The HDAC inhibitors trichostatin A and suberoylanilide hydroxamic acid exhibit multiple modalities of benefit for the vascular pathobiology of sickle transgenic mice
The vascular pathobiology of sickle cell anemia involves inflammation, coagulation, vascular stasis, reperfusion injury, iron-based oxidative biochemistry, deficient nitric oxide (NO) bioavailability, and red cell sickling. These disparate pathobiologies intersect and overlap, so it is probable that...
Gespeichert in:
Veröffentlicht in: | Blood 2010-03, Vol.115 (12), p.2483-2490 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2490 |
---|---|
container_issue | 12 |
container_start_page | 2483 |
container_title | Blood |
container_volume | 115 |
creator | Hebbel, Robert P. Vercellotti, Gregory M. Pace, Betty S. Solovey, Anna N. Kollander, Rahn Abanonu, Chine F. Nguyen, Julia Vineyard, Julie V. Belcher, John D. Abdulla, Fuad Osifuye, Shadé Eaton, John W. Kelm, Robert J. Slungaard, Arne |
description | The vascular pathobiology of sickle cell anemia involves inflammation, coagulation, vascular stasis, reperfusion injury, iron-based oxidative biochemistry, deficient nitric oxide (NO) bioavailability, and red cell sickling. These disparate pathobiologies intersect and overlap, so it is probable that multimodality therapy will be necessary for this disease. We have, therefore, tested a histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), for efficacy in reducing endothelial activation. We found that pulmonary vascular endothelial VCAM-1 and tissue factor (TF) expression (both are indicators of endothelial activation) are powerfully and significantly inhibited by TSA. This is seen both with pretreatment before the inducing stress of hypoxia/reoxygenation (NY1DD sickle transgenic mouse), and upon longer-term therapy after endothelial activation has already occurred (hBERK1 sickle mouse at ambient air). In addition, TSA prevented vascular stasis in sickle mice, it exhibited activity as an iron chelator, and it induced expression of the antisickling hemoglobin, hemoglobin F. Notably, the TSA analog SAHA (suberoylanilide hydroxaminc acid) that is already approved for human clinical use exhibits the same spectrum of biologic effects as TSA. We suggest that SAHA possibly could provide true, multimodality, salubrious effects for prevention and treatment of the chronic vasculopathy of sickle cell anemia. |
doi_str_mv | 10.1182/blood-2009-02-204990 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2845902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497120566007</els_id><sourcerecordid>733514421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-3e6f6d0e44d429ea5ecc9769f641333612bf34fca454edd18e56e8f0101840f63</originalsourceid><addsrcrecordid>eNp9UU2P0zAQjRCILQv_ACFfEKeA7dhpckGqyscircRlOVuOPW4GnLjYbrX9QfxP3G3ZhQunOcz7mHmvql4y-paxjr8bfAi25pT2NeVlir6nj6oFk7yrKeX0cbWglLa16JfsonqW0ndKmWi4fFpdFJZslrJfVL9uRiBXH1ZrgvOIA-YQE8kRzRhS1hlnsiJ6tiTtBojh4PWMHi2Q8WBjuNUTGqINWgK3d2wy7XzGrQcyBas9ZoREgiMDzODK2oVIcnHc62R2Xkey1XkMAwYfNocjMKH5Udg56jltYC7yxQKeV0-c9glenOdl9e3Tx5v1VX399fOX9eq6NrITuW6gda2lIIQVvActwZh-2fauFaxpmpbxwTXCGS2kAGtZB7KFzlFGWSeoa5vL6v1Jd7sbJrAG5nKIV9uIk44HFTSqfzczjmoT9op3QvaUF4E3Z4EYfu4gZTVhMuBLbhB2SS2bRjIhOCtIcUKaGFKK4O5dGFXHgtVdwepYsKJcnQoutFd_X3hP-tNoAbw-A0rE2rsSpMH0gONSskb0D69CyXOPEFUyCLMBixFMVjbg_y_5DaROyYo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733514421</pqid></control><display><type>article</type><title>The HDAC inhibitors trichostatin A and suberoylanilide hydroxamic acid exhibit multiple modalities of benefit for the vascular pathobiology of sickle transgenic mice</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Hebbel, Robert P. ; Vercellotti, Gregory M. ; Pace, Betty S. ; Solovey, Anna N. ; Kollander, Rahn ; Abanonu, Chine F. ; Nguyen, Julia ; Vineyard, Julie V. ; Belcher, John D. ; Abdulla, Fuad ; Osifuye, Shadé ; Eaton, John W. ; Kelm, Robert J. ; Slungaard, Arne</creator><creatorcontrib>Hebbel, Robert