BMP type I receptor inhibition reduces heterotopic ossification

Ectopic ossification often involves the transformation of soft tissue into bone. In this new study, Paul Yu et al. show that inflammation is a key step in disease progression and that a small molecule inhibitor of the disease gene’s protein product is therapeutic, thus offering a potential treatment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine 2008-12, Vol.14 (12), p.1363-1369
Hauptverfasser: Yu, Paul B, Deng, Donna Y, Lai, Carol S, Hong, Charles C, Cuny, Gregory D, Bouxsein, Mary L, Hong, Deborah W, McManus, Patrick M, Katagiri, Takenobu, Sachidanandan, Chetana, Kamiya, Nobuhiro, Fukuda, Tomokazu, Mishina, Yuji, Peterson, Randall T, Bloch, Kenneth D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1369
container_issue 12
container_start_page 1363
container_title Nature medicine
container_volume 14
creator Yu, Paul B
Deng, Donna Y
Lai, Carol S
Hong, Charles C
Cuny, Gregory D
Bouxsein, Mary L
Hong, Deborah W
McManus, Patrick M
Katagiri, Takenobu
Sachidanandan, Chetana
Kamiya, Nobuhiro
Fukuda, Tomokazu
Mishina, Yuji
Peterson, Randall T
Bloch, Kenneth D
description Ectopic ossification often involves the transformation of soft tissue into bone. In this new study, Paul Yu et al. show that inflammation is a key step in disease progression and that a small molecule inhibitor of the disease gene’s protein product is therapeutic, thus offering a potential treatment for this devastating condition. Fibrodysplasia ossificans progressiva (FOP) is a congenital disorder of progressive and widespread postnatal ossification of soft tissues 1 , 2 , 3 , 4 and is without known effective treatments. Affected individuals harbor conserved mutations in the ACVR1 gene that are thought to cause constitutive activation of the bone morphogenetic protein (BMP) type I receptor, activin receptor-like kinase-2 (ALK2) 5 . Here we show that intramuscular expression in the mouse of an inducible transgene encoding constitutively active ALK2 (caALK2), resulting from a glutamine to aspartic acid change at amino acid position 207, leads to ectopic endochondral bone formation, joint fusion and functional impairment, thus phenocopying key aspects of human FOP. A selective inhibitor of BMP type I receptor kinases, LDN-193189 (ref. 6 ), inhibits activation of the BMP signaling effectors SMAD1, SMAD5 and SMAD8 in tissues expressing caALK2 induced by adenovirus specifying Cre (Ad.Cre). This treatment resulted in a reduction in ectopic ossification and functional impairment. In contrast to localized induction of caALK2 by Ad.Cre (which entails inflammation), global postnatal expression of caALK2 (induced without the use of Ad.Cre and thus without inflammation) does not lead to ectopic ossification. However, if in this context an inflammatory stimulus was provided with a control adenovirus, ectopic bone formation was induced. Like LDN-193189, corticosteroid inhibits ossification in Ad.Cre-injected mutant mice, suggesting caALK2 expression and an inflammatory milieu are both required for the development of ectopic ossification in this model. These results support the role of dysregulated ALK2 kinase activity in the pathogenesis of FOP and suggest that small molecule inhibition of BMP type I receptor activity may be useful in treating FOP and heterotopic ossification syndromes associated with excessive BMP signaling.
