Value of Using Multiple Proteases for Large-Scale Mass Spectrometry-Based Proteomics

Large-scale protein sequencing methods rely on enzymatic digestion of complex protein mixtures to generate a collection of peptides for mass spectrometric analysis. Here we examine the use of multiple proteases (trypsin, LysC, ArgC, AspN, and GluC) to improve both protein identification and characte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2010-03, Vol.9 (3), p.1323-1329
Hauptverfasser: Swaney, Danielle L, Wenger, Craig D, Coon, Joshua J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1329
container_issue 3
container_start_page 1323
container_title Journal of proteome research
container_volume 9
creator Swaney, Danielle L
Wenger, Craig D
Coon, Joshua J
description Large-scale protein sequencing methods rely on enzymatic digestion of complex protein mixtures to generate a collection of peptides for mass spectrometric analysis. Here we examine the use of multiple proteases (trypsin, LysC, ArgC, AspN, and GluC) to improve both protein identification and characterization in the model organism Saccharomyces cerevisiae. Using a data-dependent, decision tree-based algorithm to tailor MS2 fragmentation method to peptide precursor, we identified 92 095 unique peptides (609 665 total) mapping to 3908 proteins at a 1% false discovery rate (FDR). These results were a significant improvement upon data from a single protease digest (trypsin) − 27 822 unique peptides corresponding to 3313 proteins. The additional 595 protein identifications were mainly from those at low abundances (i.e., < 1000 copies/cell); sequence coverage for these proteins was likewise improved nearly 3-fold. We demonstrate that large portions of the proteome are simply inaccessible following digestion with a single protease and that multiple proteases, rather than technical replicates, provide a direct route to increase both protein identifications and proteome sequence coverage.
doi_str_mv 10.1021/pr900863u
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2833215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733115875</sourcerecordid><originalsourceid>FETCH-LOGICAL-a404t-aaf84449774076589dca80af92a32d7e5e2738f24e55f8d70e8b6040da4fdbeb3</originalsourceid><addsrcrecordid>eNptkV1L7DAQhoMo6lm98A9Ib0TORXXSJJv0RlA5fsCKgh-3YbadrJW2qUl7wH9vZXVR8GoG3mfeGd5hbI_DEYeMH3chBzBTMayxba6ESkUOev2rN7nYYn9ifAHgSoPYZFsZcC4A1DZ7eMJ6oMS75DFW7SK5Geq-6mpK7oLvCSPFxPmQzDAsKL0vcFRuMMbkvqOiD76hPrylZyNXLid8UxVxh204rCPtftYJe7z493B-lc5uL6_PT2cpSpB9iuiMlDLXWoKeKpOXBRpAl2coslKTokwL4zJJSjlTaiAzn4KEEqUr5zQXE3ay9O2GeUNlQW0fsLZdqBoMb9ZjZX8qbfVsF_6_zYwQ2ZjOhB1-GgT_OlDsbVPFguoaW_JDtFoIzpXRH-TfJVkEH2Mgt9rCwX48wa6eMLL7389akV-pj8DBEsAi2hc_hHZM6Rejd-r-j5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733115875</pqid></control><display><type>article</type><title>Value of Using Multiple Proteases for Large-Scale Mass Spectrometry-Based Proteomics</title><source>MEDLINE</source><source>ACS Publications</source><creator>Swaney, Danielle L ; Wenger, Craig D ; Coon, Joshua J</creator><creatorcontrib>Swaney, Danielle L ; Wenger, Craig D ; Coon, Joshua J</creatorcontrib><description>Large-scale protein sequencing methods rely on enzymatic digestion of complex protein mixtures to generate a collection of peptides for mass spectrometric analysis. Here we examine the use of multiple proteases (trypsin, LysC, ArgC, AspN, and GluC) to improve both protein identification and characterization in the model organism Saccharomyces cerevisiae. Using a data-dependent, decision tree-based algorithm to tailor MS2 fragmentation method to peptide precursor, we identified 92 095 unique peptides (609 665 total) mapping to 3908 proteins at a 1% false discovery rate (FDR). These results were a significant improvement upon data from a single protease digest (trypsin) − 27 822 unique peptides corresponding to 3313 proteins. The additional 595 protein identifications were mainly from those at low abundances (i.e., &lt; 1000 copies/cell); sequence coverage for these proteins was likewise improved nearly 3-fold. We demonstrate that large portions of the proteome are simply inaccessible following digestion with a single protease and that multiple proteases, rather than technical replicates, provide a direct route to increase both protein identifications and proteome sequence coverage.