P. ; Vercellotti, Gregory M. ; Pace, Betty S. ; Solovey, Anna N. ; Kollander, Rahn ; Abanonu, Chine F. ; Nguyen, Julia ; Vineyard, Julie V. ; Belcher, John D. ; Abdulla, Fuad ; Osifuye, Shadé ; Eaton, John W. ; Kelm, Robert J. ; Slungaard, Arne</creatorcontrib><description>The vascular pathobiology of sickle cell anemia involves inflammation, coagulation, vascular stasis, reperfusion injury, iron-based oxidative biochemistry, deficient nitric oxide (NO) bioavailability, and red cell sickling. These disparate pathobiologies intersect and overlap, so it is probable that multimodality therapy will be necessary for this disease. We have, therefore, tested a histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), for efficacy in reducing endothelial activation. We found that pulmonary vascular endothelial VCAM-1 and tissue factor (TF) expression (both are indicators of endothelial activation) are powerfully and significantly inhibited by TSA. This is seen both with pretreatment before the inducing stress of hypoxia/reoxygenation (NY1DD sickle transgenic mouse), and upon longer-term therapy after endothelial activation has already occurred (hBERK1 sickle mouse at ambient air). In addition, TSA prevented vascular stasis in sickle mice, it exhibited activity as an iron chelator, and it induced expression of the antisickling hemoglobin, hemoglobin F. Notably, the TSA analog SAHA (suberoylanilide hydroxaminc acid) that is already approved for human clinical use exhibits the same spectrum of biologic effects as TSA. We suggest that SAHA possibly could provide true, multimodality, salubrious effects for prevention and treatment of the chronic vasculopathy of sickle cell anemia.</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood-2009-02-204990</identifier><identifier>PMID: 20053759</identifier><language>eng</language><publisher>Washington, DC: Elsevier Inc</publisher><subject>Anemia, Sickle Cell - drug therapy ; Anemia, Sickle Cell - genetics ; Anemia, Sickle Cell - metabolism ; Anemias. Hemoglobinopathies ; Animals ; beta-Thalassemia - drug therapy ; beta-Thalassemia - genetics ; beta-Thalassemia - metabolism ; Biological and medical sciences ; Cells, Cultured ; Disease Models, Animal ; Diseases of red blood cells ; Endothelial Cells - cytology ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Enzyme Inhibitors - pharmacology ; Fetal Hemoglobin - genetics ; Hematologic and hematopoietic diseases ; Hemoglobin A - genetics ; Hemoglobin, Sickle - genetics ; Histone Deacetylase Inhibitors - pharmacology ; Humans ; Hydroxamic Acids - pharmacology ; Intercellular Adhesion Molecule-1 - metabolism ; Iron Chelating Agents - pharmacology ; Medical sciences ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Pulmonary Veins - cytology ; Red Cells, Iron, and Erythropoiesis ; Regional Blood Flow - drug effects ; Regional Blood Flow - physiology ; Thromboplastin - metabolism ; Vascular Cell Adhesion Molecule-1 - metabolism ; Venules - cytology ; Venules - physiology ; Vorinostat</subject><ispartof>Blood, 2010-03, Vol.115 (12), p.2483-2490</ispartof><rights>2010 American Society of Hematology</rights><rights>2015 INIST-CNRS</rights><rights>2010 by The American Society of Hematology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-3e6f6d0e44d429ea5ecc9769f641333612bf34fca454edd18e56e8f0101840f63</citedby><cites>FETCH-LOGICAL-c584t-3e6f6d0e44d429ea5ecc9769f641333612bf34fca454edd18e56e8f0101840f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22551349$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20053759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hebbel, Robert P.</creatorcontrib><creatorcontrib>Vercellotti, Gregory M.</creatorcontrib><creatorcontrib>Pace, Betty S.</creatorcontrib><creatorcontrib>Solovey, Anna N.</creatorcontrib><creatorcontrib>Kollander, Rahn</creatorcontrib><creatorcontrib>Abanonu, Chine F.</creatorcontrib><creatorcontrib>Nguyen, Julia</creatorcontrib><creatorcontrib>Vineyard, Julie V.