Structural Studies of Bacterioferritin B from Pseudomonas aeruginosa Suggest a Gating Mechanism for Iron Uptake via the Ferroxidase Center
The structure of recombinant Pseudomonas aeruginosa bacterioferritin B (Pa BfrB) has been determined from crystals grown from protein devoid of core mineral iron (as-isolated) and from protein mineralized with ∼600 iron atoms (mineralized). Structures were also obtained from crystals grown from mine...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2010-02, Vol.49 (6), p.1160-1175 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1175 |
---|---|
container_issue | 6 |
container_start_page | 1160 |
container_title | Biochemistry (Easton) |
container_volume | 49 |
creator | Weeratunga, Saroja K Lovell, Scott Yao, Huili Battaile, Kevin P Fischer, Christopher J Gee, Casey E Rivera, Mario |
description | The structure of recombinant Pseudomonas aeruginosa bacterioferritin B (Pa BfrB) has been determined from crystals grown from protein devoid of core mineral iron (as-isolated) and from protein mineralized with ∼600 iron atoms (mineralized). Structures were also obtained from crystals grown from mineralized BfrB after they had been soaked in an FeSO4 solution (Fe soak) and in separate experiments after they had been soaked in an FeSO4 solution followed by a soak in a crystallization solution (double soak). Although the structures consist of a typical bacterioferritin fold comprised of a nearly spherical 24-mer assembly that binds 12 heme molecules, comparison of microenvironments observed in the distinct structures provided interesting insights. The ferroxidase center in the as-isolated, mineralized, and double-soak structures is empty. The ferroxidase ligands (except His130) are poised to bind iron with minimal conformational changes. The His130 side chain, on the other hand, must rotate toward the ferroxidase center to coordinate iron. In comparison, the structure obtained from crystals soaked in an FeSO4 solution displays a fully occupied ferroxidase center and iron bound to the internal, Fe(in), and external, Fe(out), surfaces of Pa BfrB. The conformation of His130 in this structure is rotated toward the ferroxidase center and coordinates an iron ion. The structures also revealed a pore on the surface of Pa BfrB that likely serves as a port of entry for Fe2+ to the ferroxidase center. On its opposite end, the pore is capped by the side chain of His130 when it adopts its “gate-closed” conformation that enables coordination to a ferroxidase iron. A change to its “gate-open”, noncoordinative conformation creates a path for the translocation of iron from the ferroxidase center to the interior cavity. These structural observations, together with findings obtained from iron incorporation measurements in solution, suggest that the ferroxidase pore is the dominant entry route for the uptake of iron by Pa BfrB. These findings, which are clearly distinct from those made with Escherichia coli Bfr [Crow, A. C., Lawson, T. L., Lewin, A., Moore, G. R., and Le Brun, N. E. (2009) J. Am. Chem. Soc. 131, 6808−6813], indicate that not all bacterioferritins operate in the same manner. |
doi_str_mv | 10.1021/bi9015204 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2852880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733881845</sourcerecordid><originalsourceid>FETCH-LOGICAL-a463t-e713f7625cd6de54de42a512ab9779394215e538f35cc2623bdfc40fc78cafe73</originalsourceid><addsrcrecordid>eNqFkttqVDEUhoModlq98AUkCCJebM1xH24EO9haqCiMvQ6Z7JU9qbOTMYdiX8GnNmXqoCB4tQjr4__zr7UQekbJG0oYfbt2A6GSEfEALe5qI4ZBPkQLQkjbsKElR-g4pev6FKQTj9ERq42OE7ZAP1c5FpNL1Fu8ymV0kHCw-FSbDNEFCzG67Dw-xTaGGX9JUMYwB68T1hDL5HxIGq_KNEHKWONzXekJfwKz0d6lGdsQ8UUMHl_tsv4G-MZpnDeAz6py-OFGnQAvwVe3J-iR1dsET-_rCbo6-_B1-bG5_Hx-sXx_2WjR8txAR7ntWibN2I4gxQiCaUmZXg9dN_BBMCpB8t5yaQxrGV-P1ghiTdcbbaHjJ-jdXndX1jOMpprX9GoX3azjrQraqb873m3UFG4U6yXre1IFXuwFQspOJeNyTWuC92CyooQwNogKvbp3ieF7qcNRs0sGtlvtIZSkOimkaHtG_k9y3ve0F7KSr_ekiSGlCPbwaUrU3SWowyVU9vmfKQ_k79VX4OUe0Cap61Cir0P_h9Av8Ni8GQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733881845</pqid></control><display><type>article</type><title>Structural