Telomeres: protecting chromosomes against genome instability

Key Points Telomeric proteins control telomere length and telomere integrity. The six bona fide telomeric binding proteins form shelterin, a complex that maintains chromosome end integrity. Telomere dysfunction can be caused by loss of telomeric repeats or by loss of protective features, both of whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Molecular cell biology 2010-03, Vol.11 (3), p.171-181
Hauptverfasser: Karlseder, Jan, O'Sullivan, Roderick J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue 3
container_start_page 171
container_title Nature reviews. Molecular cell biology
container_volume 11
creator Karlseder, Jan
O'Sullivan, Roderick J
description Key Points Telomeric proteins control telomere length and telomere integrity. The six bona fide telomeric binding proteins form shelterin, a complex that maintains chromosome end integrity. Telomere dysfunction can be caused by loss of telomeric repeats or by loss of protective features, both of which are essential for telomere function. Functional telomeres interact with the DNA damage machinery, but the machinery is prevented from processing these ends. Dysfunctional telomeres are recognized as damage and repaired. Repair of dysfunctional telomeres by fusion propels cells into breakage–fusion–bridge cycles, resulting in unequal distribution of genetic material into daughter cells and, therefore, genome instability. Telomere dysfunction and the failure to maintain telomere length is emerging as being the cause of several diseases. An unstable genome is a hallmark of many cancer cells. Telomeres prevent the ends of linear chromosomes from being recognized as damaged DNA, thus protecting them from DNA repair mechanisms and inhibiting the breakage–fusion–bridge cycles that cause genome instability. The natural ends of linear chromosomes require unique genetic and structural adaptations to facilitate the protection of genetic material. This is achieved by the sequestration of the telomeric sequence into a protective nucleoprotein cap that masks the ends from constitutive exposure to the DNA damage response machinery. When telomeres are unmasked, genome instability arises. Balancing capping requirements with telomere replication and the enzymatic processing steps that are obligatory for telomere function is a complex problem. Telomeric proteins and their interacting factors create an environment at chromosome ends that inhibits DNA repair; however, the repair machinery is essential for proper telomere function.
doi_str_mv 10.1038/nrm2848
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2842081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A219832862</galeid><sourcerecordid>A219832862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c648t-ca5eb6fa5f5f513cc49a8f01d70f78bbe2ea0dfcdec15e7710d80abeb5d790c83</originalsourceid><addsrcrecordid>eNp9km1rFDEQx4MotlbxEyiLgg8vrk6ym01ORCjFh0JB0Po6ZLOTbcpuciZZsd_eHHc9PRWZF5lkfvMn82cIeUjhmEItX_k4MdnIW-SQNoIuACTc3uWCHZB7KV0B0JYKfpccMKCMUykPyZsLHMOEEdPrahVDRpOdHypzGcMUUqmkSg_a-ZSrAX25V-tcd250-fo-uWP1mPDB9jwiX9-_uzj9uDj_9OHs9OR8YdpG5oXRHLvWam5L0NqYZqmlBdoLsEJ2HTLU0FvTo6EchaDQS9AddrwXSzCyPiJvN7qruZuwN-hz1KNaRTfpeK2Cdmq_4t2lGsJ3VTxhIGkReL4ViOHbjCmrySWD46g9hjkpUdetqGnLC_nsvySjzZJyaAr45A_wKszRFxsUY03bMsGhQE830KBHVM7bUL5n1orqhNGlrJlsWaGO_0GV6HFyJni0rrzvNbzcayhMxh950HNK6uzL5312O7qJIaWIdmcbBbXeHbXdnUI-_t3lHXezLAV4sQFSKfkB46-R_9Z6tEG9znPEndZN_SewXNaJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>224662750</pqid></control><display><type>article</type><title>Telomeres: protecting chromosomes against genome instability</title><source>MEDLINE</source><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Karlseder, Jan ; O'Sullivan, Roderick J</creator><creatorcontrib>Karlseder, Jan ; O'Sullivan, Roderick J</creatorcontrib><description>Key Points Telomeric proteins control telomere length and telomere integrity. The six bona fide telomeric binding proteins form shelterin, a complex that maintains chromosome