Functional Significance for a Heterogenous Ribonucleoprotein A18 Signature RNA Motif in the 3′-Untranslated Region of Ataxia Telangiectasia Mutated and Rad3-related (ATR) Transcript

The predominantly nuclear heterogenous ribonucleoprotein A18 (hnRNP A18) translocates to the cytosol in response to cellular stress and increases translation by specifically binding to the 3′-untranslated region (UTR) of several mRNA transcripts and the eukaryotic initiation factor 4G. Here, we iden...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2010-03, Vol.285 (12), p.8887-8893
Hauptverfasser: Yang, Ruiqing, Zhan, Ming, Nalabothula, Narasimha Rao, Yang, Qingyuan, Indig, Fred E., Carrier, France
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8893
container_issue 12
container_start_page 8887
container_title The Journal of biological chemistry
container_volume 285
creator Yang, Ruiqing
Zhan, Ming
Nalabothula, Narasimha Rao
Yang, Qingyuan
Indig, Fred E.
Carrier, France
description The predominantly nuclear heterogenous ribonucleoprotein A18 (hnRNP A18) translocates to the cytosol in response to cellular stress and increases translation by specifically binding to the 3′-untranslated region (UTR) of several mRNA transcripts and the eukaryotic initiation factor 4G. Here, we identified a 51-nucleotide motif that is present 11.49 times more often in the 3′-UTR of hnRNP A18 mRNA targets than in the UniGene data base. This motif was identified by computational analysis of primary sequences and secondary structures of hnRNP A18 mRNA targets against the unaligned sequences. Band shift analyses indicate that the motif is sufficient to confer binding to hnRNP A18. A search of the entire UniGene data base indicates that the hnRNP A18 motif is also present in the 3′-UTR of the ataxia telangiectasia mutated and Rad3-related (ATR) mRNA. Validation of the predicted hnRNP A18 motif is provided by amplification of endogenous ATR transcript on polysomal fractions immunoprecipitated with hnRNP A18. Moreover, overexpression of hnRNP A18 results in increased ATR protein levels and increased phosphorylation of Chk1, a preferred ATR substrate, in response to UV radiation. In addition, our data indicate that inhibition of casein kinase II or GSK3β significantly reduced hnRNP A18 cytosolic translocation in response to UV radiation. To our knowledge, this constitutes the first demonstration of a post-transcriptional regulatory mechanism for ATR activity. hnRNP A18 could thus become a new target to trigger ATR activity as back-up stress response mechanisms to functionally compensate for absent or defective responders.
doi_str_mv 10.1074/jbc.M109.013128
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2838310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192582087286X</els_id><sourcerecordid>733707854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-68bcba9c81c2a4b6ad7b73e1afcf38ee38e9560d6afb7bb4f2a49daa34106d863</originalsourceid><addsrcrecordid>eNqFks9u1DAQxiMEosvCmRv4BhyyteP8cS5Iq4pSpC5I212JmzVxJqmrrL21nQpuPBMX3ocnwduUCg4IS5ZlzW9mPJ-_JHnO6ILRKj--atRixWi9oIyzTDxIZowKnvKCfX6YzCjNWFpnhThKnnh_RePKa_Y4Ocooo7yoi1ny43Q0KmhrYCAXuje60wqMQtJZR4CcYUBnezR29GStG2tGNaDdOxtQG7Jk4jYLwuiQrD8uycoG3ZEYCpdI-M9v39OtCQ6MHyBgS9bYx17EdmQZ4IsGssEBTK9RBfDxuhrDLQcmstDy1OGU-Hq5Wb8hm0Ml5fQ-PE0edTB4fHZ3zpPt6bvNyVl6_un9h5PleaqKMg9pKRrVQK0EUxnkTQlt1VQcGXSq4wIx7rooaVtC11RNk3eRqlsAnjNatqLk8-TtVHc_NjtsFR6mGeTe6R24r9KCln9HjL6Uvb2RmeCCR5Xnyau7As5ej-iD3GmvcIhjYxRVVnleZYwV_P8k5xWtRJFH8ngilbPeO-zu38OoPPhCRl_Igy_k5IuY8eLPMe7530aIwMsJ6MBK6J32cnsRo5wywXhJD0rUE4FR7huNTnqlMVql1S5-n2yt_mf7X-AH1Vk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733707854</pqid></control><display><type>article</type><title>Functional Significance for a Heterogenous Ribonucleoprotein A18 Signature RNA Motif in the 3′-Untranslated Region of Ataxia Telangiectasia Mutated and Rad3-related (ATR) Transcript</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Yang, Ruiqing ; Zhan, Ming ; Nalabothula, Narasimha Rao ; Yang, Qingyuan ; Indig, Fred E. ; Carrier, France</creator><creatorcontrib>Yang, Ruiqing ; Zhan, Ming ; Nalabothula, Narasimha Rao ; Yang, Qingyuan ; Indig, Fred E. ; Carrier, France</creatorcontrib><description>The predominantly nuclear heterogenous ribonucleoprotein A18 (hnRNP A18) translocates to the cytosol