Telomeres: protecting chromosomes against genome instability
Key Points Telomeric proteins control telomere length and telomere integrity. The six bona fide telomeric binding proteins form shelterin, a complex that maintains chromosome end integrity. Telomere dysfunction can be caused by loss of telomeric repeats or by loss of protective features, both of whi...
Gespeichert in:
Veröffentlicht in: | Nature reviews. Molecular cell biology 2010-03, Vol.11 (3), p.171-181 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 181 |
---|---|
container_issue | 3 |
container_start_page | 171 |
container_title | Nature reviews. Molecular cell biology |
container_volume | 11 |
creator | Karlseder, Jan O'Sullivan, Roderick J |
description | Key Points
Telomeric proteins control telomere length and telomere integrity. The six
bona fide
telomeric binding proteins form shelterin, a complex that maintains chromosome end integrity.
Telomere dysfunction can be caused by loss of telomeric repeats or by loss of protective features, both of which are essential for telomere function.
Functional telomeres interact with the DNA damage machinery, but the machinery is prevented from processing these ends. Dysfunctional telomeres are recognized as damage and repaired.
Repair of dysfunctional telomeres by fusion propels cells into breakage–fusion–bridge cycles, resulting in unequal distribution of genetic material into daughter cells and, therefore, genome instability.
Telomere dysfunction and the failure to maintain telomere length is emerging as being the cause of several diseases.
An unstable genome is a hallmark of many cancer cells. Telomeres prevent the ends of linear chromosomes from being recognized as damaged DNA, thus protecting them from DNA repair mechanisms and inhibiting the breakage–fusion–bridge cycles that cause genome instability.
The natural ends of linear chromosomes require unique genetic and structural adaptations to facilitate the protection of genetic material. This is achieved by the sequestration of the telomeric sequence into a protective nucleoprotein cap that masks the ends from constitutive exposure to the DNA damage response machinery. When telomeres are unmasked, genome instability arises. Balancing capping requirements with telomere replication and the enzymatic processing steps that are obligatory for telomere function is a complex problem. Telomeric proteins and their interacting factors create an environment at chromosome ends that inhibits DNA repair; however, the repair machinery is essential for proper telomere function. |
doi_str_mv | 10.1038/nrm2848 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2842081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A219832862</galeid><sourcerecordid>A219832862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c648t-ca5eb6fa5f5f513cc49a8f01d70f78bbe2ea0dfcdec15e7710d80abeb5d790c83</originalsourceid><addsrcrecordid>eNp9km1rFDEQx4MotlbxEyiLgg8vrk6ym01ORCjFh0JB0Po6ZLOTbcpuciZZsd_eHHc9PRWZF5lkfvMn82cIeUjhmEItX_k4MdnIW-SQNoIuACTc3uWCHZB7KV0B0JYKfpccMKCMUykPyZsLHMOEEdPrahVDRpOdHypzGcMUUqmkSg_a-ZSrAX25V-tcd250-fo-uWP1mPDB9jwiX9-_uzj9uDj_9OHs9OR8YdpG5oXRHLvWam5L0NqYZqmlBdoLsEJ2HTLU0FvTo6EchaDQS9AddrwXSzCyPiJvN7qruZuwN-hz1KNaRTfpeK2Cdmq_4t2lGsJ3VTxhIGkReL4ViOHbjCmrySWD46g9hjkpUdetqGnLC_nsvySjzZJyaAr45A_wKszRFxsUY03bMsGhQE830KBHVM7bUL5n1orqhNGlrJlsWaGO_0GV6HFyJni0rrzvNbzcayhMxh950HNK6uzL5312O7qJIaWIdmcbBbXeHbXdnUI-_t3lHXezLAV4sQFSKfkB46-R_9Z6tEG9znPEndZN_SewXNaJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>224662750</pqid></control><display><type>article</type><title>Telomeres: protecting chromosomes against genome instability</title><source>MEDLINE</source><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Karlseder, Jan ; O'Sullivan, Roderick J</creator><creatorcontrib>Karlseder, Jan ; O'Sullivan, Roderick J</creatorcontrib><description>Key Points
Telomeric proteins control telomere length and telomere integrity. The six
bona fide
telomeric binding proteins form shelterin, a complex that maintains chromosome end integrity.
