Magnetic Resonance–Based Anatomical Analysis of Scar-Related Ventricular Tachycardia: Implications for Catheter Ablation

In catheter ablation of scar-related monomorphic ventricular tachycardia (VT), substrate voltage mapping is used to electrically define the scar during sinus rhythm. However, the electrically defined scar may not accurately reflect the anatomical scar. Magnetic resonance–based visualization of the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 2007-10, Vol.101 (9), p.939-947
Hauptverfasser: Ashikaga, Hiroshi, Sasano, Tetsuo, Dong, Jun, Zviman, M Muz, Evers, Robert, Hopenfeld, Bruce, Castro, Valeria, Helm, Robert H, Dickfeld, Timm, Nazarian, Saman, Donahue, J Kevin, Berger, Ronald D, Calkins, Hugh, Abraham, M Roselle, Marbán, Eduardo, Lardo, Albert C, McVeigh, Elliot R, Halperin, Henry R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 947
container_issue 9
container_start_page 939
container_title Circulation research
container_volume 101
creator Ashikaga, Hiroshi
Sasano, Tetsuo
Dong, Jun
Zviman, M Muz
Evers, Robert
Hopenfeld, Bruce
Castro, Valeria
Helm, Robert H
Dickfeld, Timm
Nazarian, Saman
Donahue, J Kevin
Berger, Ronald D
Calkins, Hugh
Abraham, M Roselle
Marbán, Eduardo
Lardo, Albert C
McVeigh, Elliot R
Halperin, Henry R
description In catheter ablation of scar-related monomorphic ventricular tachycardia (VT), substrate voltage mapping is used to electrically define the scar during sinus rhythm. However, the electrically defined scar may not accurately reflect the anatomical scar. Magnetic resonance–based visualization of the scar may elucidate the 3D anatomical correlation between the fine structural details of the scar and scar-related VT circuits. We registered VT activation sequence with the 3D scar anatomy derived from high-resolution contrast-enhanced MRI in a swine model of chronic myocardial infarction using epicardial sock electrodes (n=6, epicardial group), which have direct contact with the myocardium where the electrical signal is recorded. In a separate group of animals (n=5, endocardial group), we also assessed the incidence of endocardial reentry in this model using endocardial basket catheters. Ten to 12 weeks after myocardial infarction, sustained monomorphic VT was reproducibly induced in all animals (n=11). In the epicardial group, 21 VT morphologies were induced, of which 4 (19.0%) showed epicardial reentry. The reentry isthmus was characterized by a relatively small volume of viable myocardium bound by the scar tissue at the infarct border zone or over the infarct. In the endocardial group (n=5), 6 VT morphologies were induced, of which 4 (66.7%) showed endocardial reentry. In conclusion, MRI revealed a scar with spatially complex structures, particularly at the isthmus, with substrate for multiple VT morphologies after a single ischemic episode. Magnetic resonance–based visualization of scar morphology would potentially contribute to preprocedural planning for catheter ablation of scar-related, unmappable VT.
