Small Multifunctional Nanoclusters (Nanoroses) for Targeted Cellular Imaging and Therapy
The ability of 20−50 nm nanoparticles to target and modulate the biology of specific types of cells will enable major advancements in cellular imaging and therapy in cancer and atherosclerosis. A key challenge is to load an extremely high degree of targeting, imaging, and therapeutic functionality i...
Gespeichert in:
Veröffentlicht in: | ACS nano 2009-09, Vol.3 (9), p.2686-2696 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2696 |
---|---|
container_issue | 9 |
container_start_page | 2686 |
container_title | ACS nano |
container_volume | 3 |
creator | Ma, Li Leo Feldman, Marc D Tam, Jasmine M Paranjape, Amit S Cheruku, Kiran K Larson, Timothy A Tam, Justina O Ingram, Davis R Paramita, Vidia Villard, Joseph W Jenkins, James T Wang, Tianyi Clarke, Geoffrey D Asmis, Reto Sokolov, Konstantin Chandrasekar, Bysani Milner, Thomas E Johnston, Keith P |
description | The ability of 20−50 nm nanoparticles to target and modulate the biology of specific types of cells will enable major advancements in cellular imaging and therapy in cancer and atherosclerosis. A key challenge is to load an extremely high degree of targeting, imaging, and therapeutic functionality into small, yet stable particles. Herein we report ∼30 nm stable uniformly sized near-infrared (NIR) active, superparamagnetic nanoclusters formed by kinetically controlled self-assembly of gold-coated iron oxide nanoparticles. The controlled assembly of nanocomposite particles into clusters with small primary particle spacings produces collective responses of the electrons that shift the absorbance into the NIR region. The nanoclusters of ∼70 iron oxide primary particles with thin gold coatings display intense NIR (700−850 nm) absorbance with a cross section of ∼10−14 m2. Because of the thin gold shells with an average thickness of only 2 nm, the r 2 spin−spin magnetic relaxivity is 219 mM−1 s−1, an order of magnitude larger than observed for typical iron oxide particles with thicker gold shells. Despite only 12% by weight polymeric stabilizer, the particle size and NIR absorbance change very little in deionized water over 8 months. High uptake of the nanoclusters by macrophages is facilitated by the dextran coating, producing intense NIR contrast in dark field and hyperspectral microscopy, both in cell culture and an in vivo rabbit model of atherosclerosis. Small nanoclusters with optical, magnetic, and therapeutic functionality, designed by assembly of nanoparticle building blocks, offer broad opportunities for targeted cellular imaging, therapy, and combined imaging and therapy. |
doi_str_mv | 10.1021/nn900440e |
format | Article |
fullrecord | <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2841963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a298189679</sourcerecordid><originalsourceid>FETCH-LOGICAL-a470t-f9fc6735e1f7e288d3fd96a05eaa9bc55c3a1f444bc14d53f6333e8087f6ddec3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMotlYP_gHJRbCH1aTJfuQiSPGjUPVghd7CNJtst2SzJdkV-u_d0lIVPGXCPPMO8yB0ScktJSN655wghHOij1CfCpZEJEvmx4c6pj10FsKKkDjN0uQU9ahIKRWc99H8owJr8Wtrm9K0TjVl7cDiN3C1sm1otA_4ZvvzddBhiE3t8Qx8oRud47G2trXg8aSConQFBpfj2VJ7WG_O0YkBG_TF_h2gz6fH2fglmr4_T8YP0wh4SprICKOSlMWamlSPsixnJhcJkFgDiIWKY8WAGs75QlGex8wkjDGdkSw1SZ5rxQbofpe7bheVzpV2jQcr176swG9kDaX823HlUhb1lxxlnIoubYCGuwDVnRi8NodZSuRWrzzo7dir38t-yL3PDrjeAaCCXNWt72SGf4K-AbcAhHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Small Multifunctional Nanoclusters (Nanoroses) for Targeted Cellular Imaging and Therapy</title><source>ACS Publications</source><source>MEDLINE</source><creator>Ma, Li Leo ; Feldman, Marc D ; Tam, Jasmine M ; Paranjape, Amit S ; Cheruku, Kiran K ; Larson, Timothy A ; Tam, Justina O ; Ingram, Davis R ; Paramita, Vidia ; Villard, Joseph W ; Jenkins, James T ; Wang, Tianyi ; Clarke, Geoffrey D ; Asmis, Reto ; Sokolov, Konstantin ; Chandrasekar, Bysani ; Milner, Thomas E ; Johnston, Keith P</creator><creatorcontrib>Ma, Li Leo ; Feldman, Marc D ; Tam, Jasmine M ; Paranjape, Amit S ; Cheruku, Kiran K ; Larson, Timothy A ; Tam, Justina O ; Ingram, Davis R ; Paramita, Vidia ; Villard, Joseph W ; Jenkins, James T ; Wang, Tianyi ; Clarke, Geoffrey D ; Asmis, Reto ; Sokolov, Konstantin ; Chandrasekar, Bysani ; Milner, Thomas E ; Johnston, Keith P</creatorcontrib><description>The ability of 20−50 nm nanoparticles to target and modulate the