</creatorcontrib><creatorcontrib>Belcher, John D.</creatorcontrib><creatorcontrib>Abdulla, Fuad</creatorcontrib><creatorcontrib>Osifuye, Shadé</creatorcontrib><creatorcontrib>Eaton, John W.</creatorcontrib><creatorcontrib>Kelm, Robert J.</creatorcontrib><creatorcontrib>Slungaard, Arne</creatorcontrib><title>The HDAC inhibitors trichostatin A and suberoylanilide hydroxamic acid exhibit multiple modalities of benefit for the vascular pathobiology of sickle transgenic mice</title><title>Blood</title><addtitle>Blood</addtitle><description>The vascular pathobiology of sickle cell anemia involves inflammation, coagulation, vascular stasis, reperfusion injury, iron-based oxidative biochemistry, deficient nitric oxide (NO) bioavailability, and red cell sickling. These disparate pathobiologies intersect and overlap, so it is probable that multimodality therapy will be necessary for this disease. We have, therefore, tested a histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), for efficacy in reducing endothelial activation. We found that pulmonary vascular endothelial VCAM-1 and tissue factor (TF) expression (both are indicators of endothelial activation) are powerfully and significantly inhibited by TSA. This is seen both with pretreatment before the inducing stress of hypoxia/reoxygenation (NY1DD sickle transgenic mouse), and upon longer-term therapy after endothelial activation has already occurred (hBERK1 sickle mouse at ambient air). In addition, TSA prevented vascular stasis in sickle mice, it exhibited activity as an iron chelator, and it induced expression of the antisickling hemoglobin, hemoglobin F. Notably, the TSA analog SAHA (suberoylanilide hydroxaminc acid) that is already approved for human clinical use exhibits the same spectrum of biologic effects as TSA. We suggest that SAHA possibly could provide true, multimodality, salubrious effects for prevention and treatment of the chronic vasculopathy of sickle cell anemia.</description><subject>Anemia, Sickle Cell - drug therapy</subject><subject>Anemia, Sickle Cell - genetics</subject><subject>Anemia, Sickle Cell - metabolism</subject><subject>Anemias. Hemoglobinopathies</subject><subject>Animals</subject><subject>beta-Thalassemia - drug therapy</subject><subject>beta-Thalassemia - genetics</subject><subject>beta-Thalassemia - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cells, Cultured</subject><subject>Disease Models, Animal</subject><subject>Diseases of red blood cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Fetal Hemoglobin - genetics</subject><subject>Hematologic and hematopoietic diseases</subject><subject>Hemoglobin A - genetics</subject><subject>Hemoglobin, Sickle - genetics</subject><subject>Histone Deacetylase Inhibitors - pharmacology</subject><subject>Humans</subject><subject>Hydroxamic Acids - pharmacology</subject><subject>Intercellular Adhesion Molecule-1 - metabolism</subject><subject>Iron Chelating Agents - pharmacology</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Pulmonary Veins - cytology</subject><subject>Red Cells, Iron, and Erythropoiesis</subject><subject>Regional Blood Flow - drug effects</subject><subject>Regional Blood Flow - physiology</subject><subject>Thromboplastin - metabolism</subject><subject>Vascular Cell Adhesion Molecule-1 - metabolism</subject><subject>Venules - cytology</subject><subject>Venules - physiology</subject><subject>Vorinostat</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU2P0zAQjRCILQv_ACFfEKeA7dhpckGqyscircRlOVuOPW4GnLjYbrX9QfxP3G3ZhQunOcz7mHmvql4y-paxjr8bfAi25pT2NeVlir6nj6oFk7yrKeX0cbWglLa16JfsonqW0ndKmWi4fFpdFJZslrJfVL9uRiBXH1ZrgvOIA-YQE8kRzRhS1hlnsiJ6tiTtBojh4PWMHi2Q8WBjuNUTGqINWgK3d2wy7XzGrQcyBas9ZoREgiMDzODK2oVIcnHc62R2Xkey1XkMAwYfNocjMKH5Udg56jltYC7yxQKeV0-c9glenOdl9e3Tx5v1VX399fOX9eq6NrITuW6gda2lIIQVvActwZh-2fauFaxpmpbxwTXCGS2kAGtZB7KFzlFGWSeoa5vL6v1Jd7sbJrAG5nKIV9uIk44HFTSqfzczjmoT9op3QvaUF4E3Z4EYfu4gZTVhMuBLbhB2SS2bRjIhOCtIcUKaGFKK4O5dGFXHgtVdwepYsKJcnQoutFd_X3hP-tNoAbw-A0rE2rsSpMH0gONSskb0D69CyXOPEFUyCLMBixFMVjbg_y_5DaROyYo</recordid><startdate>20100325</startdate><enddate>20100325</enddate><creator>Hebbel, Robert P.