doi_str_mv 10.1161/CIRCRESAHA.107.158980
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2842927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68450464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4270-4cbcbdbdc091caa3542b61b6d2e32598530ca64c0f76d844a81b2addae6aedbb3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSMEokPhEUDZwC6D7ThxwgIpRC0dqQhpWtha1z9pDE48tROq6Yp34A15EjzMiIEVK1v3fuf4yCdJnmO0xLjEr9vVul2fXTUXzRIjtsRFVVfoQbLABaEZLRh-mCwQQnXG8hydJE9C-IIQpjmpHycnmNW4ZIwtkvsPcDPqych0rYMbYZT65_cf7yBolTYjTG4wEuzuarfBhNR16ZUEn621hSkyn_U4eSNnCz69Btlv41IZeJOuho2N0sm4MaSd82kLU68n7dNG2N_jp8mjDmzQzw7nafLp_Oy6vcguP75ftc1lJilhKKNSSKGEkqjGEiAvKBElFqUiOidFXRU5klBSiTpWqopSqLAgoBToErQSIj9N3u59N7MYtJK7xGD5xpsB_JY7MPzfzWh6fuO-cVJRUhMWDV4dDLy7nXWY-GCC1NbCqN0ceFnRAtGSRrDYg9K7ELzu_jyCEd-1xo-txRHj-9ai7sXfCY-qQ00ReHkAIMQ6Oh97MuHI1QRRhKvI1Xvuztn41eGrne-0570GO_X_CfELBaW4TQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68450464</pqid></control><display><type>article</type><title>Magnetic Resonance–Based Anatomical Analysis of Scar-Related Ventricular Tachycardia: Implications for Catheter Ablation</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Complete</source><creator>Ashikaga, Hiroshi ; Sasano, Tetsuo ; Dong, Jun ; Zviman, M Muz ; Evers, Robert ; Hopenfeld, Bruce ; Castro, Valeria ; Helm, Robert H ; Dickfeld, Timm ; Nazarian, Saman ; Donahue, J Kevin ; Berger, Ronald D ; Calkins, Hugh ; Abraham, M Roselle ; Marbán, Eduardo ; Lardo, Albert C ; McVeigh, Elliot R ; Halperin, Henry R</creator><creatorcontrib>Ashikaga, Hiroshi ; Sasano, Tetsuo ; Dong, Jun ; Zviman, M Muz ; Evers, Robert ; Hopenfeld, Bruce ; Castro, Valeria ; Helm, Robert H ; Dickfeld, Timm ; Nazarian, Saman ; Donahue, J Kevin ; Berger, Ronald D ; Calkins, Hugh ; Abraham, M Roselle ; Marbán, Eduardo ; Lardo, Albert C ; McVeigh, Elliot R ; Halperin, Henry R</creatorcontrib><description>In catheter ablation of scar-related monomorphic ventricular tachycardia (VT), substrate voltage mapping is used to electrically define the scar during sinus rhythm. However, the electrically defined scar may not accurately reflect the anatomical scar. Magnetic resonance–based visualization of the scar may elucidate the 3D anatomical correlation between the fine structural details of the scar and scar-related VT circuits. We registered VT activation sequence with the 3D scar anatomy derived from high-resolution contrast-enhanced MRI in a swine model of chronic myocardial infarction using epicardial sock electrodes (n=6, epicardial group), which have direct contact with the myocardium where the electrical signal is recorded. In a separate group of animals (n=5, endocardial group), we also assessed the incidence of endocardial reentry in this model using endocardial basket catheters. Ten to 12 weeks after myocardial infarction, sustained monomorphic VT was reproducibly induced in all animals (n=11). In the epicardial group, 21 VT morphologies were induced, of which 4 (19.0%) showed epicardial reentry. The reentry isthmus was characterized by a relatively small volume of viable myocardium bound by the scar tissue at the infarct border zone or over the infarct. In the endocardial group (n=5), 6 VT morphologies were induced, of which 4 (66.7%) showed endocardial reentry. In conclusion, MRI revealed a scar with spatially complex structures, particularly at the isthmus, with substrate for multiple VT morphologies after a single ischemic episode. Magnetic resonance–based visualization of scar morphology would potentially contribute to preprocedural planning for catheter ablation of scar-related, unmappable VT.