Telomere dysfunction can be caused by loss of telomeric repeats or by loss of protective features, both of which are essential for telomere function.
Functional telomeres interact with the DNA damage machinery, but the machinery is prevented from processing these ends. Dysfunctional telomeres are recognized as damage and repaired.
Repair of dysfunctional telomeres by fusion propels cells into breakage–fusion–bridge cycles, resulting in unequal distribution of genetic material into daughter cells and, therefore, genome instability.
Telomere dysfunction and the failure to maintain telomere length is emerging as being the cause of several diseases.
An unstable genome is a hallmark of many cancer cells. Telomeres prevent the ends of linear chromosomes from being recognized as damaged DNA, thus protecting them from DNA repair mechanisms and inhibiting the breakage–fusion–bridge cycles that cause genome instability.
The natural ends of linear chromosomes require unique genetic and structural adaptations to facilitate the protection of genetic material. This is achieved by the sequestration of the telomeric sequence into a protective nucleoprotein cap that masks the ends from constitutive exposure to the DNA damage response machinery. When telomeres are unmasked, genome instability arises. Balancing capping requirements with telomere replication and the enzymatic processing steps that are obligatory for telomere function is a complex problem. Telomeric proteins and their interacting factors create an environment at chromosome ends that inhibits DNA repair; however, the repair machinery is essential for proper telomere function.</description><identifier>ISSN: 1471-0072</identifier><identifier>EISSN: 1471-0080</identifier><identifier>DOI: 10.1038/nrm2848</identifier><identifier>PMID: 20125188</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/737/211 ; 631/337/1427/2566 ; 631/80/103/560 ; Ataxia ; Base Sequence ; Biochemistry ; Biomedical and Life Sciences ; Cancer Research ; Causes of ; Cell Biology ; Cell cycle ; Cell division ; Chromosomes ; Deoxyribonucleic acid ; Developmental Biology ; DNA ; DNA Damage ; DNA Repair ; Genomes ; Genomic Instability ; Humans ; Life Sciences ; Models, Biological ; Physiological aspects ; Proteins ; Repetitive Sequences, Nucleic Acid - genetics ; review-article ; Stem Cells ; Structure ; Telomerase ; Telomerase - metabolism ; Telomere - genetics ; Telomere - metabolism ; Telomere-Binding Proteins - metabolism ; Telomeres ; Yeast</subject><ispartof>Nature reviews. Molecular cell biology, 2010-03, Vol.11 (3), p.171-181</ispartof><rights>Springer Nature Limited 2010</rights><rights>COPYRIGHT 2010 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c648t-ca5eb6fa5f5f513cc49a8f01d70f78bbe2ea0dfcdec15e7710d80abeb5d790c83</citedby><cites>FETCH-LOGICAL-c648t-ca5eb6fa5f5f513cc49a8f01d70f78bbe2ea0dfcdec15e7710d80abeb5d790c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nrm2848$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nrm2848$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20125188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karlseder, Jan</creatorcontrib><creatorcontrib>O'Sullivan, Roderick J</creatorcontrib><title>Telomeres: protecting chromosomes against genome instability</title><title>Nature reviews. Molecular cell biology</title><addtitle>Nat Rev Mol Cell Biol</addtitle><addtitle>Nat Rev Mol Cell Biol</addtitle><description>Key Points
Telomeric proteins control telomere length and telomere integrity. The six
bona fide
telomeric binding proteins form shelterin, a complex that maintains chromosome end integrity.
Telomere dysfunction can be caused by loss of telomeric repeats or by loss of protective features, both of which are essential for telomere function.