doi_str_mv 10.1038/nm.1888
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2846458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A194904824</galeid><sourcerecordid>A194904824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c732t-270fa1139e09a632f1e777e661f50f2654a10e810f20556bcc01453a77beb65b3</originalsourceid><addsrcrecordid>eNqNkltrFDEUxwdRbK3iN5DBh6oPs-Yyub1UavGyUKl4w7eQSc_spswka5IR--3NsovtlqKSh4Rzfucfzjn_qnqM0QwjKl_6cYallHeqfcxa3mCBvt8tbyRkIxXje9WDlC4QQhQxdb_awwoRpSTZr169_vCxzpcrqOd1BAurHGLt_NJ1LrvgS-x8spDqJWSIIYeVs3VIyfXOmjXwsLrXmyHBo-19UH19--bLyfvm9Ozd_OT4tLGCktwQgXqDMVWAlOGU9BiEEMA57hnqCWetwQgkLm_EGO-sRbhl1AjRQcdZRw-qo43uaupGOLfgczSDXkU3mnipg3F6N-PdUi_CT01ky1smi8CzrUAMPyZIWY8uWRgG4yFMSUtGWyHL54U8_CvJlRStUvyfIEGEI0rbAj69AV6EKfoyL00ILWNhWBSo2UALM4B2vg-lD7sAD6Wd4KF3JXyMVatQK8ladHYLX845jM7eWvBip6AwGX7lhZlS0vPPn_6fPfu2yx5eY5dghrxMYZjW9ki74HYFNhYLRej_rA8jvbax9qNe27iQT65v-4rb-rYAzzdAKim_gHg10ZtavwFF1fYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223113517</pqid></control><display><type>article</type><title>BMP type I receptor inhibition reduces heterotopic ossification</title><source>MEDLINE</source><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Yu, Paul B ; Deng, Donna Y ; Lai, Carol S ; Hong, Charles C ; Cuny, Gregory D ; Bouxsein, Mary L ; Hong, Deborah W ; McManus, Patrick M ; Katagiri, Takenobu ; Sachidanandan, Chetana ; Kamiya, Nobuhiro ; Fukuda, Tomokazu ; Mishina, Yuji ; Peterson, Randall T ; Bloch, Kenneth D</creator><creatorcontrib>Yu, Paul B ; Deng, Donna Y ; Lai, Carol S ; Hong, Charles C ; Cuny, Gregory D ; Bouxsein, Mary L ; Hong, Deborah W ; McManus, Patrick M ; Katagiri, Takenobu ; Sachidanandan, Chetana ; Kamiya, Nobuhiro ; Fukuda, Tomokazu ; Mishina, Yuji ; Peterson, Randall T ; Bloch, Kenneth D</creatorcontrib><description>Ectopic ossification often involves the transformation of soft tissue into bone. In this new study, Paul Yu et al. show that inflammation is a key step in disease progression and that a small molecule inhibitor of the disease gene’s protein product is therapeutic, thus offering a potential treatment for this devastating condition. Fibrodysplasia ossificans progressiva (FOP) is a congenital disorder of progressive and widespread postnatal ossification of soft tissues 1 , 2 , 3 , 4 and is without known effective treatments. Affected individuals harbor conserved mutations in the ACVR1 gene that are thought to cause constitutive activation of the bone morphogenetic protein (BMP) type I receptor, activin receptor-like kinase-2 (ALK2) 5 . Here we show that intramuscular expression in the mouse of an inducible transgene encoding constitutively active ALK2 (caALK2), resulting from a glutamine to aspartic acid change at amino acid position 207, leads to ectopic endochondral bone formation, joint fusion and functional impairment, thus phenocopying key aspects of human FOP. A selective inhibitor of BMP type I receptor kinases, LDN-193189 (ref. 6 ), inhibits activation of the BMP signaling effectors SMAD1, SMAD5 and SMAD8 in tissues expressing caALK2 induced by adenovirus specifying Cre (Ad.Cre). This treatment resulted in a reduction in ectopic ossification and functional impairment. In contrast to localized induction of caALK2 by Ad.Cre (which entails inflammation), global postnatal expression of caALK2 (induced without the use of Ad.Cre and thus without inflammation) does not lead to ectopic ossification. However, if in this context an inflammatory stimulus was provided with a control adenovirus, ectopic bone formation was induced. Like LDN-193189, corticosteroid inhibits ossification in Ad.Cre-injected mutant mice, suggesting caALK2 expression and an inflammatory milieu are both required for the development of ectopic ossification in this model. These results support the role of dysregulated ALK2 kinase activity in the pathogenesis of FOP and suggest that small molecule inhibition of BMP type I receptor activity may be useful in treating FOP and heterotopic ossification syndromes associated with excessive BMP signaling.