Dopamine-Stimulated Dephosphorylation of Connexin 36 Mediates AII Amacrine Cell Uncoupling

Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the CNS and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2009-11, Vol.29 (47), p.14903-14911
Hauptverfasser: Kothmann, W. Wade, Massey, Stephen C, O'Brien, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14911
container_issue 47
container_start_page 14903
container_title The Journal of neuroscience
container_volume 29
creator Kothmann, W. Wade
Massey, Stephen C
O'Brien, John
description Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the CNS and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensitivity rod photoreceptor pathway. AII amacrine cell coupling strength is dynamically regulated by background light intensity, and uncoupling is thought to be mediated by dopamine signaling via D(1)-like receptors. One proposed mechanism for this uncoupling involves dopamine-stimulated phosphorylation of Cx36 at regulatory sites, mediated by protein kinase A. Here we provide evidence against this hypothesis and demonstrate a direct relationship between Cx36 phosphorylation and AII amacrine cell coupling strength. Dopamine receptor-driven uncoupling of the AII network results from protein kinase A activation of protein phosphatase 2A and subsequent dephosphorylation of Cx36. Protein phosphatase 1 activity negatively regulates this pathway. We also find that Cx36 gap junctions can exist in widely different phosphorylation states within a single neuron, implying that coupling is controlled at the level of individual gap junctions by locally assembled signaling complexes. This kind of synapse-by-synapse plasticity allows for precise control of neuronal coupling, as well as cell-type-specific responses dependent on the identity of the signaling complexes assembled.
doi_str_mv 10.1523/JNEUROSCI.3436-09.2009
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2839935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19940186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-3c37d8c0ee6501e39902ead106fa6544c917fc689ef24ebecb6220bcd56810443</originalsourceid><addsrcrecordid>eNpVkF1r2zAUhsVoWdN2f6HosjdOjz4sWzeD4HZbRj-gbW52IxT5ONGwJWMny_rvp5DStRfigM7zvgceQi4YTFnOxdXP-5vF48NTNZ8KKVQGesoB9CcySVudcQnsiEyAF5ApWcgTcjqOvwGgAFZ8JidM60SUakJ-Xcfedj5g9rTx3ba1G6zpNfbrOKY3vKQPHwONDa1iCPjXByoUvcPaJ3Kks_mczjrrhtRAK2xbuggubvvWh9U5OW5sO-KX13lGFt9unqsf2e3D93k1u81crvJNJpwo6tIBosqBodAaONqagWqsyqV0mhWNU6XGhktcolsqzmHp6lyVDKQUZ-TrobffLjusHYbNYFvTD76zw4uJ1puPm-DXZhX_GF6mYyJPBepQ4IY4jgM2b1kGZm_bvNk2e9sGtNnbTsGL95f_x171JuDyAKz9ar3zA5qxs22bcGZ2ux3XRhaGSQ1C_AOyjYvL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dopamine-Stimulated Dephosphorylation of Connexin 36 Mediates AII Amacrine Cell Uncoupling</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kothmann, W. Wade ; Massey, Stephen C ; O'Brien, John</creator><creatorcontrib>Kothmann, W. Wade ; Massey, Stephen C ; O'Brien, John</creatorcontrib><description>Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the CNS and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensitivity rod photoreceptor pathway. AII amacrine cell coupling strength is dynamically regulated by background light intensity, and uncoupling is thought to be mediated by dopamine signaling via D(1)-like receptors. One proposed mechanism for this uncoupling involves dopamine-stimulated phosphorylation of Cx36 at regulatory sites, mediated by protein kinase A. Here we provide evidence against this hypothesis and demonstrate a direct relationship between Cx36 phosphorylation and AII amacrine cell coupling strength. Dopamine receptor-driven uncoupling of the AII network results from protein kinase A activation of protein phosphatase 2A and subsequent dephosphorylation of Cx36. Protein phosphatase 1 activity negatively regulates this pathway. We also find that Cx36 gap junctions can exist in widely different phosphorylation states within a single neuron, implying that coupling is controlled at the level of individual gap junctions by locally assembled signaling complexes. This kind of synapse-by-synapse plasticity allows for precise control of neuronal coupling, as well as cell-type-specific responses dependent on the identity of the signaling complexes assembled.