in response to cellular stress and increases translation by specifically binding to the 3′-untranslated region (UTR) of several mRNA transcripts and the eukaryotic initiation factor 4G. Here, we identified a 51-nucleotide motif that is present 11.49 times more often in the 3′-UTR of hnRNP A18 mRNA targets than in the UniGene data base. This motif was identified by computational analysis of primary sequences and secondary structures of hnRNP A18 mRNA targets against the unaligned sequences. Band shift analyses indicate that the motif is sufficient to confer binding to hnRNP A18. A search of the entire UniGene data base indicates that the hnRNP A18 motif is also present in the 3′-UTR of the ataxia telangiectasia mutated and Rad3-related (ATR) mRNA. Validation of the predicted hnRNP A18 motif is provided by amplification of endogenous ATR transcript on polysomal fractions immunoprecipitated with hnRNP A18. Moreover, overexpression of hnRNP A18 results in increased ATR protein levels and increased phosphorylation of Chk1, a preferred ATR substrate, in response to UV radiation. In addition, our data indicate that inhibition of casein kinase II or GSK3β significantly reduced hnRNP A18 cytosolic translocation in response to UV radiation. To our knowledge, this constitutes the first demonstration of a post-transcriptional regulatory mechanism for ATR activity. hnRNP A18 could thus become a new target to trigger ATR activity as back-up stress response mechanisms to functionally compensate for absent or defective responders.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.013128</identifier><identifier>PMID: 20103595</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3' Untranslated Regions ; Amino Acid Motifs ; Amino Acid Sequence ; Ataxia Telangiectasia Mutated Proteins ; ATR ; Casein Kinase II - metabolism ; Cell Cycle Proteins - genetics ; Cell Line, Tumor ; Diseases/Cancer/Carcinogenesis ; DNA-Binding Proteins - genetics ; DNA/Damage ; Glycogen Synthase Kinase 3 - metabolism ; Glycogen Synthase Kinase 3 beta ; Heterogeneous-Nuclear Ribonucleoproteins - genetics ; Humans ; Microscopy, Confocal - methods ; Molecular Sequence Data ; Phosphorylation ; Protein-Serine-Threonine Kinases - genetics ; Protein/Binding/RNA ; RNA ; RNA - genetics ; RNA/Ribonuclear Protein RNP ; RNA/Translation ; Sequence Homology, Amino Acid ; Tumor Suppressor Proteins - genetics</subject><ispartof>The Journal of biological chemistry, 2010-03, Vol.285 (12), p.8887-8893</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-68bcba9c81c2a4b6ad7b73e1afcf38ee38e9560d6afb7bb4f2a49daa34106d863</citedby><cites>FETCH-LOGICAL-c564t-68bcba9c81c2a4b6ad7b73e1afcf38ee38e9560d6afb7bb4f2a49daa34106d863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838310/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838310/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20103595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Ruiqing</creatorcontrib><creatorcontrib>Zhan, Ming</creatorcontrib><creatorcontrib>Nalabothula, Narasimha Rao</creatorcontrib><creatorcontrib>Yang, Qingyuan</creatorcontrib><creatorcontrib>Indig, Fred E.</creatorcontrib><creatorcontrib>Carrier, France</creatorcontrib><title>Functional Significance for a Heterogenous Ribonucleoprotein A18 Signature RNA Motif in the 3′-Untranslated Region of Ataxia Telangiectasia Mutated and Rad3-related (ATR) Transcript</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The predominantly nuclear heterogenous ribonucleoprotein A18 (hnRNP A18) translocates to the cytosol in response to cellular stress and increases translation by specifically binding to the 3′-untranslated region (UTR) of several mRNA transcripts and the eukaryotic initiation factor 4G. Here, we identified a 51-nucleotide motif that is present 11.49 times more often in the 3′-UTR of hnRNP A18 mRNA targets than in the UniGene data base. This motif was identified by computational analysis of primary sequences and secondary structures of hnRNP A18 mRNA targets against the unaligned sequences. Band shift analyses indicate that the motif is sufficient to confer binding to hnRNP A18. A search of the entire UniGene data base indicates that the hnRNP A18 motif is also present in the 3′-UTR of the ataxia telangiectasia mutated and Rad3-related (ATR) mRNA. Validation