Unfolded-State Dynamics and Structure of Protein L Characterized by Simulation and Experiment
While several experimental techniques now exist for characterizing protein unfolded states, all-atom simulation of unfolded states has been challenging due to the long time scales and conformational sampling required. We address this problem by using a combination of accelerated calculations on grap...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2010-04, Vol.132 (13), p.4702-4709 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4709 |
---|---|
container_issue | 13 |
container_start_page | 4702 |
container_title | Journal of the American Chemical Society |
container_volume | 132 |
creator | Voelz, Vincent A Singh, Vijay R Wedemeyer, William J Lapidus, Lisa J Pande, Vijay S |
description | While several experimental techniques now exist for characterizing protein unfolded states, all-atom simulation of unfolded states has been challenging due to the long time scales and conformational sampling required. We address this problem by using a combination of accelerated calculations on graphics processor units and distributed computing to simulate tens of thousands of molecular dynamics trajectories each up to ∼10 μs (for a total aggregate simulation time of 127 ms). We used this approach in conjunction with Trp-Cys contact quenching experiments to characterize the unfolded structure and dynamics of protein L. We employed a polymer theory method to make quantitative comparisons between high-temperature simulated and chemically denatured experimental ensembles and find that reaction-limited quenching rates calculated from simulation agree remarkably well with experiment. In both experiment and simulation, we find that unfolded-state intramolecular diffusion rates are very slow compared to highly denatured chains and that a single-residue mutation can significantly alter unfolded-state dynamics and structure. This work suggests a view of the unfolded state in which surprisingly low diffusion rates could limit folding and opens the door for all-atom molecular simulation to be a useful predictive tool for characterizing protein unfolded states along with experiments that directly measure intramolecular diffusion. |
doi_str_mv | 10.1021/ja908369h |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2853762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733839996</sourcerecordid><originalsourceid>FETCH-LOGICAL-a470t-2dca45f620f5f2b235c1040b21d350f3accfa7e753d4d56232770c5352a6d37c3</originalsourceid><addsrcrecordid>eNptkVuLFDEQhYMo7uzog39A8iKLD625dDrdL8Iye1EYUBj3UUJNLk4P3clskl52_PXGnXVYwaeiqK9OHeog9IaSD5Qw-nELHWl5022eoRkVjFSCsuY5mhFCWCXbhp-g05S2pa1ZS1-iE1a2WknbGfpx410YjDXVKkO2-GLvYex1wuANXuU46TxFi4PD32LItvd4iRcbiKCzjf0va_B6j1f9OA2Q--Af1i7vd2U2Wp9foRcOhmRfP9Y5urm6_L74XC2_Xn9ZnC8rqCXJFTMaauEaRpxwbM240JTUZM2o4YI4Dlo7kFYKbmojGsaZlEQLLhg0hkvN5-jTQXc3rUdrdDkdYVC74gLiXgXo1b8T32_Uz3CnWCu4LIJzdPYoEMPtZFNWY5-0HQbwNkxJSc5b3nVdU8j3B1LHkFK07niFEvUnDXVMo7Bvn9o6kn_fX4B3BwB0UtswRV--9B-h31vqklM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733839996</pqid></control><display><type>article</type><title>Unfolded-State Dynamics and Structure of Protein L Characterized by Simulation and Experiment</title><source>ACS Publications</source><source>MEDLINE</source><creator>Voelz, Vincent A ; Singh, Vijay R ; Wedemeyer, William J ; Lapidus, Lisa J ; Pande, Vijay S</creator><creatorcontrib>Voelz, Vincent A ; Singh, Vijay R ; Wedemeyer, William J ; Lapidus, Lisa J ; Pande, Vijay S</creatorcontrib><description>While several experimental techniques now exist for characterizing protein unfolded states, all-atom simulation of unfolded states has been challenging due to the long time scales and conformational sampling required. We address this problem by using a combination of accelerated calculations on graphics processor units and distributed computing to simulate tens of thousands of molecular dynamics trajectories each up to ∼10 μs (for a total aggregate simulation time of 127 ms). We used this approach in conjunction with Trp-Cys contact quenching experiments to characterize the unfolded structure and dynamics of protein L. We employed a polymer theory method to make quantitative comparisons between