Cul8/Rtt101 Forms a Variety of Protein Complexes That Regulate DNA Damage Response and Transcriptional Silencing
The budding yeast, Saccharomyces cerevisiae, has three cullin proteins, which act as platforms for Cullin-based E3 ubiquitin ligases. Genetic evidence indicates that Cul8, together with Mms1, Mms22, and Esc4, is involved in the repair of DNA damage that can occur during DNA replication. Cul8 is thou...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2010-03, Vol.285 (13), p.9858-9867 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9867 |
---|---|
container_issue | 13 |
container_start_page | 9858 |
container_title | The Journal of biological chemistry |
container_volume | 285 |
creator | Mimura, Satoru Yamaguchi, Tsuyoshi Ishii, Satoru Noro, Emiko Katsura, Tomoya Obuse, Chikashi Kamura, Takumi |
description | The budding yeast, Saccharomyces cerevisiae, has three cullin proteins, which act as platforms for Cullin-based E3 ubiquitin ligases. Genetic evidence indicates that Cul8, together with Mms1, Mms22, and Esc4, is involved in the repair of DNA damage that can occur during DNA replication. Cul8 is thought to form a complex with these proteins, but the composition and the function of Cul8-based E3 ubiquitin ligases remain largely uncharacterized. Herein, we report a comprehensive biochemical analysis of Cul8 complexes. Cul8 was found to form a Cul8-Mms1-Mms22-Esc4 complex under physiological conditions, with Mms1 bridging Cul8 and Mms22 and Mms22 bridging Mms1 and Esc4. Domain analysis demonstrated that the N-terminal region of Mms1 and the C-terminal region of Mms22 are required for the Mms1-Mms22 interaction, whereas the N-terminal region of Mms22 is required for the Mms22-Esc4 interaction. We also found other Cul8-Mms1-binding proteins Ctf4, Esc2, and Orc5 using yeast two-hybrid screening. Esc4 and Ctf4 bound to Mms22 directly and bound to Cul8-Mms1 in the presence of Mms22, whereas Esc2 and Orc5 interacted with both Cul8 and Mms1, independently. We found that Cul8, Mms1, and Mms22 participated in the regulation of transcriptional silencing of yeast telomeres. These results suggest that Cul8-Mms1, as part of various protein complexes, is involved in the regulation of chromatin metabolism. |
doi_str_mv | 10.1074/jbc.M109.082107 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2843234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819550414</els_id><sourcerecordid>733792688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-60fefaeae25b12e8fe4d500036f0cfa85211c14b1b51174b75492772941a54303</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEokvhzA1845Rdj-2snQtStaWAVD7UbhE3y_FOtq6SONhORf89XqVUcED4Ymnm8euxn6J4CXQJVIrVTWOXn4DWS6pYLjwqFkAVL3kF3x8XC0oZlDWr1FHxLMYbmpeo4WlxxCjwmkpYFONm6tTqIiWgQM586CMx5JsJDtMd8S35GnxCN5CN78cOf2Ik22uTyAXup84kJKefT8ip6c0ecy2OfohIzLAj22CGaIMbk_OD6cil63Cwbtg_L560pov44n4_Lq7O3m03H8rzL-8_bk7OSytqlco1bbE1aJBVDTBULYpdlefn65ba1qiKAVgQDTQVgBSNrETNpGS1AFMJTvlx8XbOHaemx53FIQXT6TG43oQ77Y3Tf3cGd633_lYzJTjjIge8uQ8I_seEMeneRYtdZwb0U9RSCElFJfn_Sc5lzdZKZXI1kzb4GAO2D_MA1QehOgvVB6F6FppPvPrzGQ_8b4MZeD0DrfHa7IOL-ury0KWgYC2rdSbqmcD83bcOg47WZRm4cwFt0jvv_nn9L-SPuGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733792688</pqid></control><display><type>article</type><title>Cul8/Rtt101 Forms a Variety of Protein Complexes That Regulate DNA Damage Response and Transcriptional Silencing</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Mimura, Satoru ; Yamaguchi, Tsuyoshi ; Ishii, Satoru ; Noro, Emiko ; Katsura, Tomoya ; Obuse, Chikashi ; Kamura, Takumi</creator><creatorcontrib>Mimura, Satoru ; Yamaguchi, Tsuyoshi ; Ishii, Satoru ; Noro, Emiko ; Katsura, Tomoya ; Obuse, Chikashi ; Kamura, Takumi</creatorcontrib><description>The budding