Preventing oxidative stress: a new role for XBP1

Antioxidant molecules reduce oxidative stress and protect cells from reactive oxygen species (ROS)-mediated cellular damage and probably the development of cancer. We have investigated the contribution of X-box-binding protein (XBP1), a major endoplasmic reticulum stress-linked transcriptional facto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death and differentiation 2009-06, Vol.16 (6), p.847-857
Hauptverfasser: Liu, Y, Adachi, M, Zhao, S, Hareyama, M, Koong, A C, Luo, Dan, Rando, T A, Imai, K, Shinomura, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 857
container_issue 6
container_start_page 847
container_title Cell death and differentiation
container_volume 16
creator Liu, Y
Adachi, M
Zhao, S
Hareyama, M
Koong, A C
Luo, Dan
Rando, T A
Imai, K
Shinomura, Y
description Antioxidant molecules reduce oxidative stress and protect cells from reactive oxygen species (ROS)-mediated cellular damage and probably the development of cancer. We have investigated the contribution of X-box-binding protein (XBP1), a major endoplasmic reticulum stress-linked transcriptional factor, to cellular resistance to oxidative stress. After exposure to hydrogen peroxide (H 2 O 2 ) or a strong ROS inducer parthenolide, loss of mitochondrial membrane potential (MMP) and subsequent cell death occurred more extensively in XBP1-deficient cells than wild-type mouse embryonic fibroblast cells, whereas two other anticancer agents induced death similarly in both cells. In XBP1-deficient cells, H 2 O 2 exposure induced more extensive ROS generation and prolonged p38 phosphorylation, and expression of several antioxidant molecules including catalase was lower. Knockdown of XBP1 decreased catalase expression, enhanced ROS generation and MMP loss after H 2 O 2 exposure, but extrinsic catalase supply rescued them. Overexpression of XBP1 recovered catalase expression in XBP1-deficient cells and diminished ROS generation after H 2 O 2 exposure. Mutation analysis of the catalase promoter region suggests a pivotal role of CCAAT boxes, NF-Y-binding sites, for the XBP1-mediated enhancing effect. Taken together, these results indicate a protective role of XBP1 against oxidative stress, and its positive regulation of catalase expression may at least in part account for this function.
doi_str_mv 10.1038/cdd.2009.14
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2826168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1710941291</sourcerecordid><originalsourceid>FETCH-LOGICAL-n251t-d52366d8aa120ba2360aef46833b94e2275becf000c62875b581fee47b7648023</originalsourceid><addsrcrecordid>eNpVkEtPwzAQhC0EoqVw4g4RZ1L8iu1wQIKKl1SJHkDiZjnJpqRqnWInAf49rloKnHZX-2lmNAgdEzwkmKmLvCiGFON0SPgO6hMuRZxwzHbDzhIcp5jLHjrwfoYxFjIV-6hHUsolE6qP8MRBB7ap7DSqP6vCNFUHkW8ceH8ZmcjCR-TqOURl7aLXmwk5RHulmXs42swBerm7fR49xOOn-8fR9Ti2NCFNXCSUCVEoYwjFmQkHNlByoRjLUg6UyiSDvAyRckFVOBJFSgAuMym4wpQN0NVad9lmCyjykNGZuV66amHcl65Npf9_bPWmp3WnqaKCBJ8BOtsIuPq9Bd_oWd06GzJrSqRkwToN0Mlfl638T0EBOF8DPrzsFNyvCsF61b8O_etV_5rwgJ-ucWua1sFWLzArJBDfoXt_IA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217730009</pqid></control><display><type>article</type><title>Preventing oxidative stress: a new role for XBP1</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Y ; Adachi, M ; Zhao, S ; Hareyama, M ; Koong, A C ; Luo, Dan ; Rando, T A ; Imai, K ; Shinomura, Y</creator><creatorcontrib>Liu, Y ; Adachi, M ; Zhao, S ; Hareyama, M ; Koong, A C ; Luo, Dan ; Rando, T A ; Imai, K ; Shinomura, Y</creatorcontrib><description>Antioxidant molecules reduce oxidative stress and protect cells from reactive oxygen species (ROS)-mediated cellular damage and probably the development of cancer. We have investigated the contribution of X-box-binding protein (XBP1), a major endoplasmic reticulum stress-linked transcriptional factor, to cellular resistance to oxidative stress. After exposure to hydrogen peroxide (H 2 O 2 ) or a strong ROS inducer parthenolide, loss of mitochondrial membrane potential (MMP) and subsequent cell death occurred