Studies of Bacterioferritin B from Pseudomonas aeruginosa Suggest a Gating Mechanism for Iron Uptake via the Ferroxidase Center</title><source>MEDLINE</source><source>ACS Publications</source><creator>Weeratunga, Saroja K ; Lovell, Scott ; Yao, Huili ; Battaile, Kevin P ; Fischer, Christopher J ; Gee, Casey E ; Rivera, Mario</creator><creatorcontrib>Weeratunga, Saroja K ; Lovell, Scott ; Yao, Huili ; Battaile, Kevin P ; Fischer, Christopher J ; Gee, Casey E ; Rivera, Mario ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>The structure of recombinant Pseudomonas aeruginosa bacterioferritin B (Pa BfrB) has been determined from crystals grown from protein devoid of core mineral iron (as-isolated) and from protein mineralized with ∼600 iron atoms (mineralized). Structures were also obtained from crystals grown from mineralized BfrB after they had been soaked in an FeSO4 solution (Fe soak) and in separate experiments after they had been soaked in an FeSO4 solution followed by a soak in a crystallization solution (double soak). Although the structures consist of a typical bacterioferritin fold comprised of a nearly spherical 24-mer assembly that binds 12 heme molecules, comparison of microenvironments observed in the distinct structures provided interesting insights. The ferroxidase center in the as-isolated, mineralized, and double-soak structures is empty. The ferroxidase ligands (except His130) are poised to bind iron with minimal conformational changes. The His130 side chain, on the other hand, must rotate toward the ferroxidase center to coordinate iron. In comparison, the structure obtained from crystals soaked in an FeSO4 solution displays a fully occupied ferroxidase center and iron bound to the internal, Fe(in), and external, Fe(out), surfaces of Pa BfrB. The conformation of His130 in this structure is rotated toward the ferroxidase center and coordinates an iron ion. The structures also revealed a pore on the surface of Pa BfrB that likely serves as a port of entry for Fe2+ to the ferroxidase center. On its opposite end, the pore is capped by the side chain of His130 when it adopts its “gate-closed” conformation that enables coordination to a ferroxidase iron. A change to its “gate-open”, noncoordinative conformation creates a path for the translocation of iron from the ferroxidase center to the interior cavity. These structural observations, together with findings obtained from iron incorporation measurements in solution, suggest that the ferroxidase pore is the dominant entry route for the uptake of iron by Pa BfrB. These findings, which are clearly distinct from those made with Escherichia coli Bfr [Crow, A. C., Lawson, T. L., Lewin, A., Moore, G. R., and Le Brun, N. E. (2009) J. Am. Chem. Soc. 131, 6808−6813], indicate that not all bacterioferritins operate in the same manner.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi9015204</identifier><identifier>PMID: 20067302</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; BASIC BIOLOGICAL SCIENCES ; Ceruloplasmin - chemistry ; Ceruloplasmin - metabolism ; CONFORMATIONAL CHANGES ; CRYSTALLIZATION ; Crystallography, X-Ray ; Cytochrome b Group - chemistry ; Cytochrome b Group - metabolism ; Escherichia coli ; FERRITIN ; Ferritins - chemistry ; Ferritins - metabolism ; Ferrous Compounds - chemistry ; Ferrous Compounds - metabolism ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Histidine - metabolism ; Ion Channel Gating ; IRON ; Iron - chemistry ; Iron - metabolism ; MORPHOLOGY ; OXIDASES ; Oxidation-Reduction ; PROTEINS ; PSEUDOMONAS ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - enzymology ; TRANSLOCATION</subject><ispartof>Biochemistry (Easton), 2010-02, Vol.49 (6), p.1160-1175</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a463t-e713f7625cd6de54de42a512ab9779394215e538f35cc2623bdfc40fc78cafe73</citedby><cites>FETCH-LOGICAL-a463t-e713f7625cd6de54de42a512ab9779394215e538f35cc2623bdfc40fc78cafe73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi9015204$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi9015204$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20067302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1002294$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Weeratunga, Saroja K</creatorcontrib><creatorcontrib>Lovell, Scott</creatorcontrib><creatorcontrib>Yao, Huili</creatorcontrib><creatorcontrib>Battaile, Kevin P</creatorcontrib><creatorcontrib>Fischer, Christopher J</creatorcontrib><creatorcontrib>Gee, Casey E</creatorcontrib><creatorcontrib>Rivera, Mario</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Structural Studies of Bacterioferritin B from Pseudomonas aeruginosa Suggest a Gating Mechanism for Iron Uptake via the Ferroxidase Center</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The structure of recombinant Pseudomonas aeruginosa bacterioferritin B (Pa BfrB) has been determined from crystals grown from protein devoid of core mineral iron (as-isolated) and from protein mineralized with ∼600 iron atoms (mineralized). Structures were also obtained from crystals grown from mineralized BfrB after they had been soaked in an FeSO4 solution (Fe soak) and in separate experiments after they had been soaked in an FeSO4 solution followed by a soak in a crystallization solution (double soak). Although the structures consist of a typical bacterioferritin fold comprised of a nearly spherical 24-mer assembly that binds 12 heme molecules, comparison of microenvironments observed in the distinct structures provided interesting insights. The ferroxidase center in the as-isolated, mineralized, and double-soak structures is empty. The ferroxidase ligands (except His130) are poised to bind iron with minimal conformational changes. The His130 side chain, on the other hand, must rotate toward the ferroxidase center to coordinate iron. In comparison, the structure obtained from crystals soaked in an FeSO4 solution displays a fully occupied ferroxidase center and iron bound to the internal, Fe(in), and external, Fe(out), surfaces of Pa BfrB. The conformation of His130 in this structure is rotated toward the ferroxidase center and coordinates an iron ion. The structures also revealed a pore on the surface of Pa BfrB that likely serves as a port of entry for Fe2+ to the ferroxidase center. On its opposite end, the pore is capped by the side chain of His130 when it adopts its “gate-closed” conformation that enables coordination to a ferroxidase iron. A change to its “gate-open”, noncoordinative conformation creates a path for the translocation of iron from the ferroxidase center to the interior cavity. These structural observations, together with findings obtained from iron incorporation measurements in solution, suggest that the ferroxidase pore is the dominant entry route for the uptake of iron by Pa BfrB. These findings, which are clearly distinct from those made with Escherichia coli Bfr [Crow, A. C., Lawson, T. L., Lewin, A., Moore, G. R., and Le Brun, N. E. (2009) J. Am. Chem. Soc. 131, 6808−6813], indicate that not all bacterioferritins operate in the same manner.