</creator><creator>Vercellotti, Gregory M.</creator><creator>Pace, Betty S.</creator><creator>Solovey, Anna N.</creator><creator>Kollander, Rahn</creator><creator>Abanonu, Chine F.</creator><creator>Nguyen, Julia</creator><creator>Vineyard, Julie V.</creator><creator>Belcher, John D.</creator><creator>Abdulla, Fuad</creator><creator>Osifuye, Shadé</creator><creator>Eaton, John W.</creator><creator>Kelm, Robert J.</creator><creator>Slungaard, Arne</creator><general>Elsevier Inc</general><general>Americain Society of Hematology</general><general>American Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100325</creationdate><title>The HDAC inhibitors trichostatin A and suberoylanilide hydroxamic acid exhibit multiple modalities of benefit for the vascular pathobiology of sickle transgenic mice</title><author>Hebbel, Robert P. ; Vercellotti, Gregory M. ; Pace, Betty S. ; Solovey, Anna N. ; Kollander, Rahn ; Abanonu, Chine F. ; Nguyen, Julia ; Vineyard, Julie V. ; Belcher, John D. ; Abdulla, Fuad ; Osifuye, Shadé ; Eaton, John W. ; Kelm, Robert J. ; Slungaard, Arne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-3e6f6d0e44d429ea5ecc9769f641333612bf34fca454edd18e56e8f0101840f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anemia, Sickle Cell - drug therapy</topic><topic>Anemia, Sickle Cell - genetics</topic><topic>Anemia, Sickle Cell - metabolism</topic><topic>Anemias. Hemoglobinopathies</topic><topic>Animals</topic><topic>beta-Thalassemia - drug therapy</topic><topic>beta-Thalassemia - genetics</topic><topic>beta-Thalassemia - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cells, Cultured</topic><topic>Disease Models, Animal</topic><topic>Diseases of red blood cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Fetal Hemoglobin - genetics</topic><topic>Hematologic and hematopoietic diseases</topic><topic>Hemoglobin A - genetics</topic><topic>Hemoglobin, Sickle - genetics</topic><topic>Histone Deacetylase Inhibitors - pharmacology</topic><topic>Humans</topic><topic>Hydroxamic Acids - pharmacology</topic><topic>Intercellular Adhesion Molecule-1 - metabolism</topic><topic>Iron Chelating Agents - pharmacology</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Pulmonary Veins - cytology</topic><topic>Red Cells, Iron, and Erythropoiesis</topic><topic>Regional Blood Flow - drug effects</topic><topic>Regional Blood Flow - physiology</topic><topic>Thromboplastin - metabolism</topic><topic>Vascular Cell Adhesion Molecule-1 - metabolism</topic><topic>Venules - cytology</topic><topic>Venules - physiology</topic><topic>Vorinostat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hebbel, Robert P.</creatorcontrib><creatorcontrib>Vercellotti, Gregory M.</creatorcontrib><creatorcontrib>Pace, Betty S.</creatorcontrib><creatorcontrib>Solovey, Anna N.</creatorcontrib><creatorcontrib>Kollander, Rahn</creatorcontrib><creatorcontrib>Abanonu, Chine F.</creatorcontrib><creatorcontrib>Nguyen, Julia</creatorcontrib><creatorcontrib>Vineyard, Julie V.</creatorcontrib><creatorcontrib>Belcher, John D.</creatorcontrib><creatorcontrib>Abdulla, Fuad</creatorcontrib><creatorcontrib>Osifuye, Shadé</creatorcontrib><creatorcontrib>Eaton, John W.</creatorcontrib><creatorcontrib>Kelm, Robert J.</creatorcontrib><creatorcontrib>Slungaard, Arne</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hebbel, Robert P.</au><au>Vercellotti, Gregory M.</au><au>Pace, Betty S.</au><au>Solovey, Anna N.</au><au>Kollander, Rahn</au><au>Abanonu, Chine F.</au><au>Nguyen, Julia</au><au>Vineyard, Julie V.</au><au>Belcher, John D.</au><au>Abdulla, Fuad</au><au>Osifuye, Shadé</au><au>Eaton, John W.</au><au>Kelm, Robert J.