of the predicted hnRNP A18 motif is provided by amplification of endogenous ATR transcript on polysomal fractions immunoprecipitated with hnRNP A18. Moreover, overexpression of hnRNP A18 results in increased ATR protein levels and increased phosphorylation of Chk1, a preferred ATR substrate, in response to UV radiation. In addition, our data indicate that inhibition of casein kinase II or GSK3β significantly reduced hnRNP A18 cytosolic translocation in response to UV radiation. To our knowledge, this constitutes the first demonstration of a post-transcriptional regulatory mechanism for ATR activity. hnRNP A18 could thus become a new target to trigger ATR activity as back-up stress response mechanisms to functionally compensate for absent or defective responders.</description><subject>3' Untranslated Regions</subject><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Ataxia Telangiectasia Mutated Proteins</subject><subject>ATR</subject><subject>Casein Kinase II - metabolism</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Line, Tumor</subject><subject>Diseases/Cancer/Carcinogenesis</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA/Damage</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>Glycogen Synthase Kinase 3 beta</subject><subject>Heterogeneous-Nuclear Ribonucleoproteins - genetics</subject><subject>Humans</subject><subject>Microscopy, Confocal - methods</subject><subject>Molecular Sequence Data</subject><subject>Phosphorylation</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein/Binding/RNA</subject><subject>RNA</subject><subject>RNA - genetics</subject><subject>RNA/Ribonuclear Protein RNP</subject><subject>RNA/Translation</subject><subject>Sequence Homology, Amino Acid</subject><subject>Tumor Suppressor Proteins - genetics</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks9u1DAQxiMEosvCmRv4BhyyteP8cS5Iq4pSpC5I212JmzVxJqmrrL21nQpuPBMX3ocnwduUCg4IS5ZlzW9mPJ-_JHnO6ILRKj--atRixWi9oIyzTDxIZowKnvKCfX6YzCjNWFpnhThKnnh_RePKa_Y4Ocooo7yoi1ny43Q0KmhrYCAXuje60wqMQtJZR4CcYUBnezR29GStG2tGNaDdOxtQG7Jk4jYLwuiQrD8uycoG3ZEYCpdI-M9v39OtCQ6MHyBgS9bYx17EdmQZ4IsGssEBTK9RBfDxuhrDLQcmstDy1OGU-Hq5Wb8hm0Ml5fQ-PE0edTB4fHZ3zpPt6bvNyVl6_un9h5PleaqKMg9pKRrVQK0EUxnkTQlt1VQcGXSq4wIx7rooaVtC11RNk3eRqlsAnjNatqLk8-TtVHc_NjtsFR6mGeTe6R24r9KCln9HjL6Uvb2RmeCCR5Xnyau7As5ej-iD3GmvcIhjYxRVVnleZYwV_P8k5xWtRJFH8ngilbPeO-zu38OoPPhCRl_Igy_k5IuY8eLPMe7530aIwMsJ6MBK6J32cnsRo5wywXhJD0rUE4FR7huNTnqlMVql1S5-n2yt_mf7X-AH1Vk</recordid><startdate>20100319</startdate><enddate>20100319</enddate><creator>Yang, Ruiqing</creator><creator>Zhan, Ming</creator><creator>Nalabothula, Narasimha Rao</creator><creator>Yang, Qingyuan</creator><creator>Indig, Fred E.</creator><creator>Carrier, France</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>20100319</creationdate><title>Functional Significance for a Heterogenous Ribonucleoprotein A18 Signature RNA Motif in the 3′-Untranslated Region of Ataxia Telangiectasia Mutated and Rad3-related (ATR) Transcript</title><author>Yang, Ruiqing ; Zhan, Ming ; Nalabothula, Narasimha Rao ; Yang, Qingyuan ; Indig, Fred E. ; Carrier, France</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-68bcba9c81c2a4b6ad7b73e1afcf38ee38e9560d6afb7bb4f2a49daa34106d863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>3' Untranslated Regions</topic><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Ataxia Telangiectasia Mutated Proteins</topic><topic>ATR</topic><topic>Casein Kinase II - metabolism</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Line, Tumor</topic><topic>Diseases/Cancer/Carcinogenesis</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA/Damage</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>Glycogen Synthase Kinase 3 beta</topic><topic>Heterogeneous-Nuclear Ribonucleoproteins - genetics</topic><topic>Humans</topic><topic>Microscopy, Confocal - methods</topic><topic>Molecular Sequence Data</topic><topic>Phosphorylation</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein/Binding/RNA</topic><topic>RNA</topic><topic>RNA - genetics</topic><topic>RNA/Ribonuclear Protein RNP</topic><topic>RNA/Translation</topic><topic>Sequence Homology, Amino Acid</topic><topic>Tumor Suppressor Proteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ruiqing</creatorcontrib><creatorcontrib>Zhan, Ming</creatorcontrib><creatorcontrib>Nalabothula, Narasimha Rao</creatorcontrib><creatorcontrib>Yang, Qingyuan</creatorcontrib><creatorcontrib>Indig, Fred E.