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/CIRCRESAHA.107.158980</identifier><identifier>PMID: 17916777</identifier><identifier>CODEN: CIRUAL</identifier><language>eng</language><publisher>Hagerstown, MD: American Heart Association, Inc</publisher><subject>Animals ; Biological and medical sciences ; Cardiac dysrhythmias ; Cardiology. Vascular system ; Catheter Ablation - adverse effects ; Cicatrix - etiology ; Cicatrix - pathology ; Cicatrix - physiopathology ; Electrodes ; Fundamental and applied biological sciences. Psychology ; Heart ; Magnetic Resonance Imaging - methods ; Medical sciences ; Myocardium - pathology ; Sus scrofa ; Tachycardia, Ventricular - etiology ; Tachycardia, Ventricular - pathology ; Tachycardia, Ventricular - physiopathology ; Vertebrates: cardiovascular system</subject><ispartof>Circulation research, 2007-10, Vol.101 (9), p.939-947</ispartof><rights>2007 American Heart Association, Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4270-4cbcbdbdc091caa3542b61b6d2e32598530ca64c0f76d844a81b2addae6aedbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3687,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19204018$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17916777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ashikaga, Hiroshi</creatorcontrib><creatorcontrib>Sasano, Tetsuo</creatorcontrib><creatorcontrib>Dong, Jun</creatorcontrib><creatorcontrib>Zviman, M Muz</creatorcontrib><creatorcontrib>Evers, Robert</creatorcontrib><creatorcontrib>Hopenfeld, Bruce</creatorcontrib><creatorcontrib>Castro, Valeria</creatorcontrib><creatorcontrib>Helm, Robert H</creatorcontrib><creatorcontrib>Dickfeld, Timm</creatorcontrib><creatorcontrib>Nazarian, Saman</creatorcontrib><creatorcontrib>Donahue, J Kevin</creatorcontrib><creatorcontrib>Berger, Ronald D</creatorcontrib><creatorcontrib>Calkins, Hugh</creatorcontrib><creatorcontrib>Abraham, M Roselle</creatorcontrib><creatorcontrib>Marbán, Eduardo</creatorcontrib><creatorcontrib>Lardo, Albert C</creatorcontrib><creatorcontrib>McVeigh, Elliot R</creatorcontrib><creatorcontrib>Halperin, Henry R</creatorcontrib><title>Magnetic Resonance–Based Anatomical Analysis of Scar-Related Ventricular Tachycardia: Implications for Catheter Ablation</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>In catheter ablation of scar-related monomorphic ventricular tachycardia (VT), substrate voltage mapping is used to electrically define the scar during sinus rhythm. However, the electrically defined scar may not accurately reflect the anatomical scar. Magnetic resonance–based visualization of the scar may elucidate the 3D anatomical correlation between the fine structural details of the scar and scar-related VT circuits. We registered VT activation sequence with the 3D scar anatomy derived from high-resolution contrast-enhanced MRI in a swine model of chronic myocardial infarction using epicardial sock electrodes (n=6, epicardial group), which have direct contact with the myocardium where the electrical signal is recorded. In a separate group of animals (n=5, endocardial group), we also assessed the incidence of endocardial reentry in this model using endocardial basket catheters. Ten to 12 weeks after myocardial infarction, sustained monomorphic VT was reproducibly induced in all animals (n=11). In the epicardial group, 21 VT morphologies were induced, of which 4 (19.0%) showed epicardial reentry. The reentry isthmus was characterized by a relatively small volume of viable myocardium bound by the scar tissue at the infarct border zone or over the infarct. In the endocardial group (n=5), 6 VT morphologies were induced, of which 4 (66.7%) showed endocardial reentry. In conclusion, MRI revealed a scar with spatially complex structures, particularly at the isthmus, with substrate for multiple VT morphologies after a single ischemic episode. Magnetic resonance–based visualization of scar morphology would potentially contribute to preprocedural planning for catheter ablation of scar-related, unmappable VT.