Quantitative Analysis of Single Particle Trajectories: Mean Maximal Excursion Method

An increasing number of experimental studies employ single particle tracking to probe the physical environment in complex systems. We here propose and discuss what we believe are new methods to analyze the time series of the particle traces, in particular, for subdiffusion phenomena. We discuss the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2010-04, Vol.98 (7), p.1364-1372
Hauptverfasser: Tejedor, Vincent, Bénichou, Olivier, Voituriez, Raphael, Jungmann, Ralf, Simmel, Friedrich, Selhuber-Unkel, Christine, Oddershede, Lene B., Metzler, Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1372
container_issue 7
container_start_page 1364
container_title Biophysical journal
container_volume 98
creator Tejedor, Vincent
Bénichou, Olivier
Voituriez, Raphael
Jungmann, Ralf
Simmel, Friedrich
Selhuber-Unkel, Christine
Oddershede, Lene B.
Metzler, Ralf
description An increasing number of experimental studies employ single particle tracking to probe the physical environment in complex systems. We here propose and discuss what we believe are new methods to analyze the time series of the particle traces, in particular, for subdiffusion phenomena. We discuss the statistical properties of mean maximal excursions (MMEs), i.e., the maximal distance covered by a test particle up to time t. Compared to traditional methods focusing on the mean-squared displacement we show that the MME analysis performs better in the determination of the anomalous diffusion exponent. We also demonstrate that combination of regular moments with moments of the MME method provides additional criteria to determine the exact physical nature of the underlying stochastic subdiffusion processes. We put the methods to test using experimental data as well as simulated time series from different models for normal and anomalous dynamics such as diffusion on fractals, continuous time random walks, and fractional Brownian motion.
doi_str_mv 10.1016/j.bpj.2009.12.4282
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2849086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349509060974</els_id><sourcerecordid>2011730381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-4d4ae9e8bd6dabbb77d50ca0bdf9029ff532b5bc144893a51b6366e9aa948c2a3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EosvCH-CAIi6cEvydGCGkqiofUitALGfLdiato2y82M6q_fd4taUCDnCyZT_zamYehJ4T3BBM5OuxsbuxoRirhtCG044-QCsiOK0x7uRDtMIYy5pxJU7Qk5RGjAkVmDxGJxSzljDWrtDm62Lm7LPJfg_V6Wym2-RTFYbqm5-vJqi-mJi9K5dNNCO4HKKH9Ka6BDNXl-bGb81Und-4JSYfygvk69A_RY8GMyV4dneu0ff355uzj_XF5w-fzk4vaidalWvecwMKOtvL3lhr27YX2Bls-0FhqoZBMGqFdYTzTjEjiJVMSlDGKN45atgavTvm7ha7hd7BnKOZ9C6WruKtDsbrP39mf62vwl7TjquyohLw6i4ghh8LpKy3PjmYJjNDWJJuBWs5ky37P8lYJzEp9Bq9_IscwxLLYpOmREglKVMFokfIxZBShOG-aYL1Qa4edZGrD3I1ofogtxS9-H3c-5JfNgvw9ghAWfreQ9TJeZgd9D4WdboP_l_5PwH3FraC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215696239</pqid></control><display><type>article</type><title>Quantitative Analysis of Single Particle Trajectories: Mean Maximal Excursion Method</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Tejedor, Vincent ; Bénichou, Olivier ; Voituriez, Raphael ; Jungmann, Ralf ; Simmel, Friedrich ; Selhuber-Unkel, Christine ; Oddershede, Lene B. ; Metzler, Ralf</creator><creatorcontrib>Tejedor, Vincent ; Bénichou, Olivier ; Voituriez, Raphael ; Jungmann, Ralf ; Simmel, Friedrich ; Selhuber-Unkel, Christine ; Oddershede, Lene B. ; Metzler, Ralf</creatorcontrib><description>An increasing number of experimental studies employ single particle tracking to probe the physical environment in complex systems. We here propose and discuss what we believe are new methods to analyze the time series of the particle traces, in particular, for subdiffusion phenomena. We discuss the statistical properties of mean maximal excursions (MMEs), i.e., the maximal distance covered by a test particle up to time t. Compared to traditional methods focusing on the mean-squared displacement we show that the MME analysis performs better in the determination of the anomalous diffusion exponent. We also demonstrate that combination of regular moments with moments of the MME method provides additional criteria to determine the exact physical nature of the underlying stochastic subdiffusion processes. We put the methods to test using experimental data as well as simulated time series from different models for normal and anomalous dynamics such as diffusion on fractals, continuous time random walks, and fractional Brownian motion.