Functional Significance for a Heterogenous Ribonucleoprotein A18 Signature RNA Motif in the 3′-Untranslated Region of Ataxia Telangiectasia Mutated and Rad3-related (ATR) Transcript
The predominantly nuclear heterogenous ribonucleoprotein A18 (hnRNP A18) translocates to the cytosol in response to cellular stress and increases translation by specifically binding to the 3′-untranslated region (UTR) of several mRNA transcripts and the eukaryotic initiation factor 4G. Here, we iden...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2010-03, Vol.285 (12), p.8887-8893 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8893 |
---|---|
container_issue | 12 |
container_start_page | 8887 |
container_title | The Journal of biological chemistry |
container_volume | 285 |
creator | Yang, Ruiqing Zhan, Ming Nalabothula, Narasimha Rao Yang, Qingyuan Indig, Fred E. Carrier, France |
description | The predominantly nuclear heterogenous ribonucleoprotein A18 (hnRNP A18) translocates to the cytosol in response to cellular stress and increases translation by specifically binding to the 3′-untranslated region (UTR) of several mRNA transcripts and the eukaryotic initiation factor 4G. Here, we identified a 51-nucleotide motif that is present 11.49 times more often in the 3′-UTR of hnRNP A18 mRNA targets than in the UniGene data base. This motif was identified by computational analysis of primary sequences and secondary structures of hnRNP A18 mRNA targets against the unaligned sequences. Band shift analyses indicate that the motif is sufficient to confer binding to hnRNP A18. A search of the entire UniGene data base indicates that the hnRNP A18 motif is also present in the 3′-UTR of the ataxia telangiectasia mutated and Rad3-related (ATR) mRNA. Validation of the predicted hnRNP A18 motif is provided by amplification of endogenous ATR transcript on polysomal fractions immunoprecipitated with hnRNP A18. Moreover, overexpression of hnRNP A18 results in increased ATR protein levels and increased phosphorylation of Chk1, a preferred ATR substrate, in response to UV radiation. In addition, our data indicate that inhibition of casein kinase II or GSK3β significantly reduced hnRNP A18 cytosolic translocation in response to UV radiation. To our knowledge, this constitutes the first demonstration of a post-transcriptional regulatory mechanism for ATR activity. hnRNP A18 could thus become a new target to trigger ATR activity as back-up stress response mechanisms to functionally compensate for absent or defective responders. |
doi_str_mv | 10.1074/jbc.M109.013128 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2838310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192582087286X</els_id><sourcerecordid>733707854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-68bcba9c81c2a4b6ad7b73e1afcf38ee38e9560d6afb7bb4f2a49daa34106d863</originalsourceid><addsrcrecordid>eNqFks9u1DAQxiMEosvCmRv4BhyyteP8cS5Iq4pSpC5I212JmzVxJqmrrL21nQpuPBMX3ocnwduUCg4IS5ZlzW9mPJ-_JHnO6ILRKj--atRixWi9oIyzTDxIZowKnvKCfX6YzCjNWFpnhThKnnh_RePKa_Y4Ocooo7yoi1ny43Q0KmhrYCAXuje60wqMQtJZR4CcYUBnezR29GStG2tGNaDdOxtQG7Jk4jYLwuiQrD8uycoG3ZEYCpdI-M9v39OtCQ6MHyBgS9bYx17EdmQZ4IsGssEBTK9RBfDxuhrDLQcmstDy1OGU-Hq5Wb8hm0Ml5fQ-PE0edTB4fHZ3zpPt6bvNyVl6_un9h5PleaqKMg9pKRrVQK0EUxnkTQlt1VQcGXSq4wIx7rooaVtC11RNk3eRqlsAnjNatqLk8-TtVHc_NjtsFR6mGeTe6R24r9KCln9HjL6Uvb2RmeCCR5Xnyau7As5ej-iD3GmvcIhjYxRVVnleZYwV_P8k5xWtRJFH8ngilbPeO-zu38OoPPhCRl_Igy_k5IuY8eLPMe7530aIwMsJ6MBK6J32cnsRo5wywXhJD0rUE4FR7huNTnqlMVql1S5-n2yt_mf7X-AH1Vk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733707854</pqid></control><display><type>article</type><title>Functional Significance for a Heterogenous Ribonucleoprotein A18 Signature RNA Motif in the 3′-Untranslated Region of Ataxia Telangiectasia Mutated and Rad3-related (ATR) Transcript</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Yang, Ruiqing ; Zhan, Ming ; Nalabothula, Narasimha Rao ; Yang, Qingyuan ; Indig, Fred E. ; Carrier, France</creator><creatorcontrib>Yang, Ruiqing ; Zhan, Ming ; Nalabothula, Narasimha Rao ; Yang, Qingyuan ; Indig, Fred E. ; Carrier, France</creatorcontrib><description>The predominantly nuclear heterogenous ribonucleoprotein A18 (hnRNP A18) translocates to the cytosol in response to cellular stress and increases translation