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cardiac dysrhythmias</subject><subject>Cardiology. Vascular system</subject><subject>Catheter Ablation - adverse effects</subject><subject>Cicatrix - etiology</subject><subject>Cicatrix - pathology</subject><subject>Cicatrix - physiopathology</subject><subject>Electrodes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Heart</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical sciences</subject><subject>Myocardium - pathology</subject><subject>Sus scrofa</subject><subject>Tachycardia, Ventricular - etiology</subject><subject>Tachycardia, Ventricular - pathology</subject><subject>Tachycardia, Ventricular - physiopathology</subject><subject>Vertebrates: cardiovascular system</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhSMEokPhEUDZwC6D7ThxwgIpRC0dqQhpWtha1z9pDE48tROq6Yp34A15EjzMiIEVK1v3fuf4yCdJnmO0xLjEr9vVul2fXTUXzRIjtsRFVVfoQbLABaEZLRh-mCwQQnXG8hydJE9C-IIQpjmpHycnmNW4ZIwtkvsPcDPqych0rYMbYZT65_cf7yBolTYjTG4wEuzuarfBhNR16ZUEn621hSkyn_U4eSNnCz69Btlv41IZeJOuho2N0sm4MaSd82kLU68n7dNG2N_jp8mjDmzQzw7nafLp_Oy6vcguP75ftc1lJilhKKNSSKGEkqjGEiAvKBElFqUiOidFXRU5klBSiTpWqopSqLAgoBToErQSIj9N3u59N7MYtJK7xGD5xpsB_JY7MPzfzWh6fuO-cVJRUhMWDV4dDLy7nXWY-GCC1NbCqN0ceFnRAtGSRrDYg9K7ELzu_jyCEd-1xo-txRHj-9ai7sXfCY-qQ00ReHkAIMQ6Oh97MuHI1QRRhKvI1Xvuztn41eGrne-0570GO_X_CfELBaW4TQ</recordid><startdate>20071026</startdate><enddate>20071026</enddate><creator>Ashikaga, Hiroshi</creator><creator>Sasano, Tetsuo</creator><creator>Dong, Jun</creator><creator>Zviman, M Muz</creator><creator>Evers, Robert</creator><creator>Hopenfeld, Bruce</creator><creator>Castro, Valeria</creator><creator>Helm, Robert H</creator><creator>Dickfeld, Timm</creator><creator>Nazarian, Saman</creator><creator>Donahue, J Kevin</creator><creator>Berger, Ronald D</creator><creator>Calkins, Hugh</creator><creator>Abraham, M Roselle</creator><creator>Marbán, Eduardo</creator><creator>Lardo, Albert C</creator><creator>McVeigh, Elliot R</creator><creator>Halperin, Henry R</creator><general>American Heart Association, Inc</general><general>Lippincott</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20071026</creationdate><title>Magnetic Resonance–Based Anatomical Analysis of Scar-Related Ventricular Tachycardia: Implications for Catheter Ablation</title><author>Ashikaga, Hiroshi ; Sasano, Tetsuo ; Dong, Jun ; Zviman, M Muz ; Evers, Robert ; Hopenfeld, Bruce ; Castro, Valeria ; Helm, Robert H ; Dickfeld, Timm ; Nazarian, Saman ; Donahue, J Kevin ; Berger, Ronald D ; Calkins, Hugh ; Abraham, M Roselle ; Marbán, Eduardo ; Lardo, Albert C ; McVeigh, Elliot R ; Halperin, Henry R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4270-4cbcbdbdc091caa3542b61b6d2e32598530ca64c0f76d844a81b2addae6aedbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cardiac dysrhythmias</topic><topic>Cardiology. Vascular system</topic><topic>Catheter Ablation - adverse effects</topic><topic>Cicatrix - etiology</topic><topic>Cicatrix - pathology</topic><topic>Cicatrix - physiopathology</topic><topic>Electrodes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Heart</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical sciences</topic><topic>Myocardium - pathology</topic><topic>Sus scrofa</topic><topic>Tachycardia, Ventricular - etiology</topic><topic>Tachycardia, Ventricular - pathology</topic><topic>Tachycardia, Ventricular - physiopathology</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashikaga, Hiroshi</creatorcontrib><creatorcontrib>Sasano, Tetsuo</creatorcontrib><creatorcontrib>Dong, Jun</creatorcontrib><creatorcontrib>Zviman, M Muz</creatorcontrib><creatorcontrib>Evers, Robert</creatorcontrib><creatorcontrib>Hopenfeld, Bruce</creatorcontrib><creatorcontrib>Castro, Valeria</creatorcontrib><creatorcontrib>Helm, Robert H</creatorcontrib><creatorcontrib>Dickfeld, Timm</creatorcontrib><creatorcontrib>Nazarian, Saman</creatorcontrib><creatorcontrib>Donahue, J Kevin</creatorcontrib><creatorcontrib>Berger, Ronald D</creatorcontrib><creatorcontrib>Calkins, Hugh</creatorcontrib><creatorcontrib>Abraham, M Roselle</creatorcontrib><creatorcontrib>Marbán, Eduardo</creatorcontrib><creatorcontrib>Lardo, Albert C</creatorcontrib><creatorcontrib>McVeigh, Elliot R</creatorcontrib><creatorcontrib>Halperin, Henry R</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashikaga, Hiroshi</au><au>Sasano, Tetsuo</au><au>Dong, Jun</au><au>Zviman, M Muz</au><au>Evers, Robert</au><au>Hopenfeld, Bruce</au><au>Castro, Valeria</au><au>Helm, Robert H</au><au>Dickfeld, Timm</au><au>Nazarian, Saman</au><au>Donahue, J