biology of specific types of cells will enable major advancements in cellular imaging and therapy in cancer and atherosclerosis. A key challenge is to load an extremely high degree of targeting, imaging, and therapeutic functionality into small, yet stable particles. Herein we report ∼30 nm stable uniformly sized near-infrared (NIR) active, superparamagnetic nanoclusters formed by kinetically controlled self-assembly of gold-coated iron oxide nanoparticles. The controlled assembly of nanocomposite particles into clusters with small primary particle spacings produces collective responses of the electrons that shift the absorbance into the NIR region. The nanoclusters of ∼70 iron oxide primary particles with thin gold coatings display intense NIR (700−850 nm) absorbance with a cross section of ∼10−14 m2. Because of the thin gold shells with an average thickness of only 2 nm, the r 2 spin−spin magnetic relaxivity is 219 mM−1 s−1, an order of magnitude larger than observed for typical iron oxide particles with thicker gold shells. Despite only 12% by weight polymeric stabilizer, the particle size and NIR absorbance change very little in deionized water over 8 months. High uptake of the nanoclusters by macrophages is facilitated by the dextran coating, producing intense NIR contrast in dark field and hyperspectral microscopy, both in cell culture and an in vivo rabbit model of atherosclerosis. Small nanoclusters with optical, magnetic, and therapeutic functionality, designed by assembly of nanoparticle building blocks, offer broad opportunities for targeted cellular imaging, therapy, and combined imaging and therapy.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn900440e</identifier><identifier>PMID: 19711944</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Aorta - metabolism ; Aorta - pathology ; Atherosclerosis - metabolism ; Atherosclerosis - pathology ; Atherosclerosis - therapy ; Biological Transport ; Cell Line ; Ferric Compounds - chemistry ; Ferric Compounds - metabolism ; Gold - chemistry ; Humans ; Macrophages - metabolism ; Magnetics ; Nanoparticles - chemistry ; Particle Size ; Rabbits ; Spectrophotometry, Infrared ; Spectrophotometry, Ultraviolet ; Surface Properties</subject><ispartof>ACS nano, 2009-09, Vol.3 (9), p.2686-2696</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a470t-f9fc6735e1f7e288d3fd96a05eaa9bc55c3a1f444bc14d53f6333e8087f6ddec3</citedby><cites>FETCH-LOGICAL-a470t-f9fc6735e1f7e288d3fd96a05eaa9bc55c3a1f444bc14d53f6333e8087f6ddec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn900440e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn900440e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19711944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Li Leo</creatorcontrib><creatorcontrib>Feldman, Marc D</creatorcontrib><creatorcontrib>Tam, Jasmine M</creatorcontrib><creatorcontrib>Paranjape, Amit S</creatorcontrib><creatorcontrib>Cheruku, Kiran K</creatorcontrib><creatorcontrib>Larson, Timothy A</creatorcontrib><creatorcontrib>Tam, Justina O</creatorcontrib><creatorcontrib>Ingram, Davis R</creatorcontrib><creatorcontrib>Paramita, Vidia</creatorcontrib><creatorcontrib>Villard, Joseph W</creatorcontrib><creatorcontrib>Jenkins, James T</creatorcontrib><creatorcontrib>Wang, Tianyi</creatorcontrib><creatorcontrib>Clarke, Geoffrey D</creatorcontrib><creatorcontrib>Asmis, Reto</creatorcontrib><creatorcontrib>Sokolov, Konstantin</creatorcontrib><creatorcontrib>Chandrasekar, Bysani</creatorcontrib><creatorcontrib>Milner, Thomas E</creatorcontrib><creatorcontrib>Johnston, Keith P</creatorcontrib><title>Small Multifunctional Nanoclusters (Nanoroses) for Targeted Cellular Imaging and Therapy</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The ability of 20−50 nm nanoparticles to target and modulate the biology of specific types of cells will enable major advancements in cellular imaging and therapy in cancer and atherosclerosis. A key challenge is to load an extremely high degree of targeting, imaging, and therapeutic functionality into small, yet stable particles. Herein we report ∼30 nm stable uniformly sized near-infrared (NIR) active, superparamagnetic nanoclusters formed by kinetically controlled self-assembly of gold-coated iron oxide nanoparticles. The controlled assembly of nanocomposite particles into clusters with small primary particle spacings produces collective responses of the electrons that shift