more extensively in XBP1-deficient cells than wild-type mouse embryonic fibroblast cells, whereas two other anticancer agents induced death similarly in both cells. In XBP1-deficient cells, H 2 O 2 exposure induced more extensive ROS generation and prolonged p38 phosphorylation, and expression of several antioxidant molecules including catalase was lower. Knockdown of XBP1 decreased catalase expression, enhanced ROS generation and MMP loss after H 2 O 2 exposure, but extrinsic catalase supply rescued them. Overexpression of XBP1 recovered catalase expression in XBP1-deficient cells and diminished ROS generation after H 2 O 2 exposure. Mutation analysis of the catalase promoter region suggests a pivotal role of CCAAT boxes, NF-Y-binding sites, for the XBP1-mediated enhancing effect. Taken together, these results indicate a protective role of XBP1 against oxidative stress, and its positive regulation of catalase expression may at least in part account for this function.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/cdd.2009.14</identifier><identifier>PMID: 19247368</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Antioxidants ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Cancer ; Catalase - metabolism ; Cell Biology ; Cell Cycle Analysis ; Cell death ; Cell Line ; DNA-Binding Proteins - deficiency ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - physiology ; Endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Fibroblasts - metabolism ; Gene expression ; Gene Knockdown Techniques ; HeLa Cells ; Homeostasis ; Humans ; Hydrogen Peroxide - pharmacology ; Internal medicine ; Life Sciences ; Medicine ; Mice ; Oncology ; original-paper ; Oxidative Stress ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phosphorylation ; Proteins ; Radiation ; Reactive Oxygen Species - metabolism ; Regulatory Factor X Transcription Factors ; RNA, Small Interfering - metabolism ; Stem Cells ; Transcription Factors - deficiency ; Transcription Factors - genetics ; Transcription Factors - physiology ; X-Box Binding Protein 1</subject><ispartof>Cell death and differentiation, 2009-06, Vol.16 (6), p.847-857</ispartof><rights>Macmillan Publishers Limited 2009</rights><rights>Copyright Nature Publishing Group Jun 2009</rights><rights>2009 Macmillan Publishers Limited All rights reserved 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-n251t-d52366d8aa120ba2360aef46833b94e2275becf000c62875b581fee47b7648023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19247368$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Y</creatorcontrib><creatorcontrib>Adachi, M</creatorcontrib><creatorcontrib>Zhao, S</creatorcontrib><creatorcontrib>Hareyama, M</creatorcontrib><creatorcontrib>Koong, A C</creatorcontrib><creatorcontrib>Luo, Dan</creatorcontrib><creatorcontrib>Rando, T A</creatorcontrib><creatorcontrib>Imai, K</creatorcontrib><creatorcontrib>Shinomura, Y</creatorcontrib><title>Preventing oxidative stress: a new role for XBP1</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>Antioxidant molecules reduce oxidative stress and protect cells from reactive oxygen species (ROS)-mediated cellular damage and probably the development of cancer. We have investigated the contribution of X-box-binding protein (XBP1), a major endoplasmic reticulum stress-linked transcriptional factor, to cellular resistance to oxidative stress. After exposure to hydrogen peroxide (H 2 O 2 ) or a strong ROS inducer parthenolide, loss of mitochondrial membrane potential (MMP) and subsequent cell death occurred more extensively in XBP1-deficient cells than wild-type mouse embryonic fibroblast cells, whereas two other anticancer agents induced death similarly in both cells. In XBP1-deficient cells, H 2 O 2 exposure induced more extensive ROS generation and prolonged p38 phosphorylation, and expression of several antioxidant molecules including catalase was lower. Knockdown of XBP1 decreased catalase expression, enhanced ROS generation and MMP loss after H 2 O 2 exposure, but extrinsic catalase supply rescued them. Overexpression of XBP1 recovered catalase expression in XBP1-deficient cells and diminished ROS generation after H 2 O 2 exposure. Mutation analysis of the catalase promoter region suggests a pivotal role of CCAAT boxes, NF-Y-binding sites, for the XBP1-mediated enhancing effect. Taken together, these results indicate a protective role of XBP1 against oxidative stress, and its positive regulation of catalase expression may at least in part account for this function.