end integrity. Telomere dysfunction can be caused by loss of telomeric repeats or by loss of protective features, both of which are essential for telomere function. Functional telomeres interact with the DNA damage machinery, but the machinery is prevented from processing these ends. Dysfunctional telomeres are recognized as damage and repaired. Repair of dysfunctional telomeres by fusion propels cells into breakage–fusion–bridge cycles, resulting in unequal distribution of genetic material into daughter cells and, therefore, genome instability. Telomere dysfunction and the failure to maintain telomere length is emerging as being the cause of several diseases. An unstable genome is a hallmark of many cancer cells. Telomeres prevent the ends of linear chromosomes from being recognized as damaged DNA, thus protecting them from DNA repair mechanisms and inhibiting the breakage–fusion–bridge cycles that cause genome instability. The natural ends of linear chromosomes require unique genetic and structural adaptations to facilitate the protection of genetic material. This is achieved by the sequestration of the telomeric sequence into a protective nucleoprotein cap that masks the ends from constitutive exposure to the DNA damage response machinery. When telomeres are unmasked, genome instability arises. Balancing capping requirements with telomere replication and the enzymatic processing steps that are obligatory for telomere function is a complex problem. Telomeric proteins and their interacting factors create an environment at chromosome ends that inhibits DNA repair; however, the repair machinery is essential for proper telomere function.</description><identifier>ISSN: 1471-0072</identifier><identifier>EISSN: 1471-0080</identifier><identifier>DOI: 10.1038/nrm2848</identifier><identifier>PMID: 20125188</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/737/211 ; 631/337/1427/2566 ; 631/80/103/560 ; Ataxia ; Base Sequence ; Biochemistry ; Biomedical and Life Sciences ; Cancer Research ; Causes of ; Cell Biology ; Cell cycle ; Cell division ; Chromosomes ; Deoxyribonucleic acid ; Developmental Biology ; DNA ; DNA Damage ; DNA Repair ; Genomes ; Genomic Instability ; Humans ; Life Sciences ; Models, Biological ; Physiological aspects ; Proteins ; Repetitive Sequences, Nucleic Acid - genetics ; review-article ; Stem Cells ; Structure ; Telomerase ; Telomerase - metabolism ; Telomere - genetics ; Telomere - metabolism ; Telomere-Binding Proteins - metabolism ; Telomeres ; Yeast</subject><ispartof>Nature reviews. Molecular cell biology, 2010-03, Vol.11 (3), p.171-181</ispartof><rights>Springer Nature Limited 2010</rights><rights>COPYRIGHT 2010 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c648t-ca5eb6fa5f5f513cc49a8f01d70f78bbe2ea0dfcdec15e7710d80abeb5d790c83</citedby><cites>FETCH-LOGICAL-c648t-ca5eb6fa5f5f513cc49a8f01d70f78bbe2ea0dfcdec15e7710d80abeb5d790c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nrm2848$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nrm2848$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20125188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karlseder, Jan</creatorcontrib><creatorcontrib>O'Sullivan, Roderick J</creatorcontrib><title>Telomeres: protecting chromosomes against genome instability</title><title>Nature reviews. Molecular cell biology</title><addtitle>Nat Rev Mol Cell Biol</addtitle><addtitle>Nat Rev Mol Cell Biol</addtitle><description>Key Points Telomeric proteins control telomere length and telomere integrity. The six bona fide telomeric binding proteins form shelterin, a complex that maintains chromosome end integrity. Telomere dysfunction can be caused by loss of telomeric repeats or by loss of protective features, both of which are essential for telomere function. Functional telomeres interact with the DNA damage machinery, but the machinery is prevented from processing these ends. Dysfunctional telomeres are recognized as damage and repaired. Repair of dysfunctional telomeres by fusion propels