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/pr900863u</identifier><identifier>PMID: 20113005</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Computer Simulation ; Mass Spectrometry - methods ; Models, Biological ; Peptide Fragments - chemistry ; Peptide Fragments - metabolism ; Peptide Hydrolases - chemistry ; Peptide Hydrolases - metabolism ; Protein Processing, Post-Translational ; Proteomics - methods ; Reproducibility of Results ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Sequence Analysis, Protein - methods</subject><ispartof>Journal of proteome research, 2010-03, Vol.9 (3), p.1323-1329</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a404t-aaf84449774076589dca80af92a32d7e5e2738f24e55f8d70e8b6040da4fdbeb3</citedby><cites>FETCH-LOGICAL-a404t-aaf84449774076589dca80af92a32d7e5e2738f24e55f8d70e8b6040da4fdbeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/pr900863u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/pr900863u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20113005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Swaney, Danielle L</creatorcontrib><creatorcontrib>Wenger, Craig D</creatorcontrib><creatorcontrib>Coon, Joshua J</creatorcontrib><title>Value of Using Multiple Proteases for Large-Scale Mass Spectrometry-Based Proteomics</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>Large-scale protein sequencing methods rely on enzymatic digestion of complex protein mixtures to generate a collection of peptides for mass spectrometric analysis. Here we examine the use of multiple proteases (trypsin, LysC, ArgC, AspN, and GluC) to improve both protein identification and characterization in the model organism Saccharomyces cerevisiae. Using a data-dependent, decision tree-based algorithm to tailor MS2 fragmentation method to peptide precursor, we identified 92 095 unique peptides (609 665 total) mapping to 3908 proteins at a 1% false discovery rate (FDR). These results were a significant improvement upon data from a single protease digest (trypsin) − 27 822 unique peptides corresponding to 3313 proteins. The additional 595 protein identifications were mainly from those at low abundances (i.e., &lt; 1000 copies/cell); sequence coverage for these proteins was likewise improved nearly 3-fold. We demonstrate that large portions of the proteome are simply inaccessible following digestion with a single protease and that multiple proteases, rather than technical replicates, provide a direct route to increase both protein identifications and proteome sequence coverage.</description><subject>Computer Simulation</subject><subject>Mass Spectrometry - methods</subject><subject>Models, Biological</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - metabolism</subject><subject>Peptide Hydrolases - chemistry</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteomics - methods</subject><subject>Reproducibility of Results</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sequence Analysis, Protein - methods</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkV1L7DAQhoMo6lm98A9Ib0TORXXSJJv0RlA5fsCKgh-3YbadrJW2qUl7wH9vZXVR8GoG3mfeGd5hbI_DEYeMH3chBzBTMayxba6ESkUOev2rN7nYYn9ifAHgSoPYZFsZcC4A1DZ7eMJ6oMS75DFW7SK5Geq-6mpK7oLvCSPFxPmQzDAsKL0vcFRuMMbkvqOiD76hPrylZyNXLid8UxVxh204rCPtftYJe7z493B-lc5uL6_PT2cpSpB9iuiMlDLXWoKeKpOXBRpAl2coslKTokwL4zJJSjlTaiAzn4KEEqUr5zQXE3ay9O2GeUNlQW0fsLZdqBoMb9ZjZX8qbfVsF_6_zYwQ2ZjOhB1-GgT_OlDsbVPFguoaW_JDtFoIzpXRH-TfJVkEH2Mgt9rCwX48wa6eMLL7389akV-pj8DBEsAi2hc_hHZM6Rejd-r-j5g</recordid><startdate>20100305</startdate><enddate>20100305</enddate><creator>Swaney, Danielle L</creator><creator>Wenger, Craig D</creator><creator>Coon, Joshua