</au><au>Slungaard, Arne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The HDAC inhibitors trichostatin A and suberoylanilide hydroxamic acid exhibit multiple modalities of benefit for the vascular pathobiology of sickle transgenic mice</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2010-03-25</date><risdate>2010</risdate><volume>115</volume><issue>12</issue><spage>2483</spage><epage>2490</epage><pages>2483-2490</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>The vascular pathobiology of sickle cell anemia involves inflammation, coagulation, vascular stasis, reperfusion injury, iron-based oxidative biochemistry, deficient nitric oxide (NO) bioavailability, and red cell sickling. These disparate pathobiologies intersect and overlap, so it is probable that multimodality therapy will be necessary for this disease. We have, therefore, tested a histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), for efficacy in reducing endothelial activation. We found that pulmonary vascular endothelial VCAM-1 and tissue factor (TF) expression (both are indicators of endothelial activation) are powerfully and significantly inhibited by TSA. This is seen both with pretreatment before the inducing stress of hypoxia/reoxygenation (NY1DD sickle transgenic mouse), and upon longer-term therapy after endothelial activation has already occurred (hBERK1 sickle mouse at ambient air). In addition, TSA prevented vascular stasis in sickle mice, it exhibited activity as an iron chelator, and it induced expression of the antisickling hemoglobin, hemoglobin F. Notably, the TSA analog SAHA (suberoylanilide hydroxaminc acid) that is already approved for human clinical use exhibits the same spectrum of biologic effects as TSA. We suggest that SAHA possibly could provide true, multimodality, salubrious effects for prevention and treatment of the chronic vasculopathy of sickle cell anemia.</abstract><cop>Washington, DC</cop><pub>Elsevier Inc</pub><pmid>20053759</pmid><doi>10.1182/blood-2009-02-204990</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-4971 |
ispartof | Blood, 2010-03, Vol.115 (12), p.2483-2490 |
issn | 0006-4971 1528-0020 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2845902 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Anemia, Sickle Cell - drug therapy Anemia, Sickle Cell - genetics Anemia, Sickle Cell - metabolism Anemias. Hemoglobinopathies Animals beta-Thalassemia - drug therapy beta-Thalassemia - genetics beta-Thalassemia - metabolism Biological and medical sciences Cells, Cultured Disease Models, Animal Diseases of red blood cells Endothelial Cells - cytology Endothelial Cells - drug effects Endothelial Cells - metabolism Enzyme Inhibitors - pharmacology Fetal Hemoglobin - genetics Hematologic and hematopoietic diseases Hemoglobin A - genetics Hemoglobin, Sickle - genetics Histone Deacetylase Inhibitors - pharmacology Humans Hydroxamic Acids - pharmacology Intercellular Adhesion Molecule-1 - metabolism Iron Chelating Agents - pharmacology Medical sciences Mice Mice, Inbred C57BL Mice, Transgenic Pulmonary Veins - cytology Red Cells, Iron, and Erythropoiesis Regional Blood Flow - drug effects Regional Blood Flow - physiology Thromboplastin - metabolism Vascular Cell Adhesion Molecule-1 - metabolism Venules - cytology Venules - physiology Vorinostat |
title | The HDAC inhibitors trichostatin A and suberoylanilide hydroxamic acid exhibit multiple modalities of benefit for the vascular pathobiology of sickle transgenic mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20HDAC%20inhibitors%20trichostatin%20A%20and%20suberoylanilide%20hydroxamic%20acid%20exhibit%20multiple%20modalities%20of%20benefit%20for%20the%20vascular%20pathobiology%20of%20sickle%20transgenic%20mice&rft.jtitle=Blood&rft.au=Hebbel,%20Robert%20P.&rft.date=2010-03-25&rft.volume=115&rft.issue=12&rft.spage=2483&rft.epage=2490&rft.pages=2483-2490&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood-2009-02-204990&rft_dat=%3Cproquest_pubme%3E733514421%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733514421&rft_id=info:pmid/20053759&rft_els_id=S0006497120566007&rfr_iscdi=true |