Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain

To understand how brain states and behaviors are generated by neural circuits, it would be useful to be able to perturb precisely the activity of specific cell types and pathways in the nonhuman primate nervous system. We used lentivirus to target the light-activated cation channel channelrhodopsin-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2009-04, Vol.62 (2), p.191-198
Hauptverfasser: Han, Xue, Qian, Xiaofeng, Bernstein, Jacob G., Zhou, Hui-hui, Franzesi, Giovanni Talei, Stern, Patrick, Bronson, Roderick T., Graybiel, Ann M., Desimone, Robert, Boyden, Edward S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue 2
container_start_page 191
container_title Neuron (Cambridge, Mass.)
container_volume 62
creator Han, Xue
Qian, Xiaofeng
Bernstein, Jacob G.
Zhou, Hui-hui
Franzesi, Giovanni Talei
Stern, Patrick
Bronson, Roderick T.
Graybiel, Ann M.
Desimone, Robert
Boyden, Edward S.
description To understand how brain states and behaviors are generated by neural circuits, it would be useful to be able to perturb precisely the activity of specific cell types and pathways in the nonhuman primate nervous system. We used lentivirus to target the light-activated cation channel channelrhodopsin-2 (ChR2) specifically to excitatory neurons of the macaque frontal cortex. Using a laser-coupled optical fiber in conjunction with a recording microelectrode, we showed that activation of excitatory neurons resulted in well-timed excitatory and suppressive influences on neocortical neural networks. ChR2 was safely expressed, and could mediate optical neuromodulation, in primate neocortex over many months. These findings highlight a methodology for investigating the causal role of specific cell types in nonhuman primate neural computation, cognition, and behavior, and open up the possibility of a new generation of ultraprecise neurological and psychiatric therapeutics via cell-type-specific optical neural control prosthetics.
doi_str_mv 10.1016/j.neuron.2009.03.011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2830644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627309002104</els_id><sourcerecordid>3235467731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-91b9b279332e742d5624ae2ac42ceac92de976258dee89e05bff8153208d30473</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EIpPAHyBkiXV3yo9-eINEJuQhhYRFYGt53NUZj7rtid0dKX-PRzNKYMOqrHLVvUd1CfnEoGTA6tNN6XGOwZccQJUgSmDsDVkwUE0hmVJvyQJaVRc1b8QROU5pA8Bkpdh7csSUBMVruSC_f7hhcAlt8F1x70ZM1gxI77aTyw-6DH6KYaChp7fZLXfOn70ZnU3UeTqtkd4Gv55H4-nP6EYzIT2LxvkP5F1vhoQfD_WE_Lr4fr-8Km7uLq-X324KK6t2KhRbqRVvlBAcG8m7qubSIDdWcovGKt6hampetR1iqxCqVd-3rBIc2k6AbMQJ-brX3c6rETuLGdcMertjic86GKf__fFurR_Ck-atgFrKLPDlIBDD44xp0pswR5-ZNatANI1kAvKU3E_ZGFKK2L84MNC7NPRG79PQuzQ0CJ3TyGuf_6Z7XTqc_xUf842eHEadrENvsXMR7aS74P7v8AfDNJ4s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503774130</pqid></control><display><type>article</type><title>Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Han, Xue ; Qian, Xiaofeng ; Bernstein, Jacob G. ; Zhou, Hui-hui ; Franzesi, Giovanni Talei ; Stern, Patrick ; Bronson, Roderick T. ; Graybiel, Ann M. ; Desimone, Robert ; Boyden, Edward S.</creator><creatorcontrib>Han, Xue ; Qian, Xiaofeng ; Bernstein, Jacob G. ; Zhou, Hui-hui ; Franzesi, Giovanni Talei ; Stern, Patrick ; Bronson, Roderick T. ; Graybiel, Ann M. ; Desimone, Robert ; Boyden, Edward S.</creatorcontrib><description>To understand how brain states and behaviors are generated by neural circuits, it would be useful to be able to perturb precisely the activity of specific cell types and pathways in the nonhuman primate nervous system. We used lentivirus to target the light-activated cation channel channelrhodopsin-2 (ChR2) specifically to excitatory neurons of the macaque frontal cortex. Using a laser-coupled optical fiber in conjunction with a recording microelectrode, we showed that activation of excitatory neurons resulted in well-timed excitatory and suppressive influences on neocortical neural networks. ChR2 was safely expressed, and could mediate optical neuromodulation, in primate neocortex over many months. These findings highlight a methodology for investigating the causal role of specific cell types in nonhuman primate neural computation, cognition, and behavior, and open up the possibility of a new generation of ultraprecise neurological and psychiatric therapeutics via cell-type-specific optical neural control prosthetics.