Value of Using Multiple Proteases for Large-Scale Mass Spectrometry-Based Proteomics
Large-scale protein sequencing methods rely on enzymatic digestion of complex protein mixtures to generate a collection of peptides for mass spectrometric analysis. Here we examine the use of multiple proteases (trypsin, LysC, ArgC, AspN, and GluC) to improve both protein identification and characte...
Gespeichert in:
Veröffentlicht in: | Journal of proteome research 2010-03, Vol.9 (3), p.1323-1329 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1329 |
---|---|
container_issue | 3 |
container_start_page | 1323 |
container_title | Journal of proteome research |
container_volume | 9 |
creator | Swaney, Danielle L Wenger, Craig D Coon, Joshua J |
description | Large-scale protein sequencing methods rely on enzymatic digestion of complex protein mixtures to generate a collection of peptides for mass spectrometric analysis. Here we examine the use of multiple proteases (trypsin, LysC, ArgC, AspN, and GluC) to improve both protein identification and characterization in the model organism Saccharomyces cerevisiae. Using a data-dependent, decision tree-based algorithm to tailor MS2 fragmentation method to peptide precursor, we identified 92 095 unique peptides (609 665 total) mapping to 3908 proteins at a 1% false discovery rate (FDR). These results were a significant improvement upon data from a single protease digest (trypsin) − 27 822 unique peptides corresponding to 3313 proteins. The additional 595 protein identifications were mainly from those at low abundances (i.e., < 1000 copies/cell); sequence coverage for these proteins was likewise improved nearly 3-fold. We demonstrate that large portions of the proteome are simply inaccessible following digestion with a single protease and that multiple proteases, rather than technical replicates, provide a direct route to increase both protein identifications and proteome sequence coverage. |
doi_str_mv | 10.1021/pr900863u |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2833215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733115875</sourcerecordid><originalsourceid>FETCH-LOGICAL-a404t-aaf84449774076589dca80af92a32d7e5e2738f24e55f8d70e8b6040da4fdbeb3</originalsourceid><addsrcrecordid>eNptkV1L7DAQhoMo6lm98A9Ib0TORXXSJJv0RlA5fsCKgh-3YbadrJW2qUl7wH9vZXVR8GoG3mfeGd5hbI_DEYeMH3chBzBTMayxba6ESkUOev2rN7nYYn9ifAHgSoPYZFsZcC4A1DZ7eMJ6oMS75DFW7SK5Geq-6mpK7oLvCSPFxPmQzDAsKL0vcFRuMMbkvqOiD76hPrylZyNXLid8UxVxh204rCPtftYJe7z493B-lc5uL6_PT2cpSpB9iuiMlDLXWoKeKpOXBRpAl2coslKTokwL4zJJSjlTaiAzn4KEEqUr5zQXE3ay9O2GeUNlQW0fsLZdqBoMb9ZjZX8qbfVsF_6_zYwQ2ZjOhB1-GgT_OlDsbVPFguoaW_JDtFoIzpXRH-TfJVkEH2Mgt9rCwX48wa6eMLL7389akV-pj8DBEsAi2hc_hHZM6Rejd-r-j5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733115875</pqid></control><display><type>article</type><title>Value of Using Multiple Proteases for Large-Scale Mass Spectrometry-Based Proteomics</title><source>MEDLINE</source><source>ACS Publications</source><creator>Swaney, Danielle L ; Wenger, Craig D ; Coon, Joshua J</creator><creatorcontrib>Swaney, Danielle L ; Wenger, Craig D ; Coon, Joshua J</creatorcontrib><description>Large-scale protein sequencing methods rely on enzymatic digestion of complex protein mixtures to generate a collection of peptides for mass spectrometric analysis. Here we examine the use of multiple proteases (trypsin, LysC, ArgC, AspN, and GluC) to improve both protein identification and characterization in the model organism Saccharomyces cerevisiae. Using a data-dependent, decision tree-based algorithm to tailor MS2 fragmentation method to peptide precursor, we identified 92 095 unique peptides (609 665 total) mapping to 3908 proteins at a 1% false discovery rate (FDR). These results were a significant improvement upon data from a single protease digest (trypsin) − 27 822 unique peptides corresponding to 3313 proteins. The additional 595 protein identifications were mainly from those at low abundances (i.e., < 1000 copies/cell); sequence coverage for these proteins was likewise improved nearly 3-fold. We demonstrate that large portions of the proteome are simply inaccessible following digestion with a single protease and that multiple proteases, rather than technical replicates, provide a direct route to increase both protein identifications and proteome sequence coverage.