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.3436-09.2009</identifier><identifier>PMID: 19940186</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Amacrine Cells - cytology ; Amacrine Cells - drug effects ; Amacrine Cells - metabolism ; Animals ; Cell Communication - drug effects ; Cell Communication - physiology ; Connexins - metabolism ; Cyclic AMP-Dependent Protein Kinases - drug effects ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Dopamine - metabolism ; Dopamine - pharmacology ; Enzyme Activation - drug effects ; Enzyme Activation - physiology ; Gap Junction delta-2 Protein ; Gap Junctions - drug effects ; Gap Junctions - metabolism ; Gap Junctions - ultrastructure ; Organ Culture Techniques ; Phosphorylation - drug effects ; Protein Phosphatase 1 - metabolism ; Protein Phosphatase 2 - drug effects ; Protein Phosphatase 2 - metabolism ; Rabbits ; Retina - cytology ; Retina - drug effects ; Retina - metabolism ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Synaptic Transmission - physiology ; Vision, Ocular - drug effects ; Vision, Ocular - physiology</subject><ispartof>The Journal of neuroscience, 2009-11, Vol.29 (47), p.14903-14911</ispartof><rights>Copyright © 2009 Society for Neuroscience 0270-6474/09/2914903-09$15.00/0 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-3c37d8c0ee6501e39902ead106fa6544c917fc689ef24ebecb6220bcd56810443</citedby><cites>FETCH-LOGICAL-c565t-3c37d8c0ee6501e39902ead106fa6544c917fc689ef24ebecb6220bcd56810443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2839935/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2839935/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19940186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kothmann, W. Wade</creatorcontrib><creatorcontrib>Massey, Stephen C</creatorcontrib><creatorcontrib>O'Brien, John</creatorcontrib><title>Dopamine-Stimulated Dephosphorylation of Connexin 36 Mediates AII Amacrine Cell Uncoupling</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the CNS and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensitivity rod photoreceptor pathway. AII amacrine cell coupling strength is dynamically regulated by background light intensity, and uncoupling is thought to be mediated by dopamine signaling via D(1)-like receptors. One proposed mechanism for this uncoupling involves dopamine-stimulated phosphorylation of Cx36 at regulatory sites, mediated by protein kinase A. Here we provide evidence against this hypothesis and demonstrate a direct relationship between Cx36 phosphorylation and AII amacrine cell coupling strength. Dopamine receptor-driven uncoupling of the AII network results from protein kinase A activation of protein phosphatase 2A and subsequent dephosphorylation of Cx36. Protein phosphatase 1 activity negatively regulates this pathway. We also find that Cx36 gap junctions can exist in widely different phosphorylation states within a single neuron, implying that coupling is controlled at the level of individual gap junctions by locally assembled signaling complexes. This kind of synapse-by-synapse plasticity allows for precise control of neuronal coupling, as well as cell-type-specific responses dependent on the identity of the signaling complexes assembled.</description><subject>Amacrine Cells - cytology</subject><subject>Amacrine Cells - drug effects</subject><subject>Amacrine Cells - metabolism</subject><subject>Animals</subject><subject>Cell Communication - drug effects</subject><subject>Cell Communication - physiology</subject><subject>Connexins - metabolism</subject><subject>Cyclic AMP-Dependent Protein Kinases - drug effects</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Dopamine - metabolism</subject><subject>Dopamine - pharmacology</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzyme Activation - physiology</subject><subject>Gap Junction delta-2 Protein</subject><subject>Gap Junctions - drug effects</subject><subject>Gap Junctions - metabolism</subject><subject>Gap Junctions - ultrastructure</subject><subject>Organ Culture Techniques</subject><subject>Phosphorylation - drug effects</subject><subject>Protein Phosphatase 1 - metabolism</subject><subject>Protein Phosphatase 2 - drug effects</subject><subject>Protein Phosphatase 2 - metabolism</subject><subject>Rabbits</subject><subject>Retina - cytology</subject><subject>Retina - drug effects</subject><subject>Retina - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Synaptic Transmission - physiology</subject><subject>Vision, Ocular - drug effects</subject><subject>Vision, Ocular - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkF1r2zAUhsVoWdN2f6HosjdOjz4sWzeD4HZbRj-gbW52IxT5ONGwJWMny_rvp5DStRfigM7zvgceQi4YTFnOxdXP-5vF48NTNZ8KKVQGesoB9CcySVudcQnsiEyAF5ApWcgTcjqOvwGgAFZ8JidM60SUakJ-Xcfedj5g9rTx3ba1G6zpNfbrOKY3vKQPHwONDa1iCPjXByoUvcPaJ3Kks_mczjrrhtRAK2xbuggubvvWh9U5OW5sO-KX13lGFt9unqsf2e3D93k1u81crvJNJpwo6tIBosqBodAaONqagWqsyqV0mhWNU6XGhktcolsqzmHp6lyVDKQUZ-TrobffLjusHYbNYFvTD76zw4uJ1puPm-DXZhX_GF6mYyJPBepQ4IY4jgM2b1kGZm_bvNk2e9sGtNnbTsGL95f_x171JuDyAKz9ar3zA5qxs22bcGZ2ux3XRhaGSQ1C_AOyjYvL</recordid><startdate>20091125</startdate><enddate>20091125</enddate><creator>Kothmann, W. Wade</creator><creator>Massey, Stephen C</creator><creator>O'Brien, John</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20091125</creationdate><title>Dopamine-Stimulated Dephosphorylation of Connexin 36 Mediates AII Amacrine Cell Uncoupling</title><author>Kothmann, W. Wade ; Massey, Stephen C ; O'Brien, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-3c37d8c0ee6501e39902ead106fa6544c917fc689ef24ebecb6220bcd56810443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amacrine