J</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100305</creationdate><title>Value of Using Multiple Proteases for Large-Scale Mass Spectrometry-Based Proteomics</title><author>Swaney, Danielle L ; Wenger, Craig D ; Coon, Joshua J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a404t-aaf84449774076589dca80af92a32d7e5e2738f24e55f8d70e8b6040da4fdbeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer Simulation</topic><topic>Mass Spectrometry - methods</topic><topic>Models, Biological</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - metabolism</topic><topic>Peptide Hydrolases - chemistry</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteomics - methods</topic><topic>Reproducibility of Results</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sequence Analysis, Protein - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swaney, Danielle L</creatorcontrib><creatorcontrib>Wenger, Craig D</creatorcontrib><creatorcontrib>Coon, Joshua J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swaney, Danielle L</au><au>Wenger, Craig D</au><au>Coon, Joshua J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Value of Using Multiple Proteases for Large-Scale Mass Spectrometry-Based Proteomics</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2010-03-05</date><risdate>2010</risdate><volume>9</volume><issue>3</issue><spage>1323</spage><epage>1329</epage><pages>1323-1329</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>Large-scale protein sequencing methods rely on enzymatic digestion of complex protein mixtures to generate a collection of peptides for mass spectrometric analysis. Here we examine the use of multiple proteases (trypsin, LysC, ArgC, AspN, and GluC) to improve both protein identification and characterization in the model organism Saccharomyces cerevisiae. Using a data-dependent, decision tree-based algorithm to tailor MS2 fragmentation method to peptide precursor, we identified 92 095 unique peptides (609 665 total) mapping to 3908 proteins at a 1% false discovery rate (FDR). These results were a significant improvement upon data from a single protease digest (trypsin) − 27 822 unique peptides corresponding to 3313 proteins. The additional 595 protein identifications were mainly from those at low abundances (i.e., &lt; 1000 copies/cell); sequence coverage for these proteins was likewise improved nearly 3-fold. We demonstrate that large portions of the proteome are simply inaccessible following digestion with a single protease and that multiple proteases, rather than technical replicates, provide a direct route to increase both protein identifications and proteome sequence coverage.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20113005</pmid><doi>10.1021/pr900863u</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-3893
ispartof Journal of proteome research, 2010-03, Vol.9 (3), p.1323-1329
issn 1535-3893
1535-3907
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2833215
source MEDLINE; ACS Publications
subjects Computer Simulation
Mass Spectrometry - methods
Models, Biological
Peptide Fragments - chemistry
Peptide Fragments - metabolism
Peptide Hydrolases - chemistry
Peptide Hydrolases - metabolism
Protein Processing, Post-Translational
Proteomics - methods
Reproducibility of Results
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
Sequence Analysis, Protein - methods
title Value of Using Multiple Proteases for Large-Scale Mass Spectrometry-Based Proteomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A20%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Value%20of%20Using%20Multiple%20Proteases%20for%20Large-Scale%20Mass%20Spectrometry-Based%20Proteomics&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Swaney,%20Danielle%20L&rft.date=2010-03-05&rft.volume=9&rft.issue=3&rft.spage=1323&rft.epage=1329&rft.pages=1323-1329&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/pr900863u&rft_dat=%3Cproquest_pubme%3E733115875%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733115875&rft_id=info:pmid/20113005&rfr_iscdi=true