Dopamine-Stimulated Dephosphorylation of Connexin 36 Mediates AII Amacrine Cell Uncoupling
Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the CNS and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensit...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2009-11, Vol.29 (47), p.14903-14911 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14911 |
---|---|
container_issue | 47 |
container_start_page | 14903 |
container_title | The Journal of neuroscience |
container_volume | 29 |
creator | Kothmann, W. Wade Massey, Stephen C O'Brien, John |
description | Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the CNS and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensitivity rod photoreceptor pathway. AII amacrine cell coupling strength is dynamically regulated by background light intensity, and uncoupling is thought to be mediated by dopamine signaling via D(1)-like receptors. One proposed mechanism for this uncoupling involves dopamine-stimulated phosphorylation of Cx36 at regulatory sites, mediated by protein kinase A. Here we provide evidence against this hypothesis and demonstrate a direct relationship between Cx36 phosphorylation and AII amacrine cell coupling strength. Dopamine receptor-driven uncoupling of the AII network results from protein kinase A activation of protein phosphatase 2A and subsequent dephosphorylation of Cx36. Protein phosphatase 1 activity negatively regulates this pathway. We also find that Cx36 gap junctions can exist in widely different phosphorylation states within a single neuron, implying that coupling is controlled at the level of individual gap junctions by locally assembled signaling complexes. This kind of synapse-by-synapse plasticity allows for precise control of neuronal coupling, as well as cell-type-specific responses dependent on the identity of the signaling complexes assembled. |
doi_str_mv | 10.1523/JNEUROSCI.3436-09.2009 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2839935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19940186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-3c37d8c0ee6501e39902ead106fa6544c917fc689ef24ebecb6220bcd56810443</originalsourceid><addsrcrecordid>eNpVkF1r2zAUhsVoWdN2f6HosjdOjz4sWzeD4HZbRj-gbW52IxT5ONGwJWMny_rvp5DStRfigM7zvgceQi4YTFnOxdXP-5vF48NTNZ8KKVQGesoB9CcySVudcQnsiEyAF5ApWcgTcjqOvwGgAFZ8JidM60SUakJ-Xcfedj5g9rTx3ba1G6zpNfbrOKY3vKQPHwONDa1iCPjXByoUvcPaJ3Kks_mczjrrhtRAK2xbuggubvvWh9U5OW5sO-KX13lGFt9unqsf2e3D93k1u81crvJNJpwo6tIBosqBodAaONqagWqsyqV0mhWNU6XGhktcolsqzmHp6lyVDKQUZ-TrobffLjusHYbNYFvTD76zw4uJ1puPm-DXZhX_GF6mYyJPBepQ4IY4jgM2b1kGZm_bvNk2e9sGtNnbTsGL95f_x171JuDyAKz9ar3zA5qxs22bcGZ2ux3XRhaGSQ1C_AOyjYvL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dopamine-Stimulated Dephosphorylation of Connexin 36 Mediates AII Amacrine Cell Uncoupling</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kothmann, W. Wade ; Massey, Stephen C ; O'Brien, John</creator><creatorcontrib>Kothmann, W. Wade ; Massey, Stephen C ; O'Brien, John</creatorcontrib><description>Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the CNS and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensitivity rod photoreceptor pathway. AII amacrine cell coupling strength is dynamically regulated by background light intensity, and uncoupling is thought to be mediated by dopamine signaling via D(1)-like receptors. One proposed mechanism for this uncoupling involves dopamine-stimulated phosphorylation of Cx36 at regulatory sites, mediated by protein kinase A. Here we provide evidence against this hypothesis and demonstrate a direct relationship between Cx36 phosphorylation and AII amacrine cell coupling strength. Dopamine receptor-driven uncoupling of the AII network results from protein kinase A activation of protein phosphatase 2A and subsequent dephosphorylation of Cx36. Protein phosphatase 1 activity negatively regulates this pathway. We also find that Cx36 gap junctions can exist in widely different phosphorylation states within a single neuron, implying that coupling is controlled at the level of individual gap junctions by locally assembled signaling complexes. This kind of synapse-by-synapse plasticity allows for precise control of neuronal coupling, as well as cell-type-specific responses dependent on the identity of the signaling complexes assembled.