high-temperature simulated and chemically denatured experimental ensembles and find that reaction-limited quenching rates calculated from simulation agree remarkably well with experiment. In both experiment and simulation, we find that unfolded-state intramolecular diffusion rates are very slow compared to highly denatured chains and that a single-residue mutation can significantly alter unfolded-state dynamics and structure. This work suggests a view of the unfolded state in which surprisingly low diffusion rates could limit folding and opens the door for all-atom molecular simulation to be a useful predictive tool for characterizing protein unfolded states along with experiments that directly measure intramolecular diffusion.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja908369h</identifier><identifier>PMID: 20218718</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Calibration ; Models, Molecular ; Molecular Dynamics Simulation ; Protein Conformation ; Protein Denaturation ; Protein Folding ; Proteins - chemistry ; Temperature ; Thermodynamics</subject><ispartof>Journal of the American Chemical Society, 2010-04, Vol.132 (13), p.4702-4709</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a470t-2dca45f620f5f2b235c1040b21d350f3accfa7e753d4d56232770c5352a6d37c3</citedby><cites>FETCH-LOGICAL-a470t-2dca45f620f5f2b235c1040b21d350f3accfa7e753d4d56232770c5352a6d37c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja908369h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja908369h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20218718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Voelz, Vincent A</creatorcontrib><creatorcontrib>Singh, Vijay R</creatorcontrib><creatorcontrib>Wedemeyer, William J</creatorcontrib><creatorcontrib>Lapidus, Lisa J</creatorcontrib><creatorcontrib>Pande, Vijay S</creatorcontrib><title>Unfolded-State Dynamics and Structure of Protein L Characterized by Simulation and Experiment</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>While several experimental techniques now exist for characterizing protein unfolded states, all-atom simulation of unfolded states has been challenging due to the long time scales and conformational sampling required. We address this problem by using a combination of accelerated calculations on graphics processor units and distributed computing to simulate tens of thousands of molecular dynamics trajectories each up to ∼10 μs (for a total aggregate simulation time of 127 ms). We used this approach in conjunction with Trp-Cys contact quenching experiments to characterize the unfolded structure and dynamics of protein L. We employed a polymer theory method to make quantitative comparisons between high-temperature simulated and chemically denatured experimental ensembles and find that reaction-limited quenching rates calculated from simulation agree remarkably well with experiment. In both experiment and simulation, we find that unfolded-state intramolecular diffusion rates are very slow compared to highly denatured chains and that a single-residue mutation can significantly alter unfolded-state dynamics and structure. This work suggests a view of the unfolded state in which surprisingly low diffusion rates could limit folding and opens the door for all-atom molecular simulation to be a useful predictive tool for characterizing protein unfolded states along with experiments that directly measure intramolecular diffusion.</description><subject>Calibration</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics Simulation</subject><subject>Protein Conformation</subject><subject>Protein Denaturation</subject><subject>Protein Folding</subject><subject>Proteins - chemistry</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkVuLFDEQhYMo7uzog39A8iKLD625dDrdL8Iye1EYUBj3UUJNLk4P3clskl52_PXGnXVYwaeiqK9OHeog9IaSD5Qw-nELHWl5022eoRkVjFSCsuY5mhFCWCXbhp-g05S2pa1ZS1-iE1a2WknbGfpx410YjDXVKkO2-GLvYex1wuANXuU46TxFi4PD32LItvd4iRcbiKCzjf0va_B6j1f9OA2Q--Af1i7vd2U2Wp9foRcOhmRfP9Y5urm6_L74XC2_Xn9ZnC8rqCXJFTMaauEaRpxwbM240JTUZM2o4YI4Dlo7kFYKbmojGsaZlEQLLhg0hkvN5-jTQXc3rUdrdDkdYVC74gLiXgXo1b8T32_Uz3CnWCu4LIJzdPYoEMPtZFNWY5-0HQbwNkxJSc5b3nVdU8j3B1LHkFK07niFEvUnDXVMo7Bvn9o6kn_fX4B3BwB0UtswRV--9B-h31vqklM</recordid><startdate>20100407</startdate><enddate>20100407</enddate><creator>Voelz, Vincent