cells into breakage–fusion–bridge cycles, resulting in unequal distribution of genetic material into daughter cells and, therefore, genome instability. Telomere dysfunction and the failure to maintain telomere length is emerging as being the cause of several diseases. An unstable genome is a hallmark of many cancer cells. Telomeres prevent the ends of linear chromosomes from being recognized as damaged DNA, thus protecting them from DNA repair mechanisms and inhibiting the breakage–fusion–bridge cycles that cause genome instability. The natural ends of linear chromosomes require unique genetic and structural adaptations to facilitate the protection of genetic material. This is achieved by the sequestration of the telomeric sequence into a protective nucleoprotein cap that masks the ends from constitutive exposure to the DNA damage response machinery. When telomeres are unmasked, genome instability arises. Balancing capping requirements with telomere replication and the enzymatic processing steps that are obligatory for telomere function is a complex problem. Telomeric proteins and their interacting factors create an environment at chromosome ends that inhibits DNA repair; however, the repair machinery is essential for proper telomere function.</description><subject>631/208/737/211</subject><subject>631/337/1427/2566</subject><subject>631/80/103/560</subject><subject>Ataxia</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Causes of</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>Genomes</subject><subject>Genomic Instability</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Models, Biological</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Repetitive Sequences, Nucleic Acid - genetics</subject><subject>review-article</subject><subject>Stem Cells</subject><subject>Structure</subject><subject>Telomerase</subject><subject>Telomerase - metabolism</subject><subject>Telomere - genetics</subject><subject>Telomere - metabolism</subject><subject>Telomere-Binding Proteins - metabolism</subject><subject>Telomeres</subject><subject>Yeast</subject><issn>1471-0072</issn><issn>1471-0080</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9km1rFDEQx4MotlbxEyiLgg8vrk6ym01ORCjFh0JB0Po6ZLOTbcpuciZZsd_eHHc9PRWZF5lkfvMn82cIeUjhmEItX_k4MdnIW-SQNoIuACTc3uWCHZB7KV0B0JYKfpccMKCMUykPyZsLHMOEEdPrahVDRpOdHypzGcMUUqmkSg_a-ZSrAX25V-tcd250-fo-uWP1mPDB9jwiX9-_uzj9uDj_9OHs9OR8YdpG5oXRHLvWam5L0NqYZqmlBdoLsEJ2HTLU0FvTo6EchaDQS9AddrwXSzCyPiJvN7qruZuwN-hz1KNaRTfpeK2Cdmq_4t2lGsJ3VTxhIGkReL4ViOHbjCmrySWD46g9hjkpUdetqGnLC_nsvySjzZJyaAr45A_wKszRFxsUY03bMsGhQE830KBHVM7bUL5n1orqhNGlrJlsWaGO_0GV6HFyJni0rrzvNbzcayhMxh950HNK6uzL5312O7qJIaWIdmcbBbXeHbXdnUI-_t3lHXezLAV4sQFSKfkB46-R_9Z6tEG9znPEndZN_SewXNaJ</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Karlseder, Jan</creator><creator>O'Sullivan, Roderick J</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100301</creationdate><title>Telomeres: protecting chromosomes against genome instability</title><author>Karlseder, Jan ; O'Sullivan, Roderick J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c648t-ca5eb6fa5f5f513cc49a8f01d70f78bbe2ea0dfcdec15e7710d80abeb5d790c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>631/208/737/211</topic><topic>631/337/1427/2566</topic><topic>631/80/103/560</topic><topic>Ataxia</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Causes of</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>Genomes</topic><topic>Genomic Instability</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Models, Biological</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Repetitive Sequences, Nucleic Acid - genetics</topic><topic>review-article</topic><topic>Stem Cells</topic><topic>Structure</topic><topic>Telomerase</topic><topic>Telomerase - metabolism</topic><topic>Telomere - genetics</topic><topic>Telomere - metabolism</topic><topic>Telomere-Binding Proteins - metabolism</topic><topic>Telomeres</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karlseder, Jan</creatorcontrib><creatorcontrib>O'Sullivan, Roderick