</creatorcontrib><creatorcontrib>Carrier, France</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ruiqing</au><au>Zhan, Ming</au><au>Nalabothula, Narasimha Rao</au><au>Yang, Qingyuan</au><au>Indig, Fred E.</au><au>Carrier, France</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Significance for a Heterogenous Ribonucleoprotein A18 Signature RNA Motif in the 3′-Untranslated Region of Ataxia Telangiectasia Mutated and Rad3-related (ATR) Transcript</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-03-19</date><risdate>2010</risdate><volume>285</volume><issue>12</issue><spage>8887</spage><epage>8893</epage><pages>8887-8893</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The predominantly nuclear heterogenous ribonucleoprotein A18 (hnRNP A18) translocates to the cytosol in response to cellular stress and increases translation by specifically binding to the 3′-untranslated region (UTR) of several mRNA transcripts and the eukaryotic initiation factor 4G. Here, we identified a 51-nucleotide motif that is present 11.49 times more often in the 3′-UTR of hnRNP A18 mRNA targets than in the UniGene data base. This motif was identified by computational analysis of primary sequences and secondary structures of hnRNP A18 mRNA targets against the unaligned sequences. Band shift analyses indicate that the motif is sufficient to confer binding to hnRNP A18. A search of the entire UniGene data base indicates that the hnRNP A18 motif is also present in the 3′-UTR of the ataxia telangiectasia mutated and Rad3-related (ATR) mRNA. Validation of the predicted hnRNP A18 motif is provided by amplification of endogenous ATR transcript on polysomal fractions immunoprecipitated with hnRNP A18. Moreover, overexpression of hnRNP A18 results in increased ATR protein levels and increased phosphorylation of Chk1, a preferred ATR substrate, in response to UV radiation. In addition, our data indicate that inhibition of casein kinase II or GSK3β significantly reduced hnRNP A18 cytosolic translocation in response to UV radiation. To our knowledge, this constitutes the first demonstration of a post-transcriptional regulatory mechanism for ATR activity. hnRNP A18 could thus become a new target to trigger ATR activity as back-up stress response mechanisms to functionally compensate for absent or defective responders.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20103595</pmid><doi>10.1074/jbc.M109.013128</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2010-03, Vol.285 (12), p.8887-8893
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2838310
source MEDLINE; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects 3' Untranslated Regions
Amino Acid Motifs
Amino Acid Sequence
Ataxia Telangiectasia Mutated Proteins
ATR
Casein Kinase II - metabolism
Cell Cycle Proteins - genetics
Cell Line, Tumor
Diseases/Cancer/Carcinogenesis
DNA-Binding Proteins - genetics
DNA/Damage
Glycogen Synthase Kinase 3 - metabolism
Glycogen Synthase Kinase 3 beta
Heterogeneous-Nuclear Ribonucleoproteins - genetics
Humans
Microscopy, Confocal - methods
Molecular Sequence Data
Phosphorylation
Protein-Serine-Threonine Kinases - genetics
Protein/Binding/RNA
RNA
RNA - genetics
RNA/Ribonuclear Protein RNP
RNA/Translation
Sequence Homology, Amino Acid
Tumor Suppressor Proteins - genetics
title Functional Significance for a Heterogenous Ribonucleoprotein A18 Signature RNA Motif in the 3′-Untranslated Region of Ataxia Telangiectasia Mutated and Rad3-related (ATR) Transcript
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Significance%20for%20a%20Heterogenous%20Ribonucleoprotein%20A18%20Signature%20RNA%20Motif%20in%20the%203%E2%80%B2-Untranslated%20Region%20of%20Ataxia%20Telangiectasia%20Mutated%20and%20Rad3-related%20(ATR)%20Transcript&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Yang,%20Ruiqing&rft.date=2010-03-19&rft.volume=285&rft.issue=12&rft.spage=8887&rft.epage=8893&rft.pages=8887-8893&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.013128&rft_dat=%3Cproquest_pubme%3E733707854%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733707854&rft_id=info:pmid/20103595&rft_els_id=S002192582087286X&rfr_iscdi=true