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/pr900863u</identifier><identifier>PMID: 20113005</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Computer Simulation ; Mass Spectrometry - methods ; Models, Biological ; Peptide Fragments - chemistry ; Peptide Fragments - metabolism ; Peptide Hydrolases - chemistry ; Peptide Hydrolases - metabolism ; Protein Processing, Post-Translational ; Proteomics - methods ; Reproducibility of Results ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Sequence Analysis, Protein - methods</subject><ispartof>Journal of proteome research, 2010-03, Vol.9 (3), p.1323-1329</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a404t-aaf84449774076589dca80af92a32d7e5e2738f24e55f8d70e8b6040da4fdbeb3</citedby><cites>FETCH-LOGICAL-a404t-aaf84449774076589dca80af92a32d7e5e2738f24e55f8d70e8b6040da4fdbeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/pr900863u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/pr900863u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20113005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Swaney, Danielle L</creatorcontrib><creatorcontrib>Wenger, Craig D</creatorcontrib><creatorcontrib>Coon, Joshua J</creatorcontrib><title>Value of Using Multiple Proteases for Large-Scale Mass Spectrometry-Based Proteomics</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>Large-scale protein sequencing methods rely on enzymatic digestion of complex protein mixtures to generate a collection of peptides for mass spectrometric analysis. Here we examine the use of multiple proteases (trypsin, LysC, ArgC, AspN, and GluC) to improve both protein identification and characterization in the model organism Saccharomyces cerevisiae. Using a data-dependent, decision tree-based algorithm to tailor MS2 fragmentation method to peptide precursor, we identified 92 095 unique peptides (609 665 total) mapping to 3908 proteins at a 1% false discovery rate (FDR). These results were a significant improvement upon data from a single protease digest (trypsin) − 27 822 unique peptides corresponding to 3313 proteins. The additional 595 protein identifications were mainly from those at low abundances (i.e., < 1000 copies/cell); sequence coverage for these proteins was likewise improved nearly 3-fold. We demonstrate that large portions of the proteome are simply inaccessible following digestion with a single protease and that multiple proteases, rather than technical replicates, provide a direct route to increase both protein identifications and proteome sequence coverage.</description><subject>Computer Simulation</subject><subject>Mass Spectrometry - methods</subject><subject>Models, Biological</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - metabolism</subject><subject>Peptide Hydrolases - chemistry</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteomics - methods</subject><subject>Reproducibility of Results</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sequence Analysis, Protein - methods</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkV1L7DAQhoMo6lm98A9Ib0TORXXSJJv0RlA5fsCKgh-3YbadrJW2qUl7wH9vZXVR8GoG3mfeGd5hbI_DEYeMH3chBzBTMayxba6ESkUOev2rN7nYYn9ifAHgSoPYZFsZcC4A1DZ7eMJ6oMS75DFW7SK5Geq-6mpK7oLvCSPFxPmQzDAsKL0vcFRuMMbkvqOiD76hPrylZyNXLid8UxVxh204rCPtftYJe7z493B-lc5uL6_PT2cpSpB9iuiMlDLXWoKeKpOXBRpAl2coslKTokwL4zJJSjlTaiAzn4KEEqUr5zQXE3ay9O2GeUNlQW0fsLZdqBoMb9ZjZX8qbfVsF_6_zYwQ2ZjOhB1-GgT_OlDsbVPFguoaW_JDtFoIzpXRH-TfJVkEH2Mgt9rCwX48wa6eMLL7389akV-pj8DBEsAi2hc_hHZM6Rejd-r-j5g</recordid><startdate>20100305</startdate><enddate>20100305</enddate><creator>Swaney, Danielle L</creator><creator>Wenger, Craig D</creator><creator>Coon, Joshua J</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100305</creationdate><title>Value