Cells - cytology</topic><topic>Amacrine Cells - drug effects</topic><topic>Amacrine Cells - metabolism</topic><topic>Animals</topic><topic>Cell Communication - drug effects</topic><topic>Cell Communication - physiology</topic><topic>Connexins - metabolism</topic><topic>Cyclic AMP-Dependent Protein Kinases - drug effects</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Dopamine - metabolism</topic><topic>Dopamine - pharmacology</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzyme Activation - physiology</topic><topic>Gap Junction delta-2 Protein</topic><topic>Gap Junctions - drug effects</topic><topic>Gap Junctions - metabolism</topic><topic>Gap Junctions - ultrastructure</topic><topic>Organ Culture Techniques</topic><topic>Phosphorylation - drug effects</topic><topic>Protein Phosphatase 1 - metabolism</topic><topic>Protein Phosphatase 2 - drug effects</topic><topic>Protein Phosphatase 2 - metabolism</topic><topic>Rabbits</topic><topic>Retina - cytology</topic><topic>Retina - drug effects</topic><topic>Retina - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Synaptic Transmission - physiology</topic><topic>Vision, Ocular - drug effects</topic><topic>Vision, Ocular - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kothmann, W. Wade</creatorcontrib><creatorcontrib>Massey, Stephen C</creatorcontrib><creatorcontrib>O'Brien, John</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kothmann, W. Wade</au><au>Massey, Stephen C</au><au>O'Brien, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dopamine-Stimulated Dephosphorylation of Connexin 36 Mediates AII Amacrine Cell Uncoupling</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2009-11-25</date><risdate>2009</risdate><volume>29</volume><issue>47</issue><spage>14903</spage><epage>14911</epage><pages>14903-14911</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the CNS and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensitivity rod photoreceptor pathway. AII amacrine cell coupling strength is dynamically regulated by background light intensity, and uncoupling is thought to be mediated by dopamine signaling via D(1)-like receptors. One proposed mechanism for this uncoupling involves dopamine-stimulated phosphorylation of Cx36 at regulatory sites, mediated by protein kinase A. Here we provide evidence against this hypothesis and demonstrate a direct relationship between Cx36 phosphorylation and AII amacrine cell coupling strength. Dopamine receptor-driven uncoupling of the AII network results from protein kinase A activation of protein phosphatase 2A and subsequent dephosphorylation of Cx36. Protein phosphatase 1 activity negatively regulates this pathway. We also find that Cx36 gap junctions can exist in widely different phosphorylation states within a single neuron, implying that coupling is controlled at the level of individual gap junctions by locally assembled signaling complexes. This kind of synapse-by-synapse plasticity allows for precise control of neuronal coupling, as well as cell-type-specific responses dependent on the identity of the signaling complexes assembled.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>19940186</pmid><doi>10.1523/JNEUROSCI.3436-09.2009</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2009-11, Vol.29 (47), p.14903-14911
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2839935
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Amacrine Cells - cytology
Amacrine Cells - drug effects
Amacrine Cells - metabolism
Animals
Cell Communication - drug effects
Cell Communication - physiology
Connexins - metabolism
Cyclic AMP-Dependent Protein Kinases - drug effects
Cyclic AMP-Dependent Protein Kinases - metabolism
Dopamine - metabolism
Dopamine - pharmacology
Enzyme Activation - drug effects
Enzyme Activation - physiology
Gap Junction delta-2 Protein
Gap Junctions - drug effects
Gap Junctions - metabolism
Gap Junctions - ultrastructure
Organ Culture Techniques
Phosphorylation - drug effects
Protein Phosphatase 1 - metabolism
Protein Phosphatase 2 - drug effects
Protein Phosphatase 2 - metabolism
Rabbits
Retina - cytology
Retina - drug effects
Retina - metabolism
Signal Transduction - drug effects
Signal Transduction - physiology
Synaptic Transmission - physiology
Vision, Ocular - drug effects
Vision, Ocular - physiology
title Dopamine-Stimulated Dephosphorylation of Connexin 36 Mediates AII Amacrine Cell Uncoupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dopamine-Stimulated%20Dephosphorylation%20of%20Connexin%2036%20Mediates%20AII%20Amacrine%20Cell%20Uncoupling&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Kothmann,%20W.%20Wade&rft.date=2009-11-25&rft.volume=29&rft.issue=47&rft.spage=14903&rft.epage=14911&rft.pages=14903-14911&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.3436-09.2009&rft_dat=%3Cpubmed_cross%3E19940186%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19940186&rfr_iscdi=true