</description><subject>Animals</subject><subject>Antioxidants</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer</subject><subject>Catalase - metabolism</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell death</subject><subject>Cell Line</subject><subject>DNA-Binding Proteins - deficiency</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - physiology</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Fibroblasts - metabolism</subject><subject>Gene expression</subject><subject>Gene Knockdown Techniques</subject><subject>HeLa Cells</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Internal medicine</subject><subject>Life Sciences</subject><subject>Medicine</subject><subject>Mice</subject><subject>Oncology</subject><subject>original-paper</subject><subject>Oxidative Stress</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Radiation</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Regulatory Factor X Transcription Factors</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Stem Cells</subject><subject>Transcription Factors - deficiency</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - physiology</subject><subject>X-Box Binding Protein 1</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpVkEtPwzAQhC0EoqVw4g4RZ1L8iu1wQIKKl1SJHkDiZjnJpqRqnWInAf49rloKnHZX-2lmNAgdEzwkmKmLvCiGFON0SPgO6hMuRZxwzHbDzhIcp5jLHjrwfoYxFjIV-6hHUsolE6qP8MRBB7ap7DSqP6vCNFUHkW8ceH8ZmcjCR-TqOURl7aLXmwk5RHulmXs42swBerm7fR49xOOn-8fR9Ti2NCFNXCSUCVEoYwjFmQkHNlByoRjLUg6UyiSDvAyRckFVOBJFSgAuMym4wpQN0NVad9lmCyjykNGZuV66amHcl65Npf9_bPWmp3WnqaKCBJ8BOtsIuPq9Bd_oWd06GzJrSqRkwToN0Mlfl638T0EBOF8DPrzsFNyvCsF61b8O_etV_5rwgJ-ucWua1sFWLzArJBDfoXt_IA</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Liu, Y</creator><creator>Adachi, M</creator><creator>Zhao, S</creator><creator>Hareyama, M</creator><creator>Koong, A C</creator><creator>Luo, Dan</creator><creator>Rando, T A</creator><creator>Imai, K</creator><creator>Shinomura, Y</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20090601</creationdate><title>Preventing oxidative stress: a new role for XBP1</title><author>Liu, Y ; Adachi, M ; Zhao, S ; Hareyama, M ; Koong, A C ; Luo, Dan ; Rando, T A ; Imai, K ; Shinomura, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n251t-d52366d8aa120ba2360aef46833b94e2275becf000c62875b581fee47b7648023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Antioxidants</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer</topic><topic>Catalase - metabolism</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell death</topic><topic>Cell Line</topic><topic>DNA-Binding Proteins - deficiency</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - physiology</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Fibroblasts - metabolism</topic><topic>Gene expression</topic><topic>Gene Knockdown Techniques</topic><topic>HeLa Cells</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Internal medicine</topic><topic>Life Sciences</topic><topic>Medicine</topic><topic>Mice</topic><topic>Oncology</topic><topic>original-paper</topic><topic>Oxidative Stress</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Radiation</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Regulatory Factor X Transcription Factors</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Stem Cells</topic><topic>Transcription Factors - deficiency</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - physiology</topic><topic>X-Box Binding Protein 1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Y</creatorcontrib><creatorcontrib>Adachi, M</creatorcontrib><creatorcontrib>Zhao, S</creatorcontrib><creatorcontrib>Hareyama, M</creatorcontrib><creatorcontrib>Koong, A