</description><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Ceruloplasmin - chemistry</subject><subject>Ceruloplasmin - metabolism</subject><subject>CONFORMATIONAL CHANGES</subject><subject>CRYSTALLIZATION</subject><subject>Crystallography, X-Ray</subject><subject>Cytochrome b Group - chemistry</subject><subject>Cytochrome b Group - metabolism</subject><subject>Escherichia coli</subject><subject>FERRITIN</subject><subject>Ferritins - chemistry</subject><subject>Ferritins - metabolism</subject><subject>Ferrous Compounds - chemistry</subject><subject>Ferrous Compounds - metabolism</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Histidine - metabolism</subject><subject>Ion Channel Gating</subject><subject>IRON</subject><subject>Iron - chemistry</subject><subject>Iron - metabolism</subject><subject>MORPHOLOGY</subject><subject>OXIDASES</subject><subject>Oxidation-Reduction</subject><subject>PROTEINS</subject><subject>PSEUDOMONAS</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - enzymology</subject><subject>TRANSLOCATION</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkttqVDEUhoModlq98AUkCCJebM1xH24EO9haqCiMvQ6Z7JU9qbOTMYdiX8GnNmXqoCB4tQjr4__zr7UQekbJG0oYfbt2A6GSEfEALe5qI4ZBPkQLQkjbsKElR-g4pev6FKQTj9ERq42OE7ZAP1c5FpNL1Fu8ymV0kHCw-FSbDNEFCzG67Dw-xTaGGX9JUMYwB68T1hDL5HxIGq_KNEHKWONzXekJfwKz0d6lGdsQ8UUMHl_tsv4G-MZpnDeAz6py-OFGnQAvwVe3J-iR1dsET-_rCbo6-_B1-bG5_Hx-sXx_2WjR8txAR7ntWibN2I4gxQiCaUmZXg9dN_BBMCpB8t5yaQxrGV-P1ghiTdcbbaHjJ-jdXndX1jOMpprX9GoX3azjrQraqb873m3UFG4U6yXre1IFXuwFQspOJeNyTWuC92CyooQwNogKvbp3ieF7qcNRs0sGtlvtIZSkOimkaHtG_k9y3ve0F7KSr_ekiSGlCPbwaUrU3SWowyVU9vmfKQ_k79VX4OUe0Cap61Cir0P_h9Av8Ni8GQ</recordid><startdate>20100216</startdate><enddate>20100216</enddate><creator>Weeratunga, Saroja K</creator><creator>Lovell, Scott</creator><creator>Yao, Huili</creator><creator>Battaile, Kevin P</creator><creator>Fischer, Christopher J</creator><creator>Gee, Casey E</creator><creator>Rivera, Mario</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20100216</creationdate><title>Structural Studies of Bacterioferritin B from Pseudomonas aeruginosa Suggest a Gating Mechanism for Iron Uptake via the Ferroxidase Center</title><author>Weeratunga, Saroja K ; Lovell, Scott ; Yao, Huili ; Battaile, Kevin P ; Fischer, Christopher J ; Gee, Casey E ; Rivera, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a463t-e713f7625cd6de54de42a512ab9779394215e538f35cc2623bdfc40fc78cafe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Ceruloplasmin - chemistry</topic><topic>Ceruloplasmin - metabolism</topic><topic>CONFORMATIONAL CHANGES</topic><topic>CRYSTALLIZATION</topic><topic>Crystallography, X-Ray</topic><topic>Cytochrome b Group - chemistry</topic><topic>Cytochrome b Group - metabolism</topic><topic>Escherichia coli</topic><topic>FERRITIN</topic><topic>Ferritins - chemistry</topic><topic>Ferritins - metabolism</topic><topic>Ferrous Compounds - chemistry</topic><topic>Ferrous Compounds - metabolism</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Histidine - metabolism</topic><topic>Ion Channel Gating</topic><topic>IRON</topic><topic>Iron - chemistry</topic><topic>Iron - metabolism</topic><topic>MORPHOLOGY</topic><topic>OXIDASES</topic><topic>Oxidation-Reduction</topic><topic>PROTEINS</topic><topic>PSEUDOMONAS</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - enzymology</topic><topic>TRANSLOCATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weeratunga, Saroja K</creatorcontrib><creatorcontrib>Lovell, Scott</creatorcontrib><creatorcontrib>Yao, Huili</creatorcontrib><creatorcontrib>Battaile, Kevin P</creatorcontrib><creatorcontrib>Fischer, Christopher J</creatorcontrib><creatorcontrib>Gee, Casey E</creatorcontrib><creatorcontrib>Rivera, Mario</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weeratunga, Saroja K</au><au>Lovell, Scott</au><au>Yao, Huili</au><au>Battaile, Kevin P</au><au>Fischer, Christopher J</au><au>Gee, Casey E</au><au>Rivera, Mario</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Studies of Bacterioferritin B from Pseudomonas aeruginosa Suggest a Gating Mechanism for Iron Uptake via the Ferroxidase Center</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2010-02-16</date><risdate>2010</risdate><volume>49</volume><issue>6</issue><spage>1160</spage><epage>1175</epage><pages>1160-1175</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>The structure of recombinant Pseudomonas aeruginosa bacterioferritin B (Pa BfrB) has been determined from crystals