by specifically binding to the 3′-untranslated region (UTR) of several mRNA transcripts and the eukaryotic initiation factor 4G. Here, we identified a 51-nucleotide motif that is present 11.49 times more often in the 3′-UTR of hnRNP A18 mRNA targets than in the UniGene data base. This motif was identified by computational analysis of primary sequences and secondary structures of hnRNP A18 mRNA targets against the unaligned sequences. Band shift analyses indicate that the motif is sufficient to confer binding to hnRNP A18. A search of the entire UniGene data base indicates that the hnRNP A18 motif is also present in the 3′-UTR of the ataxia telangiectasia mutated and Rad3-related (ATR) mRNA. Validation of the predicted hnRNP A18 motif is provided by amplification of endogenous ATR transcript on polysomal fractions immunoprecipitated with hnRNP A18. Moreover, overexpression of hnRNP A18 results in increased ATR protein levels and increased phosphorylation of Chk1, a preferred ATR substrate, in response to UV radiation. In addition, our data indicate that inhibition of casein kinase II or GSK3β significantly reduced hnRNP A18 cytosolic translocation in response to UV radiation. To our knowledge, this constitutes the first demonstration of a post-transcriptional regulatory mechanism for ATR activity. hnRNP A18 could thus become a new target to trigger ATR activity as back-up stress response mechanisms to functionally compensate for absent or defective responders.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.013128</identifier><identifier>PMID: 20103595</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3' Untranslated Regions ; Amino Acid Motifs ; Amino Acid Sequence ; Ataxia Telangiectasia Mutated Proteins ; ATR ; Casein Kinase II - metabolism ; Cell Cycle Proteins - genetics ; Cell Line, Tumor ; Diseases/Cancer/Carcinogenesis ; DNA-Binding Proteins - genetics ; DNA/Damage ; Glycogen Synthase Kinase 3 - metabolism ; Glycogen Synthase Kinase 3 beta ; Heterogeneous-Nuclear Ribonucleoproteins - genetics ; Humans ; Microscopy, Confocal - methods ; Molecular Sequence Data ; Phosphorylation ; Protein-Serine-Threonine Kinases - genetics ; Protein/Binding/RNA ; RNA ; RNA - genetics ; RNA/Ribonuclear Protein RNP ; RNA/Translation ; Sequence Homology, Amino Acid ; Tumor Suppressor Proteins - genetics</subject><ispartof>The Journal of biological chemistry, 2010-03, Vol.285 (12), p.8887-8893</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-68bcba9c81c2a4b6ad7b73e1afcf38ee38e9560d6afb7bb4f2a49daa34106d863</citedby><cites>FETCH-LOGICAL-c564t-68bcba9c81c2a4b6ad7b73e1afcf38ee38e9560d6afb7bb4f2a49daa34106d863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838310/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838310/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20103595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Ruiqing</creatorcontrib><creatorcontrib>Zhan, Ming</creatorcontrib><creatorcontrib>Nalabothula, Narasimha Rao</creatorcontrib><creatorcontrib>Yang, Qingyuan</creatorcontrib><creatorcontrib>Indig, Fred E.</creatorcontrib><creatorcontrib>Carrier, France</creatorcontrib><title>Functional Significance for a Heterogenous Ribonucleoprotein A18 Signature RNA Motif in the 3′-Untranslated Region of Ataxia Telangiectasia Mutated and Rad3-related (ATR) Transcript</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The predominantly nuclear heterogenous ribonucleoprotein A18 (hnRNP A18) translocates to the cytosol in response to cellular stress and increases translation by specifically binding to the 3′-untranslated region (UTR) of several mRNA transcripts and the eukaryotic initiation factor 4G. Here, we identified a 51-nucleotide motif that is present 11.49 times more often in the 3′-UTR of hnRNP A18 mRNA targets than in the UniGene data base. This motif was identified by computational analysis of primary sequences and secondary structures of hnRNP A18 mRNA targets against the unaligned sequences. Band shift analyses indicate that the motif is sufficient to confer binding to hnRNP A18. A search of the entire UniGene data base indicates that the hnRNP A18 motif is also present in the 3′-UTR of the ataxia telangiectasia mutated and Rad3-related (ATR) mRNA. Validation of the predicted hnRNP A18 