C</creatorcontrib><creatorcontrib>Luo, Dan</creatorcontrib><creatorcontrib>Rando, T A</creatorcontrib><creatorcontrib>Imai, K</creatorcontrib><creatorcontrib>Shinomura, Y</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Y</au><au>Adachi, M</au><au>Zhao, S</au><au>Hareyama, M</au><au>Koong, A C</au><au>Luo, Dan</au><au>Rando, T A</au><au>Imai, K</au><au>Shinomura, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preventing oxidative stress: a new role for XBP1</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>16</volume><issue>6</issue><spage>847</spage><epage>857</epage><pages>847-857</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>Antioxidant molecules reduce oxidative stress and protect cells from reactive oxygen species (ROS)-mediated cellular damage and probably the development of cancer. We have investigated the contribution of X-box-binding protein (XBP1), a major endoplasmic reticulum stress-linked transcriptional factor, to cellular resistance to oxidative stress. After exposure to hydrogen peroxide (H 2 O 2 ) or a strong ROS inducer parthenolide, loss of mitochondrial membrane potential (MMP) and subsequent cell death occurred more extensively in XBP1-deficient cells than wild-type mouse embryonic fibroblast cells, whereas two other anticancer agents induced death similarly in both cells. In XBP1-deficient cells, H 2 O 2 exposure induced more extensive ROS generation and prolonged p38 phosphorylation, and expression of several antioxidant molecules including catalase was lower. Knockdown of XBP1 decreased catalase expression, enhanced ROS generation and MMP loss after H 2 O 2 exposure, but extrinsic catalase supply rescued them. Overexpression of XBP1 recovered catalase expression in XBP1-deficient cells and diminished ROS generation after H 2 O 2 exposure. Mutation analysis of the catalase promoter region suggests a pivotal role of CCAAT boxes, NF-Y-binding sites, for the XBP1-mediated enhancing effect. Taken together, these results indicate a protective role of XBP1 against oxidative stress, and its positive regulation of catalase expression may at least in part account for this function.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>19247368</pmid><doi>10.1038/cdd.2009.14</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-9047
ispartof Cell death and differentiation, 2009-06, Vol.16 (6), p.847-857
issn 1350-9047
1476-5403
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2826168
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Antioxidants
Apoptosis
Biochemistry
Biomedical and Life Sciences
Cancer
Catalase - metabolism
Cell Biology
Cell Cycle Analysis
Cell death
Cell Line
DNA-Binding Proteins - deficiency
DNA-Binding Proteins - genetics
DNA-Binding Proteins - physiology
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Fibroblasts - metabolism
Gene expression
Gene Knockdown Techniques
HeLa Cells
Homeostasis
Humans
Hydrogen Peroxide - pharmacology
Internal medicine
Life Sciences
Medicine
Mice
Oncology
original-paper
Oxidative Stress
p38 Mitogen-Activated Protein Kinases - metabolism
Phosphorylation
Proteins
Radiation
Reactive Oxygen Species - metabolism
Regulatory Factor X Transcription Factors
RNA, Small Interfering - metabolism
Stem Cells
Transcription Factors - deficiency
Transcription Factors - genetics
Transcription Factors - physiology
X-Box Binding Protein 1
title Preventing oxidative stress: a new role for XBP1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T04%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preventing%20oxidative%20stress:%20a%20new%20role%20for%20XBP1&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Liu,%20Y&rft.date=2009-06-01&rft.volume=16&rft.issue=6&rft.spage=847&rft.epage=857&rft.pages=847-857&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/cdd.2009.14&rft_dat=%3Cproquest_pubme%3E1710941291%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217730009&rft_id=info:pmid/19247368&rfr_iscdi=true