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/nm.1888</identifier><identifier>PMID: 19029982</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Adenovirus ; Amino acids ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Bone Morphogenetic Protein Receptors, Type I - antagonists &amp; inhibitors ; Bone Morphogenetic Protein Receptors, Type I - metabolism ; Bone morphogenetic proteins ; Cancer Research ; Care and treatment ; Cell Line ; Cell receptors ; Cellular biology ; Congenital diseases ; Disease Models, Animal ; Gene expression ; Genetic aspects ; Health aspects ; Infectious Diseases ; letter ; Metabolic Diseases ; Mice ; Mice, Inbred C57BL ; Molecular Medicine ; Molecular Structure ; Mutation ; Myositis Ossificans - genetics ; Myositis Ossificans - metabolism ; Myositis Ossificans - pathology ; Neurosciences ; Ossification ; Ossification, Heterotopic - drug therapy ; Ossification, Heterotopic - genetics ; Ossification, Heterotopic - metabolism ; Ossification, Heterotopic - pathology ; Physiological aspects ; Pyrazoles - chemistry ; Pyrazoles - therapeutic use ; Pyrimidines - chemistry ; Pyrimidines - therapeutic use ; Rodents ; Signal transduction ; Signal Transduction - drug effects ; Tissues ; Tomography, X-Ray Computed</subject><ispartof>Nature medicine, 2008-12, Vol.14 (12), p.1363-1369</ispartof><rights>Springer Nature America, Inc. 2008</rights><rights>COPYRIGHT 2008 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c732t-270fa1139e09a632f1e777e661f50f2654a10e810f20556bcc01453a77beb65b3</citedby><cites>FETCH-LOGICAL-c732t-270fa1139e09a632f1e777e661f50f2654a10e810f20556bcc01453a77beb65b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19029982$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Paul B</creatorcontrib><creatorcontrib>Deng, Donna Y</creatorcontrib><creatorcontrib>Lai, Carol S</creatorcontrib><creatorcontrib>Hong, Charles C</creatorcontrib><creatorcontrib>Cuny, Gregory D</creatorcontrib><creatorcontrib>Bouxsein, Mary L</creatorcontrib><creatorcontrib>Hong, Deborah W</creatorcontrib><creatorcontrib>McManus, Patrick M</creatorcontrib><creatorcontrib>Katagiri, Takenobu</creatorcontrib><creatorcontrib>Sachidanandan, Chetana</creatorcontrib><creatorcontrib>Kamiya, Nobuhiro</creatorcontrib><creatorcontrib>Fukuda, Tomokazu</creatorcontrib><creatorcontrib>Mishina, Yuji</creatorcontrib><creatorcontrib>Peterson, Randall T</creatorcontrib><creatorcontrib>Bloch, Kenneth D</creatorcontrib><title>BMP type I receptor inhibition reduces heterotopic ossification</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Ectopic ossification often involves the transformation of soft tissue into bone. In this new study, Paul Yu et al. show that inflammation is a key step in disease progression and that a small molecule inhibitor of the disease gene’s protein product is therapeutic, thus offering a potential treatment for this devastating condition. Fibrodysplasia ossificans progressiva (FOP) is a congenital disorder of progressive and widespread postnatal ossification of soft tissues 1 , 2 , 3 , 4 and is without known effective treatments. Affected individuals harbor conserved mutations in the ACVR1 gene that are thought to cause constitutive activation of the bone morphogenetic protein (BMP) type I receptor, activin receptor-like kinase-2 (ALK2) 5 . Here we show that intramuscular expression in the mouse of an inducible transgene encoding constitutively active ALK2 (caALK2), resulting from a glutamine to aspartic acid change at amino acid position 207, leads to ectopic endochondral bone formation, joint fusion and functional impairment, thus phenocopying key aspects of human FOP. A selective inhibitor of BMP