A</creator><creator>Singh, Vijay R</creator><creator>Wedemeyer, William J</creator><creator>Lapidus, Lisa J</creator><creator>Pande, Vijay S</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100407</creationdate><title>Unfolded-State Dynamics and Structure of Protein L Characterized by Simulation and Experiment</title><author>Voelz, Vincent A ; Singh, Vijay R ; Wedemeyer, William J ; Lapidus, Lisa J ; Pande, Vijay S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a470t-2dca45f620f5f2b235c1040b21d350f3accfa7e753d4d56232770c5352a6d37c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Calibration</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics Simulation</topic><topic>Protein Conformation</topic><topic>Protein Denaturation</topic><topic>Protein Folding</topic><topic>Proteins - chemistry</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voelz, Vincent A</creatorcontrib><creatorcontrib>Singh, Vijay R</creatorcontrib><creatorcontrib>Wedemeyer, William J</creatorcontrib><creatorcontrib>Lapidus, Lisa J</creatorcontrib><creatorcontrib>Pande, Vijay S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voelz, Vincent A</au><au>Singh, Vijay R</au><au>Wedemeyer, William J</au><au>Lapidus, Lisa J</au><au>Pande, Vijay S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unfolded-State Dynamics and Structure of Protein L Characterized by Simulation and Experiment</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2010-04-07</date><risdate>2010</risdate><volume>132</volume><issue>13</issue><spage>4702</spage><epage>4709</epage><pages>4702-4709</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>While several experimental techniques now exist for characterizing protein unfolded states, all-atom simulation of unfolded states has been challenging due to the long time scales and conformational sampling required. We address this problem by using a combination of accelerated calculations on graphics processor units and distributed computing to simulate tens of thousands of molecular dynamics trajectories each up to ∼10 μs (for a total aggregate simulation time of 127 ms). We used this approach in conjunction with Trp-Cys contact quenching experiments to characterize the unfolded structure and dynamics of protein L. We employed a polymer theory method to make quantitative comparisons between high-temperature simulated and chemically denatured experimental ensembles and find that reaction-limited quenching rates calculated from simulation agree remarkably well with experiment. In both experiment and simulation, we find that unfolded-state intramolecular diffusion rates are very slow compared to highly denatured chains and that a single-residue mutation can significantly alter unfolded-state dynamics and structure. This work suggests a view of the unfolded state in which surprisingly low diffusion rates could limit folding and opens the door for all-atom molecular simulation to be a useful predictive tool for characterizing protein unfolded states along with experiments that directly measure intramolecular diffusion.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20218718</pmid><doi>10.1021/ja908369h</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2010-04, Vol.132 (13), p.4702-4709 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2853762 |
source | ACS Publications; MEDLINE |
subjects | Calibration Models, Molecular Molecular Dynamics Simulation Protein Conformation Protein Denaturation Protein Folding Proteins - chemistry Temperature Thermodynamics |
title | Unfolded-State Dynamics and Structure of Protein L Characterized by Simulation and Experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unfolded-State%20Dynamics%20and%20Structure%20of%20Protein%20L%20Characterized%20by%20Simulation%20and%20Experiment&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Voelz,%20Vincent%20A&rft.date=2010-04-07&rft.volume=132&rft.issue=13&rft.spage=4702&rft.epage=4709&rft.pages=4702-4709&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja908369h&rft_dat=%3Cproquest_pubme%3E733839996%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733839996&rft_id=info:pmid/20218718&rfr_iscdi=true |