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.3436-09.2009</identifier><identifier>PMID: 19940186</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Amacrine Cells - cytology ; Amacrine Cells - drug effects ; Amacrine Cells - metabolism ; Animals ; Cell Communication - drug effects ; Cell Communication - physiology ; Connexins - metabolism ; Cyclic AMP-Dependent Protein Kinases - drug effects ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Dopamine - metabolism ; Dopamine - pharmacology ; Enzyme Activation - drug effects ; Enzyme Activation - physiology ; Gap Junction delta-2 Protein ; Gap Junctions - drug effects ; Gap Junctions - metabolism ; Gap Junctions - ultrastructure ; Organ Culture Techniques ; Phosphorylation - drug effects ; Protein Phosphatase 1 - metabolism ; Protein Phosphatase 2 - drug effects ; Protein Phosphatase 2 - metabolism ; Rabbits ; Retina - cytology ; Retina - drug effects ; Retina - metabolism ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Synaptic Transmission - physiology ; Vision, Ocular - drug effects ; Vision, Ocular - physiology</subject><ispartof>The Journal of neuroscience, 2009-11, Vol.29 (47), p.14903-14911</ispartof><rights>Copyright © 2009 Society for Neuroscience 0270-6474/09/2914903-09$15.00/0 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-3c37d8c0ee6501e39902ead106fa6544c917fc689ef24ebecb6220bcd56810443</citedby><cites>FETCH-LOGICAL-c565t-3c37d8c0ee6501e39902ead106fa6544c917fc689ef24ebecb6220bcd56810443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2839935/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2839935/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19940186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kothmann, W. Wade</creatorcontrib><creatorcontrib>Massey, Stephen C</creatorcontrib><creatorcontrib>O'Brien, John</creatorcontrib><title>Dopamine-Stimulated Dephosphorylation of Connexin 36 Mediates AII Amacrine Cell Uncoupling</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the CNS and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensitivity rod photoreceptor pathway. AII amacrine cell coupling strength is dynamically regulated by background light intensity, and uncoupling is thought to be mediated by dopamine signaling via D(1)-like receptors. One proposed mechanism for this uncoupling involves dopamine-stimulated phosphorylation of Cx36 at regulatory sites, mediated by protein kinase A. Here we provide evidence against this hypothesis and demonstrate a direct relationship between Cx36 phosphorylation and AII amacrine cell coupling strength. Dopamine receptor-driven uncoupling of the AII network results from protein kinase A activation of protein phosphatase 2A and subsequent dephosphorylation of Cx36. Protein phosphatase 1 activity negatively regulates this pathway. We also find that Cx36 gap junctions can exist in widely different phosphorylation states within a single neuron, implying that coupling is controlled at the level of individual gap junctions by locally assembled signaling complexes. This kind of synapse-by-synapse plasticity allows for precise control of neuronal coupling, as well as cell-type-specific responses dependent on the identity of the signaling complexes assembled.</description><subject>Amacrine Cells - cytology</subject><subject>Amacrine Cells - drug effects</subject><subject>Amacrine Cells - metabolism</subject><subject>Animals</subject><subject>Cell Communication - drug effects</subject><subject>Cell Communication - physiology</subject><subject>Connexins - metabolism</subject><subject>Cyclic AMP-Dependent Protein Kinases - drug effects</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Dopamine - metabolism</subject><subject>Dopamine - pharmacology</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzyme Activation - physiology</subject><subject>Gap Junction delta-2 Protein</subject><subject>Gap Junctions - drug effects</subject><subject>Gap Junctions - metabolism</subject><subject>Gap Junctions - ultrastructure</subject><subject>Organ Culture Techniques</subject><subject>Phosphorylation - drug effects</subject><subject>Protein Phosphatase 1 - metabolism</subject><subject>Protein Phosphatase 2 - drug effects</subject><subject>Protein Phosphatase 2 - metabolism</subject><subject>Rabbits</subject><subject>Retina - cytology</subject><subject>Retina - drug effects</subject><subject>Retina - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Synaptic Transmission - physiology</subject><subject>Vision, Ocular - drug effects</subject><subject>Vision, Ocular - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkF1r2zAUhsVoWdN2f6HosjdOjz4sWzeD4HZbRj-gbW52IxT5ONGwJWMny_rvp5DStRfigM7zvgceQi4YTFnOxdXP-5vF48NTNZ8KKVQGesoB9CcySVudcQnsiEyAF5ApWcgTcjqOvwGgAFZ8JidM60SUakJ-Xcfedj5g9rTx3ba1G6zpNfbrOKY3vKQPHwONDa1iCPjXByoUvcPaJ3Kks_mczjrrhtRAK2xbuggubvvWh9U5OW5sO-KX13lGFt9unqsf2e3D93k1u81crvJNJpwo6tIBosqBodAaONqagWqsyqV0mhWNU6XGhktcolsqzmHp6lyVDKQUZ-TrobffLjusHYbNYFvTD76zw4uJ1puPm-DXZhX_GF6mYyJPBepQ4IY4jgM2b1kGZm_bvNk2e9sGtNnbTsGL95f_x171JuDyAKz9ar3zA5qxs22bcGZ2ux3XRhaGSQ1C_AOyjYvL</recordid><startdate>20091125</startdate><enddate>20091125</enddate><creator>Kothmann, W. Wade</creator><creator>Massey, Stephen C</creator><creator>O'Brien, John</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20091125</creationdate><title>Dopamine-Stimulated Dephosphorylation of Connexin 36 Mediates AII Amacrine Cell Uncoupling</title><author>Kothmann, W. Wade ; Massey, Stephen C ; O'Brien, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-3c37d8c0ee6501e39902ead106fa6544c917fc689ef24ebecb6220bcd56810443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amacrine