yeast, Saccharomyces cerevisiae, has three cullin proteins, which act as platforms for Cullin-based E3 ubiquitin ligases. Genetic evidence indicates that Cul8, together with Mms1, Mms22, and Esc4, is involved in the repair of DNA damage that can occur during DNA replication. Cul8 is thought to form a complex with these proteins, but the composition and the function of Cul8-based E3 ubiquitin ligases remain largely uncharacterized. Herein, we report a comprehensive biochemical analysis of Cul8 complexes. Cul8 was found to form a Cul8-Mms1-Mms22-Esc4 complex under physiological conditions, with Mms1 bridging Cul8 and Mms22 and Mms22 bridging Mms1 and Esc4. Domain analysis demonstrated that the N-terminal region of Mms1 and the C-terminal region of Mms22 are required for the Mms1-Mms22 interaction, whereas the N-terminal region of Mms22 is required for the Mms22-Esc4 interaction. We also found other Cul8-Mms1-binding proteins Ctf4, Esc2, and Orc5 using yeast two-hybrid screening. Esc4 and Ctf4 bound to Mms22 directly and bound to Cul8-Mms1 in the presence of Mms22, whereas Esc2 and Orc5 interacted with both Cul8 and Mms1, independently. We found that Cul8, Mms1, and Mms22 participated in the regulation of transcriptional silencing of yeast telomeres. These results suggest that Cul8-Mms1, as part of various protein complexes, is involved in the regulation of chromatin metabolism.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.082107</identifier><identifier>PMID: 20139071</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Chromatin - metabolism ; Cullin Proteins - metabolism ; DNA Damage ; DNA-Binding Proteins - metabolism ; Gene Expression Regulation, Fungal ; Gene Silencing ; Models, Biological ; Proteases/Ubiqiuitin ; Proteases/Ubiquitination ; Protein Binding ; Protein Synthesis and Degradation ; Protein/Degradation ; Protein/Domains ; Protein/Protein-Protein Interactions ; Protein/Targeting ; Protein/Turnover ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Telomere - ultrastructure ; Transcription, Genetic ; Two-Hybrid System Techniques</subject><ispartof>The Journal of biological chemistry, 2010-03, Vol.285 (13), p.9858-9867</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-60fefaeae25b12e8fe4d500036f0cfa85211c14b1b51174b75492772941a54303</citedby><cites>FETCH-LOGICAL-c498t-60fefaeae25b12e8fe4d500036f0cfa85211c14b1b51174b75492772941a54303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843234/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843234/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20139071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mimura, Satoru</creatorcontrib><creatorcontrib>Yamaguchi, Tsuyoshi</creatorcontrib><creatorcontrib>Ishii, Satoru</creatorcontrib><creatorcontrib>Noro, Emiko</creatorcontrib><creatorcontrib>Katsura, Tomoya</creatorcontrib><creatorcontrib>Obuse, Chikashi</creatorcontrib><creatorcontrib>Kamura, Takumi</creatorcontrib><title>Cul8/Rtt101 Forms a Variety of Protein Complexes That Regulate DNA Damage Response and Transcriptional Silencing</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The budding yeast, Saccharomyces cerevisiae, has three cullin proteins, which act as platforms for Cullin-based E3 ubiquitin ligases. Genetic evidence indicates that Cul8, together with Mms1, Mms22, and Esc4, is involved in the repair of DNA damage that can occur during DNA replication. Cul8 is thought to form a complex with these proteins, but the composition and the function of Cul8-based E3 ubiquitin ligases remain largely uncharacterized. Herein, we report a comprehensive biochemical analysis of Cul8 complexes. Cul8 was found to form a Cul8-Mms1-Mms22-Esc4 complex under physiological conditions, with Mms1 bridging Cul8 and