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2009.12.4282</identifier><identifier>PMID: 20371337</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Atoms &amp; subatomic particles ; Biophysics ; Biophysics - methods ; Comparative analysis ; Complex systems ; Computer simulation ; Diffusion ; Focusing ; Fractal analysis ; Fractals ; Lipids - chemistry ; Mathematical models ; Models, Biological ; Molecular Conformation ; Motion ; Physics ; Quantitative analysis ; Reproducibility of Results ; Spectroscopy, Imaging, and Other Techniques ; Stochastic Processes ; Time Factors ; Time series</subject><ispartof>Biophysical journal, 2010-04, Vol.98 (7), p.1364-1372</ispartof><rights>2010 Biophysical Society</rights><rights>Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Apr 7, 2010</rights><rights>2010 by the Biophysical Society. 2010 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-4d4ae9e8bd6dabbb77d50ca0bdf9029ff532b5bc144893a51b6366e9aa948c2a3</citedby><cites>FETCH-LOGICAL-c579t-4d4ae9e8bd6dabbb77d50ca0bdf9029ff532b5bc144893a51b6366e9aa948c2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849086/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349509060974$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27903,27904,53769,53771,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20371337$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tejedor, Vincent</creatorcontrib><creatorcontrib>Bénichou, Olivier</creatorcontrib><creatorcontrib>Voituriez, Raphael</creatorcontrib><creatorcontrib>Jungmann, Ralf</creatorcontrib><creatorcontrib>Simmel, Friedrich</creatorcontrib><creatorcontrib>Selhuber-Unkel, Christine</creatorcontrib><creatorcontrib>Oddershede, Lene B.</creatorcontrib><creatorcontrib>Metzler, Ralf</creatorcontrib><title>Quantitative Analysis of Single Particle Trajectories: Mean Maximal Excursion Method</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>An increasing number of experimental studies employ single particle tracking to probe the physical environment in complex systems. We here propose and discuss what we believe are new methods to analyze the time series of the particle traces, in particular, for subdiffusion phenomena. We discuss the statistical properties of mean maximal excursions (MMEs), i.e., the maximal distance covered by a test particle up to time t. Compared to traditional methods focusing on the mean-squared displacement we show that the MME analysis performs better in the determination of the anomalous diffusion exponent. We also demonstrate that combination of regular moments with moments of the MME method provides additional criteria to determine the exact physical nature of the underlying stochastic subdiffusion processes. We put the methods to test using experimental data as well as simulated time series from different models for normal and anomalous dynamics such as diffusion on fractals, continuous time random walks, and fractional Brownian motion.</description><subject>Algorithms</subject><subject>Atoms &amp; subatomic particles</subject><subject>Biophysics</subject><subject>Biophysics - methods</subject><subject>Comparative analysis</subject><subject>Complex systems</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Focusing</subject><subject>Fractal analysis</subject><subject>Fractals</subject><subject>Lipids - chemistry</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Molecular Conformation</subject><subject>Motion</subject><subject>Physics</subject><subject>Quantitative analysis</subject><subject>Reproducibility of Results</subject><subject>Spectroscopy, Imaging, and Other Techniques</subject><subject>Stochastic Processes</subject><subject>Time Factors</subject><subject>Time series</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EosvCH-CAIi6cEvydGCGkqiofUitALGfLdiato2y82M6q_fd4taUCDnCyZT_zamYehJ4T3BBM5OuxsbuxoRirhtCG044-QCsiOK0x7uRDtMIYy5pxJU7Qk5RGjAkVmDxGJxSzljDWrtDm62Lm7LPJfg_V6Wym2-RTFYbqm5-vJqi-mJi9K5dNNCO4HKKH9Ka6BDNXl-bGb81Und-4JSYfygvk69A_RY8GMyV4dneu0ff355uzj_XF5w-fzk4vaidalWvecwMKOtvL3lhr27YX2Bls-0FhqoZBMGqFdYTzTjEjiJVMSlDGKN45atgavTvm7ha7hd7BnKOZ9C6WruKtDsbrP39mf62vwl7TjquyohLw6i4ghh8LpKy3PjmYJjNDWJJuBWs5ky37P8lYJzEp9Bq9_IscwxLLYpOmREglKVMFokfIxZBShOG-aYL1Qa4edZGrD3I1ofogtxS9-H3c-5JfNgvw9ghAWfreQ9TJeZgd9D4WdboP_l_5PwH3FraC</recordid><startdate>20100407</startdate><enddate>20100407</enddate><creator>Tejedor, Vincent</creator><creator>Bénichou, Olivier</creator><creator>Voituriez, Raphael</creator><creator>Jungmann, Ralf</creator><creator>Simmel, Friedrich</creator><creator>Selhuber-Unkel, Christine</creator><creator>Oddershede, Lene B.