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2009.03.011</identifier><identifier>PMID: 19409264</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - physiology ; Animals ; Brain Mapping ; Electrodes ; Gene expression ; Gene Expression Regulation - genetics ; Gene Expression Regulation - radiation effects ; Green Fluorescent Proteins - genetics ; Laboratory animals ; Lentivirus - physiology ; Light ; Macaca mulatta ; Models, Animal ; Neurons ; Neurons - physiology ; Neurosciences ; Nonlinear Dynamics ; Optical Fibers ; Optics and Photonics - methods ; Photic Stimulation - methods ; Prostheses ; PROTEINS ; Rhodopsin - genetics ; Rhodopsin - metabolism ; SYSNEURO ; Time Factors ; Visual Cortex - cytology ; Visual Pathways - anatomy &amp; histology ; Visual Pathways - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2009-04, Vol.62 (2), p.191-198</ispartof><rights>2009 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Apr 30, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-91b9b279332e742d5624ae2ac42ceac92de976258dee89e05bff8153208d30473</citedby><cites>FETCH-LOGICAL-c458t-91b9b279332e742d5624ae2ac42ceac92de976258dee89e05bff8153208d30473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2009.03.011$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19409264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Xue</creatorcontrib><creatorcontrib>Qian, Xiaofeng</creatorcontrib><creatorcontrib>Bernstein, Jacob G.</creatorcontrib><creatorcontrib>Zhou, Hui-hui</creatorcontrib><creatorcontrib>Franzesi, Giovanni Talei</creatorcontrib><creatorcontrib>Stern, Patrick</creatorcontrib><creatorcontrib>Bronson, Roderick T.</creatorcontrib><creatorcontrib>Graybiel, Ann M.</creatorcontrib><creatorcontrib>Desimone, Robert</creatorcontrib><creatorcontrib>Boyden, Edward S.</creatorcontrib><title>Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>To understand how brain states and behaviors are generated by neural circuits, it would be useful to be able to perturb precisely the activity of specific cell types and pathways in the nonhuman primate nervous system. We used lentivirus to target the light-activated cation channel channelrhodopsin-2 (ChR2) specifically to excitatory neurons of the macaque frontal cortex. Using a laser-coupled optical fiber in conjunction with a recording microelectrode, we showed that activation of excitatory neurons resulted in well-timed excitatory and suppressive influences on neocortical neural networks. ChR2 was safely expressed, and could mediate optical neuromodulation, in primate neocortex over many months. These findings highlight a methodology for investigating the causal role of specific cell types in nonhuman primate neural computation, cognition, and behavior, and open up the possibility of a new generation of ultraprecise neurological and psychiatric therapeutics via cell-type-specific optical neural control prosthetics.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Brain Mapping</subject><subject>Electrodes</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - genetics</subject><subject>Gene Expression Regulation - radiation effects</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Laboratory animals</subject><subject>Lentivirus - physiology</subject><subject>Light</subject><subject>Macaca mulatta</subject><subject>Models, Animal</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Nonlinear Dynamics</subject><subject>Optical Fibers</subject><subject>Optics and Photonics - methods</subject><subject>Photic Stimulation - methods</subject><subject>Prostheses</subject><subject>PROTEINS</subject><subject>Rhodopsin - genetics</subject><subject>Rhodopsin - metabolism</subject><subject>SYSNEURO</subject><subject>Time Factors</subject><subject>Visual Cortex - cytology</subject><subject>Visual Pathways - anatomy &amp; histology</subject><subject>Visual Pathways - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctuFDEQRS0EIpPAHyBkiXV3yo9-eINEJuQhhYRFYGt53NUZj7rtid0dKX-PRzNKYMOqrHLVvUd1CfnEoGTA6tNN6XGOwZccQJUgSmDsDVkwUE0hmVJvyQJaVRc1b8QROU5pA8Bkpdh7csSUBMVruSC_f7hhcAlt8F1x70ZM1gxI77aTyw-6DH6KYaChp7fZLXfOn70ZnU3UeTqtkd4Gv55H4-nP6EYzIT2LxvkP5F1vhoQfD_WE_Lr4fr-8Km7uLq-X324KK6t2KhRbqRVvlBAcG8m7qubSIDdWcovGKt6hampetR1iqxCqVd-3rBIc2k6AbMQJ-brX3c6rETuLGdcMertjic86GKf__fFurR_Ck-atgFrKLPDlIBDD44xp0pswR5-ZNatANI1kAvKU3E_ZGFKK2L84MNC7NPRG79PQuzQ0CJ3TyGuf_6Z7XTqc_xUf842eHEadrENvsXMR7aS74P7v8AfDNJ4s</recordid><startdate>20090430</startdate><enddate>20090430</enddate><creator>Han, Xue</creator><creator>Qian, Xiaofeng</creator><creator>Bernstein, Jacob G.</creator><creator>Zhou, Hui-hui</creator><creator>Franzesi, Giovanni Talei</creator><creator>Stern, Patrick</creator><creator>Bronson, Roderick T.</creator><creator>Graybiel, Ann M.</creator><creator>Desimone, Robert</creator><creator>Boyden, Edward S.