grown from protein devoid of core mineral iron (as-isolated) and from protein mineralized with ∼600 iron atoms (mineralized). Structures were also obtained from crystals grown from mineralized BfrB after they had been soaked in an FeSO4 solution (Fe soak) and in separate experiments after they had been soaked in an FeSO4 solution followed by a soak in a crystallization solution (double soak). Although the structures consist of a typical bacterioferritin fold comprised of a nearly spherical 24-mer assembly that binds 12 heme molecules, comparison of microenvironments observed in the distinct structures provided interesting insights. The ferroxidase center in the as-isolated, mineralized, and double-soak structures is empty. The ferroxidase ligands (except His130) are poised to bind iron with minimal conformational changes. The His130 side chain, on the other hand, must rotate toward the ferroxidase center to coordinate iron. In comparison, the structure obtained from crystals soaked in an FeSO4 solution displays a fully occupied ferroxidase center and iron bound to the internal, Fe(in), and external, Fe(out), surfaces of Pa BfrB. The conformation of His130 in this structure is rotated toward the ferroxidase center and coordinates an iron ion. The structures also revealed a pore on the surface of Pa BfrB that likely serves as a port of entry for Fe2+ to the ferroxidase center. On its opposite end, the pore is capped by the side chain of His130 when it adopts its “gate-closed” conformation that enables coordination to a ferroxidase iron. A change to its “gate-open”, noncoordinative conformation creates a path for the translocation of iron from the ferroxidase center to the interior cavity. These structural observations, together with findings obtained from iron incorporation measurements in solution, suggest that the ferroxidase pore is the dominant entry route for the uptake of iron by Pa BfrB. These findings, which are clearly distinct from those made with Escherichia coli Bfr [Crow, A. C., Lawson, T. L., Lewin, A., Moore, G. R., and Le Brun, N. E. (2009) J. Am. Chem. Soc. 131, 6808−6813], indicate that not all bacterioferritins operate in the same manner.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20067302</pmid><doi>10.1021/bi9015204</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2010-02, Vol.49 (6), p.1160-1175 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2852880 |
source | MEDLINE; ACS Publications |
subjects | Bacteria Bacterial Proteins - chemistry Bacterial Proteins - metabolism BASIC BIOLOGICAL SCIENCES Ceruloplasmin - chemistry Ceruloplasmin - metabolism CONFORMATIONAL CHANGES CRYSTALLIZATION Crystallography, X-Ray Cytochrome b Group - chemistry Cytochrome b Group - metabolism Escherichia coli FERRITIN Ferritins - chemistry Ferritins - metabolism Ferrous Compounds - chemistry Ferrous Compounds - metabolism GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE Histidine - metabolism Ion Channel Gating IRON Iron - chemistry Iron - metabolism MORPHOLOGY OXIDASES Oxidation-Reduction PROTEINS PSEUDOMONAS Pseudomonas aeruginosa Pseudomonas aeruginosa - enzymology TRANSLOCATION |
title | Structural Studies of Bacterioferritin B from Pseudomonas aeruginosa Suggest a Gating Mechanism for Iron Uptake via the Ferroxidase Center |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Studies%20of%20Bacterioferritin%20B%20from%20Pseudomonas%20aeruginosa%20Suggest%20a%20Gating%20Mechanism%20for%20Iron%20Uptake%20via%20the%20Ferroxidase%20Center&rft.jtitle=Biochemistry%20(Easton)&rft.au=Weeratunga,%20Saroja%20K&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2010-02-16&rft.volume=49&rft.issue=6&rft.spage=1160&rft.epage=1175&rft.pages=1160-1175&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi9015204&rft_dat=%3Cproquest_pubme%3E733881845%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733881845&rft_id=info:pmid/20067302&rfr_iscdi=true |