</creator><creator>Metzler, Ralf</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20100407</creationdate><title>Quantitative Analysis of Single Particle Trajectories: Mean Maximal Excursion Method</title><author>Tejedor, Vincent ; Bénichou, Olivier ; Voituriez, Raphael ; Jungmann, Ralf ; Simmel, Friedrich ; Selhuber-Unkel, Christine ; Oddershede, Lene B. ; Metzler, Ralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-4d4ae9e8bd6dabbb77d50ca0bdf9029ff532b5bc144893a51b6366e9aa948c2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Atoms &amp; subatomic particles</topic><topic>Biophysics</topic><topic>Biophysics - methods</topic><topic>Comparative analysis</topic><topic>Complex systems</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Focusing</topic><topic>Fractal analysis</topic><topic>Fractals</topic><topic>Lipids - chemistry</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Molecular Conformation</topic><topic>Motion</topic><topic>Physics</topic><topic>Quantitative analysis</topic><topic>Reproducibility of Results</topic><topic>Spectroscopy, Imaging, and Other Techniques</topic><topic>Stochastic Processes</topic><topic>Time Factors</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tejedor, Vincent</creatorcontrib><creatorcontrib>Bénichou, Olivier</creatorcontrib><creatorcontrib>Voituriez, Raphael</creatorcontrib><creatorcontrib>Jungmann, Ralf</creatorcontrib><creatorcontrib>Simmel, Friedrich</creatorcontrib><creatorcontrib>Selhuber-Unkel, Christine</creatorcontrib><creatorcontrib>Oddershede, Lene B.</creatorcontrib><creatorcontrib>Metzler, Ralf</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tejedor, Vincent</au><au>Bénichou, Olivier</au><au>Voituriez, Raphael</au><au>Jungmann, Ralf</au><au>Simmel, Friedrich</au><au>Selhuber-Unkel, Christine</au><au>Oddershede, Lene B.</au><au>Metzler, Ralf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Analysis of Single Particle Trajectories: Mean Maximal Excursion Method</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2010-04-07</date><risdate>2010</risdate><volume>98</volume><issue>7</issue><spage>1364</spage><epage>1372</epage><pages>1364-1372</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>An increasing number of experimental studies employ single particle tracking to probe the physical environment in complex systems. We here propose and discuss what we believe are new methods to analyze the time series of the particle traces, in particular, for subdiffusion phenomena. We discuss the statistical properties of mean maximal excursions (MMEs), i.e., the maximal distance covered by a test particle up to time t. Compared to traditional methods focusing on the mean-squared displacement we show that the MME analysis performs better in the determination of the anomalous diffusion exponent. We also demonstrate that combination of regular moments with moments of the MME method provides additional criteria to determine the exact physical nature of the underlying stochastic subdiffusion processes. We put the methods to test using experimental data as well as simulated time series from different models for normal and anomalous dynamics such as diffusion on fractals, continuous time random walks, and fractional Brownian motion.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20371337</pmid><doi>10.1016/j.bpj.2009.12.4282</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2010-04, Vol.98 (7), p.1364-1372
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2849086
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Algorithms
Atoms & subatomic particles
Biophysics
Biophysics - methods
Comparative analysis
Complex systems
Computer simulation
Diffusion
Focusing
Fractal analysis
Fractals
Lipids - chemistry
Mathematical models
Models, Biological
Molecular Conformation
Motion
Physics
Quantitative analysis
Reproducibility of Results
Spectroscopy, Imaging, and Other Techniques
Stochastic Processes
Time Factors
Time series
title Quantitative Analysis of Single Particle Trajectories: Mean Maximal Excursion Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Analysis%20of%20Single%20Particle%20Trajectories:%20Mean%20Maximal%20Excursion%20Method&rft.jtitle=Biophysical%20journal&rft.au=Tejedor,%20Vincent&rft.date=2010-04-07&rft.volume=98&rft.issue=7&rft.spage=1364&rft.epage=1372&rft.pages=1364-1372&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2009.12.4282&rft_dat=%3Cproquest_pubme%3E2011730381%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215696239&rft_id=info:pmid/20371337&rft_els_id=S0006349509060974&rfr_iscdi=true