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20090430</creationdate><title>Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain</title><author>Han, Xue ; Qian, Xiaofeng ; Bernstein, Jacob G. ; Zhou, Hui-hui ; Franzesi, Giovanni Talei ; Stern, Patrick ; Bronson, Roderick T. ; Graybiel, Ann M. ; Desimone, Robert ; Boyden, Edward S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-91b9b279332e742d5624ae2ac42ceac92de976258dee89e05bff8153208d30473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Brain Mapping</topic><topic>Electrodes</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - genetics</topic><topic>Gene Expression Regulation - radiation effects</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Laboratory animals</topic><topic>Lentivirus - physiology</topic><topic>Light</topic><topic>Macaca mulatta</topic><topic>Models, Animal</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Nonlinear Dynamics</topic><topic>Optical Fibers</topic><topic>Optics and Photonics - methods</topic><topic>Photic Stimulation - methods</topic><topic>Prostheses</topic><topic>PROTEINS</topic><topic>Rhodopsin - genetics</topic><topic>Rhodopsin - metabolism</topic><topic>SYSNEURO</topic><topic>Time Factors</topic><topic>Visual Cortex - cytology</topic><topic>Visual Pathways - anatomy &amp; histology</topic><topic>Visual Pathways - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Xue</creatorcontrib><creatorcontrib>Qian, Xiaofeng</creatorcontrib><creatorcontrib>Bernstein, Jacob G.</creatorcontrib><creatorcontrib>Zhou, Hui-hui</creatorcontrib><creatorcontrib>Franzesi, Giovanni Talei</creatorcontrib><creatorcontrib>Stern, Patrick</creatorcontrib><creatorcontrib>Bronson, Roderick T.</creatorcontrib><creatorcontrib>Graybiel, Ann M.</creatorcontrib><creatorcontrib>Desimone, Robert</creatorcontrib><creatorcontrib>Boyden, Edward S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Xue</au><au>Qian, Xiaofeng</au><au>Bernstein, Jacob G.</au><au>Zhou, Hui-hui</au><au>Franzesi, Giovanni Talei</au><au>Stern, Patrick</au><au>Bronson, Roderick T.</au><au>Graybiel, Ann M.</au><au>Desimone, Robert</au><au>Boyden, Edward S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2009-04-30</date><risdate>2009</risdate><volume>62</volume><issue>2</issue><spage>191</spage><epage>198</epage><pages>191-198</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>To understand how brain states and behaviors are generated by neural circuits, it would be useful to be able to perturb precisely the activity of specific cell types and pathways in the nonhuman primate nervous system. We used lentivirus to target the light-activated cation channel channelrhodopsin-2 (ChR2) specifically to excitatory neurons of the macaque frontal cortex. Using a laser-coupled optical fiber in conjunction with a recording microelectrode, we showed that activation of excitatory neurons resulted in well-timed excitatory and suppressive influences on neocortical neural networks. ChR2 was safely expressed, and could mediate optical neuromodulation, in primate neocortex over many months. These findings highlight a methodology for investigating the causal role of specific cell types in nonhuman primate neural computation, cognition, and behavior, and open up the possibility of a new generation of ultraprecise neurological and psychiatric therapeutics via cell-type-specific optical neural control prosthetics.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19409264</pmid><doi>10.1016/j.neuron.2009.03.011</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2009-04, Vol.62 (2), p.191-198
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2830644
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Action Potentials - physiology
Animals
Brain Mapping
Electrodes
Gene expression
Gene Expression Regulation - genetics
Gene Expression Regulation - radiation effects
Green Fluorescent Proteins - genetics
Laboratory animals
Lentivirus - physiology
Light
Macaca mulatta
Models, Animal
Neurons
Neurons - physiology
Neurosciences
Nonlinear Dynamics
Optical Fibers
Optics and Photonics - methods
Photic Stimulation - methods
Prostheses
PROTEINS
Rhodopsin - genetics
Rhodopsin - metabolism
SYSNEURO
Time Factors
Visual Cortex - cytology
Visual Pathways - anatomy & histology
Visual Pathways - physiology
title Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Millisecond-Timescale%20Optical%20Control%20of%20Neural%20Dynamics%20in%20the%20Nonhuman%20Primate%20Brain&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Han,%20Xue&rft.date=2009-04-30&rft.volume=62&rft.issue=2&rft.spage=191&rft.epage=198&rft.pages=191-198&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2009.03.011&rft_dat=%3Cproquest_pubme%3E3235467731%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503774130&rft_id=info:pmid/19409264&rft_els_id=S0896627309002104&rfr_iscdi=true