the absorbance into the NIR region. The nanoclusters of ∼70 iron oxide primary particles with thin gold coatings display intense NIR (700−850 nm) absorbance with a cross section of ∼10−14 m2. Because of the thin gold shells with an average thickness of only 2 nm, the r 2 spin−spin magnetic relaxivity is 219 mM−1 s−1, an order of magnitude larger than observed for typical iron oxide particles with thicker gold shells. Despite only 12% by weight polymeric stabilizer, the particle size and NIR absorbance change very little in deionized water over 8 months. High uptake of the nanoclusters by macrophages is facilitated by the dextran coating, producing intense NIR contrast in dark field and hyperspectral microscopy, both in cell culture and an in vivo rabbit model of atherosclerosis. Small nanoclusters with optical, magnetic, and therapeutic functionality, designed by assembly of nanoparticle building blocks, offer broad opportunities for targeted cellular imaging, therapy, and combined imaging and therapy.</description><subject>Animals</subject><subject>Aorta - metabolism</subject><subject>Aorta - pathology</subject><subject>Atherosclerosis - metabolism</subject><subject>Atherosclerosis - pathology</subject><subject>Atherosclerosis - therapy</subject><subject>Biological Transport</subject><subject>Cell Line</subject><subject>Ferric Compounds - chemistry</subject><subject>Ferric Compounds - metabolism</subject><subject>Gold - chemistry</subject><subject>Humans</subject><subject>Macrophages - metabolism</subject><subject>Magnetics</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Rabbits</subject><subject>Spectrophotometry, Infrared</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Surface Properties</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1LAzEQhoMotlYP_gHJRbCH1aTJfuQiSPGjUPVghd7CNJtst2SzJdkV-u_d0lIVPGXCPPMO8yB0ScktJSN655wghHOij1CfCpZEJEvmx4c6pj10FsKKkDjN0uQU9ahIKRWc99H8owJr8Wtrm9K0TjVl7cDiN3C1sm1otA_4ZvvzddBhiE3t8Qx8oRud47G2trXg8aSConQFBpfj2VJ7WG_O0YkBG_TF_h2gz6fH2fglmr4_T8YP0wh4SprICKOSlMWamlSPsixnJhcJkFgDiIWKY8WAGs75QlGex8wkjDGdkSw1SZ5rxQbofpe7bheVzpV2jQcr176swG9kDaX823HlUhb1lxxlnIoubYCGuwDVnRi8NodZSuRWrzzo7dir38t-yL3PDrjeAaCCXNWt72SGf4K-AbcAhHg</recordid><startdate>20090922</startdate><enddate>20090922</enddate><creator>Ma, Li Leo</creator><creator>Feldman, Marc D</creator><creator>Tam, Jasmine M</creator><creator>Paranjape, Amit S</creator><creator>Cheruku, Kiran K</creator><creator>Larson, Timothy A</creator><creator>Tam, Justina O</creator><creator>Ingram, Davis R</creator><creator>Paramita, Vidia</creator><creator>Villard, Joseph W</creator><creator>Jenkins, James T</creator><creator>Wang, Tianyi</creator><creator>Clarke, Geoffrey D</creator><creator>Asmis, Reto</creator><creator>Sokolov, Konstantin</creator><creator>Chandrasekar, Bysani</creator><creator>Milner, Thomas E</creator><creator>Johnston, Keith P</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20090922</creationdate><title>Small Multifunctional Nanoclusters (Nanoroses) for Targeted Cellular Imaging and Therapy</title><author>Ma, Li Leo ; Feldman, Marc D ; Tam, Jasmine M ; Paranjape, Amit S ; Cheruku, Kiran K ; Larson, Timothy A ; Tam, Justina O ; Ingram, Davis R ; Paramita, Vidia ; Villard, Joseph W ; Jenkins, James T ; Wang, Tianyi ; Clarke, Geoffrey D ; Asmis, Reto ; Sokolov, Konstantin ; Chandrasekar, Bysani ; Milner, Thomas E ; Johnston, Keith P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a470t-f9fc6735e1f7e288d3fd96a05eaa9bc55c3a1f444bc14d53f6333e8087f6ddec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Aorta - metabolism</topic><topic>Aorta - pathology</topic><topic>Atherosclerosis - metabolism</topic><topic>Atherosclerosis - pathology</topic><topic>Atherosclerosis - therapy</topic><topic>Biological Transport</topic><topic>Cell Line</topic><topic>Ferric Compounds - chemistry</topic><topic>Ferric Compounds - metabolism</topic><topic>Gold - chemistry</topic><topic>Humans</topic><topic>Macrophages - metabolism</topic><topic>Magnetics</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Rabbits</topic><topic>Spectrophotometry, Infrared</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Li Leo</creatorcontrib><creatorcontrib>Feldman, Marc D</creatorcontrib><creatorcontrib>Tam, Jasmine M</creatorcontrib><creatorcontrib>Paranjape, Amit S</creatorcontrib><creatorcontrib>Cheruku, Kiran K</creatorcontrib><creatorcontrib>Larson, Timothy