motif is provided by amplification of endogenous ATR transcript on polysomal fractions immunoprecipitated with hnRNP A18. Moreover, overexpression of hnRNP A18 results in increased ATR protein levels and increased phosphorylation of Chk1, a preferred ATR substrate, in response to UV radiation. In addition, our data indicate that inhibition of casein kinase II or GSK3β significantly reduced hnRNP A18 cytosolic translocation in response to UV radiation. To our knowledge, this constitutes the first demonstration of a post-transcriptional regulatory mechanism for ATR activity. hnRNP A18 could thus become a new target to trigger ATR activity as back-up stress response mechanisms to functionally compensate for absent or defective responders.</description><subject>3' Untranslated Regions</subject><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Ataxia Telangiectasia Mutated Proteins</subject><subject>ATR</subject><subject>Casein Kinase II - metabolism</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Line, Tumor</subject><subject>Diseases/Cancer/Carcinogenesis</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA/Damage</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>Glycogen Synthase Kinase 3 beta</subject><subject>Heterogeneous-Nuclear Ribonucleoproteins - genetics</subject><subject>Humans</subject><subject>Microscopy, Confocal - methods</subject><subject>Molecular Sequence Data</subject><subject>Phosphorylation</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein/Binding/RNA</subject><subject>RNA</subject><subject>RNA - genetics</subject><subject>RNA/Ribonuclear Protein RNP</subject><subject>RNA/Translation</subject><subject>Sequence Homology, Amino Acid</subject><subject>Tumor Suppressor Proteins - genetics</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks9u1DAQxiMEosvCmRv4BhyyteP8cS5Iq4pSpC5I212JmzVxJqmrrL21nQpuPBMX3ocnwduUCg4IS5ZlzW9mPJ-_JHnO6ILRKj--atRixWi9oIyzTDxIZowKnvKCfX6YzCjNWFpnhThKnnh_RePKa_Y4Ocooo7yoi1ny43Q0KmhrYCAXuje60wqMQtJZR4CcYUBnezR29GStG2tGNaDdOxtQG7Jk4jYLwuiQrD8uycoG3ZEYCpdI-M9v39OtCQ6MHyBgS9bYx17EdmQZ4IsGssEBTK9RBfDxuhrDLQcmstDy1OGU-Hq5Wb8hm0Ml5fQ-PE0edTB4fHZ3zpPt6bvNyVl6_un9h5PleaqKMg9pKRrVQK0EUxnkTQlt1VQcGXSq4wIx7rooaVtC11RNk3eRqlsAnjNatqLk8-TtVHc_NjtsFR6mGeTe6R24r9KCln9HjL6Uvb2RmeCCR5Xnyau7As5ej-iD3GmvcIhjYxRVVnleZYwV_P8k5xWtRJFH8ngilbPeO-zu38OoPPhCRl_Igy_k5IuY8eLPMe7530aIwMsJ6MBK6J32cnsRo5wywXhJD0rUE4FR7huNTnqlMVql1S5-n2yt_mf7X-AH1Vk</recordid><startdate>20100319</startdate><enddate>20100319</enddate><creator>Yang, Ruiqing</creator><creator>Zhan, Ming</creator><creator>Nalabothula, Narasimha Rao</creator><creator>Yang, Qingyuan</creator><creator>Indig, Fred E.</creator><creator>Carrier, France</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>20100319</creationdate><title>Functional Significance for a Heterogenous Ribonucleoprotein A18 Signature RNA Motif in the 3′-Untranslated Region of Ataxia Telangiectasia Mutated and Rad3-related (ATR) Transcript</title><author>Yang, Ruiqing ; Zhan, Ming ; Nalabothula, Narasimha Rao ; Yang, Qingyuan ; Indig, Fred E. ; Carrier, France</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-68bcba9c81c2a4b6ad7b73e1afcf38ee38e9560d6afb7bb4f2a49daa34106d863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>3' Untranslated Regions</topic><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Ataxia Telangiectasia Mutated Proteins</topic><topic>ATR</topic><topic>Casein Kinase II - metabolism</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Line, Tumor</topic><topic>Diseases/Cancer/Carcinogenesis</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA/Damage</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>Glycogen Synthase Kinase 3 beta</topic><topic>Heterogeneous-Nuclear Ribonucleoproteins - genetics</topic><topic>Humans</topic><topic>Microscopy, Confocal - methods</topic><topic>Molecular Sequence Data</topic><topic>Phosphorylation</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein/Binding/RNA</topic><topic>RNA</topic><topic>RNA - genetics</topic><topic>RNA/Ribonuclear Protein RNP</topic><topic>RNA/Translation</topic><topic>Sequence Homology, Amino Acid</topic><topic>Tumor Suppressor Proteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ruiqing</creatorcontrib><creatorcontrib>Zhan, Ming</creatorcontrib><creatorcontrib>Nalabothula, Narasimha Rao</creatorcontrib><creatorcontrib>Yang, Qingyuan</creatorcontrib><creatorcontrib>Indig, Fred E.