Mms22 and Mms22 bridging Mms1 and Esc4. Domain analysis demonstrated that the N-terminal region of Mms1 and the C-terminal region of Mms22 are required for the Mms1-Mms22 interaction, whereas the N-terminal region of Mms22 is required for the Mms22-Esc4 interaction. We also found other Cul8-Mms1-binding proteins Ctf4, Esc2, and Orc5 using yeast two-hybrid screening. Esc4 and Ctf4 bound to Mms22 directly and bound to Cul8-Mms1 in the presence of Mms22, whereas Esc2 and Orc5 interacted with both Cul8 and Mms1, independently. We found that Cul8, Mms1, and Mms22 participated in the regulation of transcriptional silencing of yeast telomeres. These results suggest that Cul8-Mms1, as part of various protein complexes, is involved in the regulation of chromatin metabolism.</description><subject>Chromatin - metabolism</subject><subject>Cullin Proteins - metabolism</subject><subject>DNA Damage</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene Silencing</subject><subject>Models, Biological</subject><subject>Proteases/Ubiqiuitin</subject><subject>Proteases/Ubiquitination</subject><subject>Protein Binding</subject><subject>Protein Synthesis and Degradation</subject><subject>Protein/Degradation</subject><subject>Protein/Domains</subject><subject>Protein/Protein-Protein Interactions</subject><subject>Protein/Targeting</subject><subject>Protein/Turnover</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Telomere - ultrastructure</subject><subject>Transcription, Genetic</subject><subject>Two-Hybrid System Techniques</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEokvhzA1845Rdj-2snQtStaWAVD7UbhE3y_FOtq6SONhORf89XqVUcED4Ymnm8euxn6J4CXQJVIrVTWOXn4DWS6pYLjwqFkAVL3kF3x8XC0oZlDWr1FHxLMYbmpeo4WlxxCjwmkpYFONm6tTqIiWgQM586CMx5JsJDtMd8S35GnxCN5CN78cOf2Ik22uTyAXup84kJKefT8ip6c0ecy2OfohIzLAj22CGaIMbk_OD6cil63Cwbtg_L560pov44n4_Lq7O3m03H8rzL-8_bk7OSytqlco1bbE1aJBVDTBULYpdlefn65ba1qiKAVgQDTQVgBSNrETNpGS1AFMJTvlx8XbOHaemx53FIQXT6TG43oQ77Y3Tf3cGd633_lYzJTjjIge8uQ8I_seEMeneRYtdZwb0U9RSCElFJfn_Sc5lzdZKZXI1kzb4GAO2D_MA1QehOgvVB6F6FppPvPrzGQ_8b4MZeD0DrfHa7IOL-ury0KWgYC2rdSbqmcD83bcOg47WZRm4cwFt0jvv_nn9L-SPuGQ</recordid><startdate>20100326</startdate><enddate>20100326</enddate><creator>Mimura, Satoru</creator><creator>Yamaguchi, Tsuyoshi</creator><creator>Ishii, Satoru</creator><creator>Noro, Emiko</creator><creator>Katsura, Tomoya</creator><creator>Obuse, Chikashi</creator><creator>Kamura, Takumi</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>20100326</creationdate><title>Cul8/Rtt101 Forms a Variety of Protein Complexes That Regulate DNA Damage Response and Transcriptional Silencing</title><author>Mimura, Satoru ; Yamaguchi, Tsuyoshi ; Ishii, Satoru ; Noro, Emiko ; Katsura, Tomoya ; Obuse, Chikashi ; Kamura, Takumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-60fefaeae25b12e8fe4d500036f0cfa85211c14b1b51174b75492772941a54303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chromatin - metabolism</topic><topic>Cullin Proteins - metabolism</topic><topic>DNA Damage</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene Silencing</topic><topic>Models, Biological</topic><topic>Proteases/Ubiqiuitin</topic><topic>Proteases/Ubiquitination</topic><topic>Protein Binding</topic><topic>Protein Synthesis and Degradation</topic><topic>Protein/Degradation</topic><topic>Protein/Domains</topic><topic>Protein/Protein-Protein Interactions</topic><topic>Protein/Targeting</topic><topic>Protein/Turnover</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Telomere - ultrastructure</topic><topic>Transcription, Genetic</topic><topic>Two-Hybrid System Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mimura, Satoru</creatorcontrib><creatorcontrib>Yamaguchi, Tsuyoshi</creatorcontrib><creatorcontrib>Ishii, Satoru</creatorcontrib><creatorcontrib>Noro, Emiko</creatorcontrib><creatorcontrib>Katsura, Tomoya</creatorcontrib><creatorcontrib>Obuse, Chikashi</creatorcontrib><creatorcontrib>Kamura, Takumi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mimura, Satoru</au><au>Yamaguchi, Tsuyoshi</au><au>Ishii, Satoru</au><au>Noro, Emiko</au><au>Katsura, Tomoya</au><au>Obuse, Chikashi</au><au>Kamura, Takumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cul8/Rtt101 Forms a Variety of Protein Complexes That Regulate DNA Damage Response and Transcriptional Silencing</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-03-26</date><risdate>2010</risdate><volume>285</volume><issue>13</issue><spage>9858</spage><epage>9867</epage><pages>9858-9867</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The budding yeast, Saccharomyces cerevisiae, has three cullin proteins, which act as platforms for Cullin-based E3 ubiquitin ligases. Genetic evidence indicates that Cul8, together with Mms1, Mms22, and Esc4, is involved in the repair of DNA damage that can occur during DNA replication. Cul8 is thought to form a complex with these proteins, but the composition and the function of Cul8-based E3 ubiquitin ligases remain largely uncharacterized. Herein, we report a comprehensive biochemical analysis of Cul8 complexes. Cul8 was found to form a Cul8-Mms1-Mms22-Esc4 complex under physiological conditions, with Mms1 bridging Cul8 and Mms22 and Mms22 bridging Mms1 and Esc4. Domain analysis demonstrated that the N-terminal region of Mms1 and the C-terminal region of Mms22 are required for the Mms1-Mms22 interaction, whereas the N-terminal region of Mms22 is required for the Mms22-Esc4 interaction. We also found other Cul8-Mms1-binding proteins Ctf4, Esc2, and Orc5 using yeast two-hybrid screening. Esc4 and Ctf4 bound to Mms22 directly and bound to Cul8-Mms1 in the presence of Mms22, whereas Esc2 and Orc5 interacted with both Cul8 and Mms1, independently. We found that Cul8, Mms1, and Mms22 participated in the regulation of transcriptional silencing of yeast telomeres. These results suggest that Cul8-Mms1, as part of various protein complexes, is involved in the regulation of chromatin metabolism.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20139071</pmid><doi>10.1074/jbc.M109.082107</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2010-03, Vol.285 (13), p.9858-9867 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2843234 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Chromatin - metabolism Cullin Proteins - metabolism DNA Damage DNA-Binding Proteins - metabolism Gene Expression Regulation, Fungal Gene Silencing Models, Biological Proteases/Ubiqiuitin Proteases/Ubiquitination Protein Binding Protein Synthesis and Degradation Protein/Degradation Protein/Domains Protein/Protein-Protein Interactions Protein/Targeting Protein/Turnover Saccharomyces cerevisiae Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism Telomere - ultrastructure Transcription, Genetic Two-Hybrid System Techniques |
title | Cul8/Rtt101 Forms a Variety of Protein Complexes That Regulate DNA Damage Response and Transcriptional Silencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cul8/Rtt101%20Forms%20a%20Variety%20of%20Protein%20Complexes%20That%20Regulate%20DNA%20Damage%20Response%20and%20Transcriptional%20Silencing&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Mimura,%20Satoru&rft.date=2010-03-26&rft.volume=285&rft.issue=13&rft.spage=9858&rft.epage=9867&rft.pages=9858-9867&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.082107&rft_dat=%3Cproquest_pubme%3E733792688%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733792688&rft_id=info:pmid/20139071&rft_els_id=S0021925819550414&rfr_iscdi=true |