A</creatorcontrib><creatorcontrib>Tam, Justina O</creatorcontrib><creatorcontrib>Ingram, Davis R</creatorcontrib><creatorcontrib>Paramita, Vidia</creatorcontrib><creatorcontrib>Villard, Joseph W</creatorcontrib><creatorcontrib>Jenkins, James T</creatorcontrib><creatorcontrib>Wang, Tianyi</creatorcontrib><creatorcontrib>Clarke, Geoffrey D</creatorcontrib><creatorcontrib>Asmis, Reto</creatorcontrib><creatorcontrib>Sokolov, Konstantin</creatorcontrib><creatorcontrib>Chandrasekar, Bysani</creatorcontrib><creatorcontrib>Milner, Thomas E</creatorcontrib><creatorcontrib>Johnston, Keith P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Li Leo</au><au>Feldman, Marc D</au><au>Tam, Jasmine M</au><au>Paranjape, Amit S</au><au>Cheruku, Kiran K</au><au>Larson, Timothy A</au><au>Tam, Justina O</au><au>Ingram, Davis R</au><au>Paramita, Vidia</au><au>Villard, Joseph W</au><au>Jenkins, James T</au><au>Wang, Tianyi</au><au>Clarke, Geoffrey D</au><au>Asmis, Reto</au><au>Sokolov, Konstantin</au><au>Chandrasekar, Bysani</au><au>Milner, Thomas E</au><au>Johnston, Keith P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small Multifunctional Nanoclusters (Nanoroses) for Targeted Cellular Imaging and Therapy</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2009-09-22</date><risdate>2009</risdate><volume>3</volume><issue>9</issue><spage>2686</spage><epage>2696</epage><pages>2686-2696</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The ability of 20−50 nm nanoparticles to target and modulate the biology of specific types of cells will enable major advancements in cellular imaging and therapy in cancer and atherosclerosis. A key challenge is to load an extremely high degree of targeting, imaging, and therapeutic functionality into small, yet stable particles. Herein we report ∼30 nm stable uniformly sized near-infrared (NIR) active, superparamagnetic nanoclusters formed by kinetically controlled self-assembly of gold-coated iron oxide nanoparticles. The controlled assembly of nanocomposite particles into clusters with small primary particle spacings produces collective responses of the electrons that shift the absorbance into the NIR region. The nanoclusters of ∼70 iron oxide primary particles with thin gold coatings display intense NIR (700−850 nm) absorbance with a cross section of ∼10−14 m2. Because of the thin gold shells with an average thickness of only 2 nm, the r 2 spin−spin magnetic relaxivity is 219 mM−1 s−1, an order of magnitude larger than observed for typical iron oxide particles with thicker gold shells. Despite only 12% by weight polymeric stabilizer, the particle size and NIR absorbance change very little in deionized water over 8 months. High uptake of the nanoclusters by macrophages is facilitated by the dextran coating, producing intense NIR contrast in dark field and hyperspectral microscopy, both in cell culture and an in vivo rabbit model of atherosclerosis. Small nanoclusters with optical, magnetic, and therapeutic functionality, designed by assembly of nanoparticle building blocks, offer broad opportunities for targeted cellular imaging, therapy, and combined imaging and therapy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>19711944</pmid><doi>10.1021/nn900440e</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2009-09, Vol.3 (9), p.2686-2696 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2841963 |
source | ACS Publications; MEDLINE |
subjects | Animals Aorta - metabolism Aorta - pathology Atherosclerosis - metabolism Atherosclerosis - pathology Atherosclerosis - therapy Biological Transport Cell Line Ferric Compounds - chemistry Ferric Compounds - metabolism Gold - chemistry Humans Macrophages - metabolism Magnetics Nanoparticles - chemistry Particle Size Rabbits Spectrophotometry, Infrared Spectrophotometry, Ultraviolet Surface Properties |
title | Small Multifunctional Nanoclusters (Nanoroses) for Targeted Cellular Imaging and Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A33%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20Multifunctional%20Nanoclusters%20(Nanoroses)%20for%20Targeted%20Cellular%20Imaging%20and%20Therapy&rft.jtitle=ACS%20nano&rft.au=Ma,%20Li%20Leo&rft.date=2009-09-22&rft.volume=3&rft.issue=9&rft.spage=2686&rft.epage=2696&rft.pages=2686-2696&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn900440e&rft_dat=%3Cacs_pubme%3Ea298189679%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19711944&rfr_iscdi=true |