</creatorcontrib><creatorcontrib>Carrier, France</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ruiqing</au><au>Zhan, Ming</au><au>Nalabothula, Narasimha Rao</au><au>Yang, Qingyuan</au><au>Indig, Fred E.</au><au>Carrier, France</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Significance for a Heterogenous Ribonucleoprotein A18 Signature RNA Motif in the 3′-Untranslated Region of Ataxia Telangiectasia Mutated and Rad3-related (ATR) Transcript</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-03-19</date><risdate>2010</risdate><volume>285</volume><issue>12</issue><spage>8887</spage><epage>8893</epage><pages>8887-8893</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The predominantly nuclear heterogenous ribonucleoprotein A18 (hnRNP A18) translocates to the cytosol in response to cellular stress and increases translation by specifically binding to the 3′-untranslated region (UTR) of several mRNA transcripts and the eukaryotic initiation factor 4G. Here, we identified a 51-nucleotide motif that is present 11.49 times more often in the 3′-UTR of hnRNP A18 mRNA targets than in the UniGene data base. This motif was identified by computational analysis of primary sequences and secondary structures of hnRNP A18 mRNA targets against the unaligned sequences. Band shift analyses indicate that the motif is sufficient to confer binding to hnRNP A18. A search of the entire UniGene data base indicates that the hnRNP A18 motif is also present in the 3′-UTR of the ataxia telangiectasia mutated and Rad3-related (ATR) mRNA. Validation of the predicted hnRNP A18 motif is provided by amplification of endogenous ATR transcript on polysomal fractions immunoprecipitated with hnRNP A18. Moreover, overexpression of hnRNP A18 results in increased ATR protein levels and increased phosphorylation of Chk1, a preferred ATR substrate, in response to UV radiation. In addition, our data indicate that inhibition of casein kinase II or GSK3β significantly reduced hnRNP A18 cytosolic translocation in response to UV radiation. To our knowledge, this constitutes the first demonstration of a post-transcriptional regulatory mechanism for ATR activity. hnRNP A18 could thus become a new target to trigger ATR activity as back-up stress response mechanisms to functionally compensate for absent or defective responders.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20103595</pmid><doi>10.1074/jbc.M109.013128</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2010-03, Vol.285 (12), p.8887-8893 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2838310 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | 3' Untranslated Regions Amino Acid Motifs Amino Acid Sequence Ataxia Telangiectasia Mutated Proteins ATR Casein Kinase II - metabolism Cell Cycle Proteins - genetics Cell Line, Tumor Diseases/Cancer/Carcinogenesis DNA-Binding Proteins - genetics DNA/Damage Glycogen Synthase Kinase 3 - metabolism Glycogen Synthase Kinase 3 beta Heterogeneous-Nuclear Ribonucleoproteins - genetics Humans Microscopy, Confocal - methods Molecular Sequence Data Phosphorylation Protein-Serine-Threonine Kinases - genetics Protein/Binding/RNA RNA RNA - genetics RNA/Ribonuclear Protein RNP RNA/Translation Sequence Homology, Amino Acid Tumor Suppressor Proteins - genetics |
title | Functional Significance for a Heterogenous Ribonucleoprotein A18 Signature RNA Motif in the 3′-Untranslated Region of Ataxia Telangiectasia Mutated and Rad3-related (ATR) Transcript |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Significance%20for%20a%20Heterogenous%20Ribonucleoprotein%20A18%20Signature%20RNA%20Motif%20in%20the%203%E2%80%B2-Untranslated%20Region%20of%20Ataxia%20Telangiectasia%20Mutated%20and%20Rad3-related%20(ATR)%20Transcript&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Yang,%20Ruiqing&rft.date=2010-03-19&rft.volume=285&rft.issue=12&rft.spage=8887&rft.epage=8893&rft.pages=8887-8893&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.013128&rft_dat=%3Cproquest_pubme%3E733707854%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733707854&rft_id=info:pmid/20103595&rft_els_id=S002192582087286X&rfr_iscdi=true |