type I receptor kinases, LDN-193189 (ref. 6 ), inhibits activation of the BMP signaling effectors SMAD1, SMAD5 and SMAD8 in tissues expressing caALK2 induced by adenovirus specifying Cre (Ad.Cre). This treatment resulted in a reduction in ectopic ossification and functional impairment. In contrast to localized induction of caALK2 by Ad.Cre (which entails inflammation), global postnatal expression of caALK2 (induced without the use of Ad.Cre and thus without inflammation) does not lead to ectopic ossification. However, if in this context an inflammatory stimulus was provided with a control adenovirus, ectopic bone formation was induced. Like LDN-193189, corticosteroid inhibits ossification in Ad.Cre-injected mutant mice, suggesting caALK2 expression and an inflammatory milieu are both required for the development of ectopic ossification in this model. These results support the role of dysregulated ALK2 kinase activity in the pathogenesis of FOP and suggest that small molecule inhibition of BMP type I receptor activity may be useful in treating FOP and heterotopic ossification syndromes associated with excessive BMP signaling.</description><subject>Adenovirus</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bone Morphogenetic Protein Receptors, Type I - antagonists &amp; inhibitors</subject><subject>Bone Morphogenetic Protein Receptors, Type I - metabolism</subject><subject>Bone morphogenetic proteins</subject><subject>Cancer Research</subject><subject>Care and treatment</subject><subject>Cell Line</subject><subject>Cell receptors</subject><subject>Cellular biology</subject><subject>Congenital diseases</subject><subject>Disease Models, Animal</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Infectious Diseases</subject><subject>letter</subject><subject>Metabolic Diseases</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular Medicine</subject><subject>Molecular Structure</subject><subject>Mutation</subject><subject>Myositis Ossificans - genetics</subject><subject>Myositis Ossificans - metabolism</subject><subject>Myositis Ossificans - pathology</subject><subject>Neurosciences</subject><subject>Ossification</subject><subject>Ossification, Heterotopic - drug therapy</subject><subject>Ossification, Heterotopic - genetics</subject><subject>Ossification, Heterotopic - metabolism</subject><subject>Ossification, Heterotopic - pathology</subject><subject>Physiological aspects</subject><subject>Pyrazoles - chemistry</subject><subject>Pyrazoles - therapeutic use</subject><subject>Pyrimidines - chemistry</subject><subject>Pyrimidines - therapeutic use</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Tissues</subject><subject>Tomography, X-Ray Computed</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkltrFDEUxwdRbK3iN5DBh6oPs-Yyub1UavGyUKl4w7eQSc_spswka5IR--3NsovtlqKSh4Rzfucfzjn_qnqM0QwjKl_6cYallHeqfcxa3mCBvt8tbyRkIxXje9WDlC4QQhQxdb_awwoRpSTZr169_vCxzpcrqOd1BAurHGLt_NJ1LrvgS-x8spDqJWSIIYeVs3VIyfXOmjXwsLrXmyHBo-19UH19--bLyfvm9Ozd_OT4tLGCktwQgXqDMVWAlOGU9BiEEMA57hnqCWetwQgkLm_EGO-sRbhl1AjRQcdZRw-qo43uaupGOLfgczSDXkU3mnipg3F6N-PdUi_CT01ky1smi8CzrUAMPyZIWY8uWRgG4yFMSUtGWyHL54U8_CvJlRStUvyfIEGEI0rbAj69AV6EKfoyL00ILWNhWBSo2UALM4B2vg-lD7sAD6Wd4KF3JXyMVatQK8ladHYLX845jM7eWvBip6AwGX7lhZlS0vPPn_6fPfu2yx5eY5dghrxMYZjW9ki74HYFNhYLRej_rA8jvbax9qNe27iQT65v-4rb-rYAzzdAKim_gHg10ZtavwFF1fYg</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Yu, Paul B</creator><creator>Deng, Donna Y</creator><creator>Lai, Carol S</creator><creator>Hong, Charles C</creator><creator>Cuny, Gregory D</creator><creator>Bouxsein, Mary L</creator><creator>Hong, Deborah W</creator><creator>McManus, Patrick M</creator><creator>Katagiri, Takenobu</creator><creator>Sachidanandan, Chetana</creator><creator>Kamiya, Nobuhiro</creator><creator>Fukuda, Tomokazu</creator><creator>Mishina, Yuji</creator><creator>Peterson, Randall