Kevin</au><au>Berger, Ronald D</au><au>Calkins, Hugh</au><au>Abraham, M Roselle</au><au>Marbán, Eduardo</au><au>Lardo, Albert C</au><au>McVeigh, Elliot R</au><au>Halperin, Henry R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Resonance–Based Anatomical Analysis of Scar-Related Ventricular Tachycardia: Implications for Catheter Ablation</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2007-10-26</date><risdate>2007</risdate><volume>101</volume><issue>9</issue><spage>939</spage><epage>947</epage><pages>939-947</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><coden>CIRUAL</coden><abstract>In catheter ablation of scar-related monomorphic ventricular tachycardia (VT), substrate voltage mapping is used to electrically define the scar during sinus rhythm. However, the electrically defined scar may not accurately reflect the anatomical scar. Magnetic resonance–based visualization of the scar may elucidate the 3D anatomical correlation between the fine structural details of the scar and scar-related VT circuits. We registered VT activation sequence with the 3D scar anatomy derived from high-resolution contrast-enhanced MRI in a swine model of chronic myocardial infarction using epicardial sock electrodes (n=6, epicardial group), which have direct contact with the myocardium where the electrical signal is recorded. In a separate group of animals (n=5, endocardial group), we also assessed the incidence of endocardial reentry in this model using endocardial basket catheters. Ten to 12 weeks after myocardial infarction, sustained monomorphic VT was reproducibly induced in all animals (n=11). In the epicardial group, 21 VT morphologies were induced, of which 4 (19.0%) showed epicardial reentry. The reentry isthmus was characterized by a relatively small volume of viable myocardium bound by the scar tissue at the infarct border zone or over the infarct. In the endocardial group (n=5), 6 VT morphologies were induced, of which 4 (66.7%) showed endocardial reentry. In conclusion, MRI revealed a scar with spatially complex structures, particularly at the isthmus, with substrate for multiple VT morphologies after a single ischemic episode. Magnetic resonance–based visualization of scar morphology would potentially contribute to preprocedural planning for catheter ablation of scar-related, unmappable VT.</abstract><cop>Hagerstown, MD</cop><pub>American Heart Association, Inc</pub><pmid>17916777</pmid><doi>10.1161/CIRCRESAHA.107.158980</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-7330
ispartof Circulation research, 2007-10, Vol.101 (9), p.939-947
issn 0009-7330
1524-4571
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2842927
source MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Complete
subjects Animals
Biological and medical sciences
Cardiac dysrhythmias
Cardiology. Vascular system
Catheter Ablation - adverse effects
Cicatrix - etiology
Cicatrix - pathology
Cicatrix - physiopathology
Electrodes
Fundamental and applied biological sciences. Psychology
Heart
Magnetic Resonance Imaging - methods
Medical sciences
Myocardium - pathology
Sus scrofa
Tachycardia, Ventricular - etiology
Tachycardia, Ventricular - pathology
Tachycardia, Ventricular - physiopathology
Vertebrates: cardiovascular system
title Magnetic Resonance–Based Anatomical Analysis of Scar-Related Ventricular Tachycardia: Implications for Catheter Ablation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T23%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Resonance%E2%80%93Based%20Anatomical%20Analysis%20of%20Scar-Related%20Ventricular%20Tachycardia:%20Implications%20for%20Catheter%20Ablation&rft.jtitle=Circulation%20research&rft.au=Ashikaga,%20Hiroshi&rft.date=2007-10-26&rft.volume=101&rft.issue=9&rft.spage=939&rft.epage=947&rft.pages=939-947&rft.issn=0009-7330&rft.eissn=1524-4571&rft.coden=CIRUAL&rft_id=info:doi/10.1161/CIRCRESAHA.107.158980&rft_dat=%3Cproquest_pubme%3E68450464%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68450464&rft_id=info:pmid/17916777&rfr_iscdi=true