of Using Multiple Proteases for Large-Scale Mass Spectrometry-Based Proteomics</title><author>Swaney, Danielle L ; Wenger, Craig D ; Coon, Joshua J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a404t-aaf84449774076589dca80af92a32d7e5e2738f24e55f8d70e8b6040da4fdbeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer Simulation</topic><topic>Mass Spectrometry - methods</topic><topic>Models, Biological</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - metabolism</topic><topic>Peptide Hydrolases - chemistry</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteomics - methods</topic><topic>Reproducibility of Results</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sequence Analysis, Protein - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swaney, Danielle L</creatorcontrib><creatorcontrib>Wenger, Craig D</creatorcontrib><creatorcontrib>Coon, Joshua J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swaney, Danielle L</au><au>Wenger, Craig D</au><au>Coon, Joshua J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Value of Using Multiple Proteases for Large-Scale Mass Spectrometry-Based Proteomics</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2010-03-05</date><risdate>2010</risdate><volume>9</volume><issue>3</issue><spage>1323</spage><epage>1329</epage><pages>1323-1329</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>Large-scale protein sequencing methods rely on enzymatic digestion of complex protein mixtures to generate a collection of peptides for mass spectrometric analysis. Here we examine the use of multiple proteases (trypsin, LysC, ArgC, AspN, and GluC) to improve both protein identification and characterization in the model organism Saccharomyces cerevisiae. Using a data-dependent, decision tree-based algorithm to tailor MS2 fragmentation method to peptide precursor, we identified 92 095 unique peptides (609 665 total) mapping to 3908 proteins at a 1% false discovery rate (FDR). These results were a significant improvement upon data from a single protease digest (trypsin) − 27 822 unique peptides corresponding to 3313 proteins. The additional 595 protein identifications were mainly from those at low abundances (i.e., < 1000 copies/cell); sequence coverage for these proteins was likewise improved nearly 3-fold. We demonstrate that large portions of the proteome are simply inaccessible following digestion with a single protease and that multiple proteases, rather than technical replicates, provide a direct route to increase both protein identifications and proteome sequence coverage.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20113005</pmid><doi>10.1021/pr900863u</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-3893 |
ispartof | Journal of proteome research, 2010-03, Vol.9 (3), p.1323-1329 |
issn | 1535-3893 1535-3907 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2833215 |
source | MEDLINE; ACS Publications |
subjects | Computer Simulation Mass Spectrometry - methods Models, Biological Peptide Fragments - chemistry Peptide Fragments - metabolism Peptide Hydrolases - chemistry Peptide Hydrolases - metabolism Protein Processing, Post-Translational Proteomics - methods Reproducibility of Results Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Sequence Analysis, Protein - methods |
title | Value of Using Multiple Proteases for Large-Scale Mass Spectrometry-Based Proteomics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A20%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Value%20of%20Using%20Multiple%20Proteases%20for%20Large-Scale%20Mass%20Spectrometry-Based%20Proteomics&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Swaney,%20Danielle%20L&rft.date=2010-03-05&rft.volume=9&rft.issue=3&rft.spage=1323&rft.epage=1329&rft.pages=1323-1329&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/pr900863u&rft_dat=%3Cproquest_pubme%3E733115875%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733115875&rft_id=info:pmid/20113005&rfr_iscdi=true |