelium</title><author>Falkenberg, Cibele V. ; Jakobsson, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-20a5bd818a71aabc61958dcd14790ea7202364d8a345cb40cf5ed7151d9357163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Bronchi - physiology</topic><topic>Cells</topic><topic>Cellular Biophysics and Electrophysiology</topic><topic>Channels</topic><topic>Computer Simulation</topic><topic>Control</topic><topic>Cystic fibrosis</topic><topic>Electricity</topic><topic>Epithelium</topic><topic>Epithelium - physiology</topic><topic>Human</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Mathematical models</topic><topic>Membrane Potentials - physiology</topic><topic>Models, Biological</topic><topic>Osmosis - physiology</topic><topic>Potassium</topic><topic>Specifications</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falkenberg, Cibele V.</creatorcontrib><creatorcontrib>Jakobsson, Eric</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falkenberg, Cibele V.</au><au>Jakobsson, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Biophysical Model for Integration of Electrical, Osmotic, and pH Regulation in the Human Bronchial Epithelium</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2010-04-21</date><risdate>2010</risdate><volume>98</volume><issue>8</issue><spage>1476</spage><epage>1485</epage><pages>1476-1485</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>A dynamical biophysical model for the functioning of an epithelium is presented. This model integrates the electrical and osmotic behaviors of the epithelium, taking into account intracellular conditions. The specific tissue modeled is the human bronchial epithelium, which is of particular interest, as it is the location of the most common lethal symptoms of cystic fibrosis. The model is implemented in a modular form to facilitate future application of the code to other epithelial tissue by inputting different transporters, channels, and geometric parameters. The model includes pH regulation as an integral component of overall regulation of epithelial function, through the interdependence of pH, bicarbonate concentration, and current. The procedures for specification, the validation of the model, and parametric studies are presented using available experimental data of cultured human bronchial epithelium. Parametric studies are performed to elucidate a), the contribution of basolateral chloride channels to the short-circuit current functional form, and b), the role that regulation of basolateral potassium conductance plays in epithelial function.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20409466</pmid><doi>10.1016/j.bpj.2009.11.045</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2010-04, Vol.98 (8), p.1476-1485 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2856173 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); PubMed Central |
subjects | Biophysical Phenomena Biophysics Bronchi - physiology Cells Cellular Biophysics and Electrophysiology Channels Computer Simulation Control Cystic fibrosis Electricity Epithelium Epithelium - physiology Human Humans Hydrogen-Ion Concentration Mathematical models Membrane Potentials - physiology Models, Biological Osmosis - physiology Potassium Specifications Tissues |
title | A Biophysical Model for Integration of Electrical, Osmotic, and pH Regulation in the Human Bronchial Epithelium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Biophysical%20Model%20for%20Integration%20of%20Electrical,%20Osmotic,%20and%20pH%20Regulation%20in%20the%20Human%20Bronchial%20Epithelium&rft.jtitle=Biophysical%20journal&rft.au=Falkenberg,%20Cibele%20V.&rft.date=2010-04-21&rft.volume=98&rft.issue=8&rft.spage=1476&rft.epage=1485&rft.pages=1476-1485&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2009.11.045&rft_dat=%3Cproquest_pubme%3E753751834%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215696415&rft_id=info:pmid/20409466&rft_els_id=S0006349509060068&rfr_iscdi=true |