T</creator><creator>Bloch, Kenneth D</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081201</creationdate><title>BMP type I receptor inhibition reduces heterotopic ossification</title><author>Yu, Paul B ; Deng, Donna Y ; Lai, Carol S ; Hong, Charles C ; Cuny, Gregory D ; Bouxsein, Mary L ; Hong, Deborah W ; McManus, Patrick M ; Katagiri, Takenobu ; Sachidanandan, Chetana ; Kamiya, Nobuhiro ; Fukuda, Tomokazu ; Mishina, Yuji ; Peterson, Randall T ; Bloch, Kenneth D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c732t-270fa1139e09a632f1e777e661f50f2654a10e810f20556bcc01453a77beb65b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adenovirus</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bone Morphogenetic Protein Receptors, Type I - antagonists &amp; inhibitors</topic><topic>Bone Morphogenetic Protein Receptors, Type I - metabolism</topic><topic>Bone morphogenetic proteins</topic><topic>Cancer Research</topic><topic>Care and treatment</topic><topic>Cell Line</topic><topic>Cell receptors</topic><topic>Cellular biology</topic><topic>Congenital diseases</topic><topic>Disease Models, Animal</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Infectious Diseases</topic><topic>letter</topic><topic>Metabolic Diseases</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular Medicine</topic><topic>Molecular Structure</topic><topic>Mutation</topic><topic>Myositis Ossificans - genetics</topic><topic>Myositis Ossificans - metabolism</topic><topic>Myositis Ossificans - pathology</topic><topic>Neurosciences</topic><topic>Ossification</topic><topic>Ossification, Heterotopic - drug therapy</topic><topic>Ossification, Heterotopic - genetics</topic><topic>Ossification, Heterotopic - metabolism</topic><topic>Ossification, Heterotopic - pathology</topic><topic>Physiological aspects</topic><topic>Pyrazoles - chemistry</topic><topic>Pyrazoles - therapeutic use</topic><topic>Pyrimidines - chemistry</topic><topic>Pyrimidines - therapeutic use</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Tissues</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Paul B</creatorcontrib><creatorcontrib>Deng, Donna Y</creatorcontrib><creatorcontrib>Lai, Carol S</creatorcontrib><creatorcontrib>Hong, Charles C</creatorcontrib><creatorcontrib>Cuny, Gregory D</creatorcontrib><creatorcontrib>Bouxsein, Mary L</creatorcontrib><creatorcontrib>Hong, Deborah W</creatorcontrib><creatorcontrib>McManus, Patrick M</creatorcontrib><creatorcontrib>Katagiri, Takenobu</creatorcontrib><creatorcontrib>Sachidanandan, Chetana</creatorcontrib><creatorcontrib>Kamiya, Nobuhiro</creatorcontrib><creatorcontrib>Fukuda, Tomokazu</creatorcontrib><creatorcontrib>Mishina, Yuji</creatorcontrib><creatorcontrib>Peterson, Randall T</creatorcontrib><creatorcontrib>Bloch, Kenneth D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Paul B</au><au>Deng, Donna Y</au><au>Lai, Carol S</au><au>Hong, Charles C</au><au>Cuny, Gregory D</au><au>Bouxsein, Mary L</au><au>Hong, Deborah W</au><au>McManus, Patrick M</au><au>Katagiri, Takenobu</au><au>Sachidanandan, Chetana</au><au>Kamiya, Nobuhiro</au><au>Fukuda, Tomokazu</au><au>Mishina, Yuji</au><au>Peterson, Randall T</au><au>Bloch, Kenneth D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BMP type I receptor inhibition reduces heterotopic ossification</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>14</volume><issue>12</issue><spage>1363</spage><epage>1369</epage><pages>1363-1369</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>Ectopic ossification often involves the transformation of soft tissue into bone. In this new study, Paul Yu et al. show that inflammation is a key step in disease progression and that a small molecule inhibitor of the disease gene’s protein product is therapeutic, thus offering a potential treatment for this devastating condition. Fibrodysplasia ossificans progressiva (FOP) is a congenital