Functional telomeres interact with the DNA damage machinery, but the machinery is prevented from processing these ends. Dysfunctional telomeres are recognized as damage and repaired.
Repair of dysfunctional telomeres by fusion propels cells into breakage–fusion–bridge cycles, resulting in unequal distribution of genetic material into daughter cells and, therefore, genome instability.
Telomere dysfunction and the failure to maintain telomere length is emerging as being the cause of several diseases.
An unstable genome is a hallmark of many cancer cells. Telomeres prevent the ends of linear chromosomes from being recognized as damaged DNA, thus protecting them from DNA repair mechanisms and inhibiting the breakage–fusion–bridge cycles that cause genome instability.
The natural ends of linear chromosomes require unique genetic and structural adaptations to facilitate the protection of genetic material. This is achieved by the sequestration of the telomeric sequence into a protective nucleoprotein cap that masks the ends from constitutive exposure to the DNA damage response machinery. When telomeres are unmasked, genome instability arises. Balancing capping requirements with telomere replication and the enzymatic processing steps that are obligatory for telomere function is a complex problem. Telomeric proteins and their interacting factors create an environment at chromosome ends that inhibits DNA repair; however, the repair machinery is essential for proper telomere function.</description><subject>631/208/737/211</subject><subject>631/337/1427/2566</subject><subject>631/80/103/560</subject><subject>Ataxia</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Causes of</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>Genomes</subject><subject>Genomic Instability</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Models, Biological</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Repetitive Sequences, Nucleic Acid - genetics</subject><subject>review-article</subject><subject>Stem Cells</subject><subject>Structure</subject><subject>Telomerase</subject><subject>Telomerase - metabolism</subject><subject>Telomere - genetics</subject><subject>Telomere - metabolism</subject><subject>Telomere-Binding Proteins - metabolism</subject><subject>Telomeres</subject><subject>Yeast</subject><issn>1471-0072</issn><issn>1471-0080</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9km1rFDEQx4MotlbxEyiLgg8vrk6ym01ORCjFh0JB0Po6ZLOTbcpuciZZsd_eHHc9PRWZF5lkfvMn82cIeUjhmEItX_k4MdnIW-SQNoIuACTc3uWCHZB7KV0B0JYKfpccMKCMUykPyZsLHMOEEdPrahVDRpOdHypzGcMUUqmkSg_a-ZSrAX25V-tcd250-fo-uWP1mPDB9jwiX9-_uzj9uDj_9OHs9OR8YdpG5oXRHLvWam5L0NqYZqmlBdoLsEJ2HTLU0FvTo6EchaDQS9AddrwXSzCyPiJvN7qruZuwN-hz1KNaRTfpeK2Cdmq_4t2lGsJ3VTxhIGkReL4ViOHbjCmrySWD46g9hjkpUdetqGnLC_nsvySjzZJyaAr45A_wKszRFxsUY03bMsGhQE830KBHVM7bUL5n1orqhNGlrJlsWaGO_0GV6HFyJni0rrzvNbzcayhMxh950HNK6uzL5312O7qJIaWIdmcbBbXeHbXdnUI-_t3lHXezLAV4sQFSKfkB46-R_9Z6tEG9znPEndZN_SewXNaJ</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Karlseder, Jan</creator><creator>O'Sullivan, Roderick J</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100301</creationdate><title>Telomeres: protecting chromosomes against genome instability</title><author>Karlseder, Jan ; O'Sullivan, Roderick J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c648t-ca5eb6fa5f5f513cc49a8f01d70f78bbe2ea0dfcdec15e7710d80abeb5d790c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>631/208/737/211</topic><topic>631/337/1427/2566</topic><topic>631/80/103/560</topic><topic>Ataxia</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Causes of</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>Genomes</topic><topic>Genomic Instability</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Models, Biological</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Repetitive Sequences, Nucleic Acid - genetics</topic><topic>review-article</topic><topic>Stem Cells</topic><topic>Structure</topic><topic>Telomerase</topic><topic>Telomerase - metabolism</topic><topic>Telomere - genetics</topic><topic>Telomere - metabolism</topic><topic>Telomere-Binding Proteins - metabolism</topic><topic>Telomeres</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karlseder, Jan</creatorcontrib><creatorcontrib>O'Sullivan, Roderick J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature reviews. Molecular cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karlseder, Jan</au><au>O'Sullivan, Roderick J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Telomeres: protecting chromosomes against genome instability</atitle><jtitle>Nature reviews. Molecular cell biology</jtitle><stitle>Nat Rev Mol Cell Biol</stitle><addtitle>Nat Rev Mol Cell Biol</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>11</volume><issue>3</issue><spage>171</spage><epage>181</epage><pages>171-181</pages><issn>1471-0072</issn><eissn>1471-0080</eissn><abstract>Key Points
Telomeric proteins control telomere length and telomere integrity. The six
bona fide
telomeric binding proteins form shelterin, a complex that maintains chromosome end integrity.