Cells - cytology</topic><topic>Amacrine Cells - drug effects</topic><topic>Amacrine Cells - metabolism</topic><topic>Animals</topic><topic>Cell Communication - drug effects</topic><topic>Cell Communication - physiology</topic><topic>Connexins - metabolism</topic><topic>Cyclic AMP-Dependent Protein Kinases - drug effects</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Dopamine - metabolism</topic><topic>Dopamine - pharmacology</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzyme Activation - physiology</topic><topic>Gap Junction delta-2 Protein</topic><topic>Gap Junctions - drug effects</topic><topic>Gap Junctions - metabolism</topic><topic>Gap Junctions - ultrastructure</topic><topic>Organ Culture Techniques</topic><topic>Phosphorylation - drug effects</topic><topic>Protein Phosphatase 1 - metabolism</topic><topic>Protein Phosphatase 2 - drug effects</topic><topic>Protein Phosphatase 2 - metabolism</topic><topic>Rabbits</topic><topic>Retina - cytology</topic><topic>Retina - drug effects</topic><topic>Retina - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Synaptic Transmission - physiology</topic><topic>Vision, Ocular - drug effects</topic><topic>Vision, Ocular - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kothmann, W. Wade</creatorcontrib><creatorcontrib>Massey, Stephen C</creatorcontrib><creatorcontrib>O'Brien, John</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kothmann, W. Wade</au><au>Massey, Stephen C</au><au>O'Brien, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dopamine-Stimulated Dephosphorylation of Connexin 36 Mediates AII Amacrine Cell Uncoupling</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2009-11-25</date><risdate>2009</risdate><volume>29</volume><issue>47</issue><spage>14903</spage><epage>14911</epage><pages>14903-14911</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the CNS and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensitivity rod photoreceptor pathway. AII amacrine cell coupling strength is dynamically regulated by background light intensity, and uncoupling is thought to be mediated by dopamine signaling via D(1)-like receptors. One proposed mechanism for this uncoupling involves dopamine-stimulated phosphorylation of Cx36 at regulatory sites, mediated by protein kinase A. Here we provide evidence against this hypothesis and demonstrate a direct relationship between Cx36 phosphorylation and AII amacrine cell coupling strength. Dopamine receptor-driven uncoupling of the AII network results from protein kinase A activation of protein phosphatase 2A and subsequent dephosphorylation of Cx36. Protein phosphatase 1 activity negatively regulates this pathway. We also find that Cx36 gap junctions can exist in widely different phosphorylation states within a single neuron, implying that coupling is controlled at the level of individual gap junctions by locally assembled signaling complexes. This kind of synapse-by-synapse plasticity allows for precise control of neuronal coupling, as well as cell-type-specific responses dependent on the identity of the signaling complexes assembled.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>19940186</pmid><doi>10.1523/JNEUROSCI.3436-09.2009</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2009-11, Vol.29 (47), p.14903-14911 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2839935 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Amacrine Cells - cytology Amacrine Cells - drug effects Amacrine Cells - metabolism Animals Cell Communication - drug effects Cell Communication - physiology Connexins - metabolism Cyclic AMP-Dependent Protein Kinases - drug effects Cyclic AMP-Dependent Protein Kinases - metabolism Dopamine - metabolism Dopamine - pharmacology Enzyme Activation - drug effects Enzyme Activation - physiology Gap Junction delta-2 Protein Gap Junctions - drug effects Gap Junctions - metabolism Gap Junctions - ultrastructure Organ Culture Techniques Phosphorylation - drug effects Protein Phosphatase 1 - metabolism Protein Phosphatase 2 - drug effects Protein Phosphatase 2 - metabolism Rabbits Retina - cytology Retina - drug effects Retina - metabolism Signal Transduction - drug effects Signal Transduction - physiology Synaptic Transmission - physiology Vision, Ocular - drug effects Vision, Ocular - physiology |
title | Dopamine-Stimulated Dephosphorylation of Connexin 36 Mediates AII Amacrine Cell Uncoupling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dopamine-Stimulated%20Dephosphorylation%20of%20Connexin%2036%20Mediates%20AII%20Amacrine%20Cell%20Uncoupling&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Kothmann,%20W.%20Wade&rft.date=2009-11-25&rft.volume=29&rft.issue=47&rft.spage=14903&rft.epage=14911&rft.pages=14903-14911&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.3436-09.2009&rft_dat=%3Cpubmed_cross%3E19940186%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19940186&rfr_iscdi=true |