disorder of progressive and widespread postnatal ossification of soft tissues 1 , 2 , 3 , 4 and is without known effective treatments. Affected individuals harbor conserved mutations in the ACVR1 gene that are thought to cause constitutive activation of the bone morphogenetic protein (BMP) type I receptor, activin receptor-like kinase-2 (ALK2) 5 . Here we show that intramuscular expression in the mouse of an inducible transgene encoding constitutively active ALK2 (caALK2), resulting from a glutamine to aspartic acid change at amino acid position 207, leads to ectopic endochondral bone formation, joint fusion and functional impairment, thus phenocopying key aspects of human FOP. A selective inhibitor of BMP type I receptor kinases, LDN-193189 (ref. 6 ), inhibits activation of the BMP signaling effectors SMAD1, SMAD5 and SMAD8 in tissues expressing caALK2 induced by adenovirus specifying Cre (Ad.Cre). This treatment resulted in a reduction in ectopic ossification and functional impairment. In contrast to localized induction of caALK2 by Ad.Cre (which entails inflammation), global postnatal expression of caALK2 (induced without the use of Ad.Cre and thus without inflammation) does not lead to ectopic ossification. However, if in this context an inflammatory stimulus was provided with a control adenovirus, ectopic bone formation was induced. Like LDN-193189, corticosteroid inhibits ossification in Ad.Cre-injected mutant mice, suggesting caALK2 expression and an inflammatory milieu are both required for the development of ectopic ossification in this model. These results support the role of dysregulated ALK2 kinase activity in the pathogenesis of FOP and suggest that small molecule inhibition of BMP type I receptor activity may be useful in treating FOP and heterotopic ossification syndromes associated with excessive BMP signaling.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>19029982</pmid><doi>10.1038/nm.1888</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-8956
ispartof Nature medicine, 2008-12, Vol.14 (12), p.1363-1369
issn 1078-8956
1546-170X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2846458
source MEDLINE; Nature Journals Online; Alma/SFX Local Collection
subjects Adenovirus
Amino acids
Animals
Biomedical and Life Sciences
Biomedicine
Bone Morphogenetic Protein Receptors, Type I - antagonists & inhibitors
Bone Morphogenetic Protein Receptors, Type I - metabolism
Bone morphogenetic proteins
Cancer Research
Care and treatment
Cell Line
Cell receptors
Cellular biology
Congenital diseases
Disease Models, Animal
Gene expression
Genetic aspects
Health aspects
Infectious Diseases
letter
Metabolic Diseases
Mice
Mice, Inbred C57BL
Molecular Medicine
Molecular Structure
Mutation
Myositis Ossificans - genetics
Myositis Ossificans - metabolism
Myositis Ossificans - pathology
Neurosciences
Ossification
Ossification, Heterotopic - drug therapy
Ossification, Heterotopic - genetics
Ossification, Heterotopic - metabolism
Ossification, Heterotopic - pathology
Physiological aspects
Pyrazoles - chemistry
Pyrazoles - therapeutic use
Pyrimidines - chemistry
Pyrimidines - therapeutic use
Rodents
Signal transduction
Signal Transduction - drug effects
Tissues
Tomography, X-Ray Computed
title BMP type I receptor inhibition reduces heterotopic ossification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T20%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BMP%20type%20I%20receptor%20inhibition%20reduces%20heterotopic%20ossification&rft.jtitle=Nature%20medicine&rft.au=Yu,%20Paul%20B&rft.date=2008-12-01&rft.volume=14&rft.issue=12&rft.spage=1363&rft.epage=1369&rft.pages=1363-1369&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/nm.1888&rft_dat=%3Cgale_pubme%3EA194904824%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223113517&rft_id=info:pmid/19029982&rft_galeid=A194904824&rfr_iscdi=true