Telomere dysfunction can be caused by loss of telomeric repeats or by loss of protective features, both of which are essential for telomere function.
Functional telomeres interact with the DNA damage machinery, but the machinery is prevented from processing these ends. Dysfunctional telomeres are recognized as damage and repaired.
Repair of dysfunctional telomeres by fusion propels cells into breakage–fusion–bridge cycles, resulting in unequal distribution of genetic material into daughter cells and, therefore, genome instability.
Telomere dysfunction and the failure to maintain telomere length is emerging as being the cause of several diseases.
An unstable genome is a hallmark of many cancer cells. Telomeres prevent the ends of linear chromosomes from being recognized as damaged DNA, thus protecting them from DNA repair mechanisms and inhibiting the breakage–fusion–bridge cycles that cause genome instability.
The natural ends of linear chromosomes require unique genetic and structural adaptations to facilitate the protection of genetic material. This is achieved by the sequestration of the telomeric sequence into a protective nucleoprotein cap that masks the ends from constitutive exposure to the DNA damage response machinery. When telomeres are unmasked, genome instability arises. Balancing capping requirements with telomere replication and the enzymatic processing steps that are obligatory for telomere function is a complex problem. Telomeric proteins and their interacting factors create an environment at chromosome ends that inhibits DNA repair; however, the repair machinery is essential for proper telomere function.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20125188</pmid><doi>10.1038/nrm2848</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-0072 |
ispartof | Nature reviews. Molecular cell biology, 2010-03, Vol.11 (3), p.171-181 |
issn | 1471-0072 1471-0080 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2842081 |
source | MEDLINE; Nature; Springer Nature - Complete Springer Journals |
subjects | 631/208/737/211 631/337/1427/2566 631/80/103/560 Ataxia Base Sequence Biochemistry Biomedical and Life Sciences Cancer Research Causes of Cell Biology Cell cycle Cell division Chromosomes Deoxyribonucleic acid Developmental Biology DNA DNA Damage DNA Repair Genomes Genomic Instability Humans Life Sciences Models, Biological Physiological aspects Proteins Repetitive Sequences, Nucleic Acid - genetics review-article Stem Cells Structure Telomerase Telomerase - metabolism Telomere - genetics Telomere - metabolism Telomere-Binding Proteins - metabolism Telomeres Yeast |
title | Telomeres: protecting chromosomes against genome instability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Telomeres:%20protecting%20chromosomes%20against%20genome%20instability&rft.jtitle=Nature%20reviews.%20Molecular%20cell%20biology&rft.au=Karlseder,%20Jan&rft.date=2010-03-01&rft.volume=11&rft.issue=3&rft.spage=171&rft.epage=181&rft.pages=171-181&rft.issn=1471-0072&rft.eissn=1471-0080&rft_id=info:doi/10.1038/nrm2848&rft_dat=%3Cgale_pubme%3EA219832862%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=224662750&rft_id=info:pmid/20125188&rft_galeid=A219832862&rfr_iscdi=true |