J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature reviews. Molecular cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karlseder, Jan</au><au>O'Sullivan, Roderick J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Telomeres: protecting chromosomes against genome instability</atitle><jtitle>Nature reviews. Molecular cell biology</jtitle><stitle>Nat Rev Mol Cell Biol</stitle><addtitle>Nat Rev Mol Cell Biol</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>11</volume><issue>3</issue><spage>171</spage><epage>181</epage><pages>171-181</pages><issn>1471-0072</issn><eissn>1471-0080</eissn><abstract>Key Points Telomeric proteins control telomere length and telomere integrity. The six bona fide telomeric binding proteins form shelterin, a complex that maintains chromosome end integrity. Telomere dysfunction can be caused by loss of telomeric repeats or by loss of protective features, both of which are essential for telomere function. Functional telomeres interact with the DNA damage machinery, but the machinery is prevented from processing these ends. Dysfunctional telomeres are recognized as damage and repaired. Repair of dysfunctional telomeres by fusion propels cells into breakage–fusion–bridge cycles, resulting in unequal distribution of genetic material into daughter cells and, therefore, genome instability. Telomere dysfunction and the failure to maintain telomere length is emerging as being the cause of several diseases. An unstable genome is a hallmark of many cancer cells. Telomeres prevent the ends of linear chromosomes from being recognized as damaged DNA, thus protecting them from DNA repair mechanisms and inhibiting the breakage–fusion–bridge cycles that cause genome instability. The natural ends of linear chromosomes require unique genetic and structural adaptations to facilitate the protection of genetic material. This is achieved by the sequestration of the telomeric sequence into a protective nucleoprotein cap that masks the ends from constitutive exposure to the DNA damage response machinery. When telomeres are unmasked, genome instability arises. Balancing capping requirements with telomere replication and the enzymatic processing steps that are obligatory for telomere function is a complex problem. Telomeric proteins and their interacting factors create an environment at chromosome ends that inhibits DNA repair; however, the repair machinery is essential for proper telomere function.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20125188</pmid><doi>10.1038/nrm2848</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-0072
ispartof Nature reviews. Molecular cell biology, 2010-03, Vol.11 (3), p.171-181
issn 1471-0072
1471-0080
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2842081
source MEDLINE; Nature; Springer Nature - Complete Springer Journals
subjects 631/208/737/211
631/337/1427/2566
631/80/103/560
Ataxia
Base Sequence
Biochemistry
Biomedical and Life Sciences
Cancer Research
Causes of
Cell Biology
Cell cycle
Cell division
Chromosomes
Deoxyribonucleic acid
Developmental Biology
DNA
DNA Damage
DNA Repair
Genomes
Genomic Instability
Humans
Life Sciences
Models, Biological
Physiological aspects
Proteins
Repetitive Sequences, Nucleic Acid - genetics
review-article
Stem Cells
Structure
Telomerase
Telomerase - metabolism
Telomere - genetics
Telomere - metabolism
Telomere-Binding Proteins - metabolism
Telomeres
Yeast
title Telomeres: protecting chromosomes against genome instability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Telomeres:%20protecting%20chromosomes%20against%20genome%20instability&rft.jtitle=Nature%20reviews.%20Molecular%20cell%20biology&rft.au=Karlseder,%20Jan&rft.date=2010-03-01&rft.volume=11&rft.issue=3&rft.spage=171&rft.epage=181&rft.pages=171-181&rft.issn=1471-0072&rft.eissn=1471-0080&rft_id=info:doi/10.1038/nrm2848&rft_dat=%3Cgale_pubme%3EA219832862%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=224662750&rft_id=info:pmid/20125188&rft_galeid=A219832862&rfr_iscdi=true