Oxygen Tension Modulates Neurite Outgrowth in PC12 Cells Through A Mechanism Involving HIF and VEGF

Cell-based approaches are a promising therapeutic strategy for treating injuries to the nervous system, but the optimal means to promote neurite extension and direct cellular behavior are unclear. Previous studies have examined the behavior of neural-like cells in ambient air (21% oxygen tension), y...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular neuroscience 2010-03, Vol.40 (3), p.360-366
Hauptverfasser: Genetos, Damian C., Cheung, Whitney K., Decaris, Martin L., Leach, J. Kent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 366
container_issue 3
container_start_page 360
container_title Journal of molecular neuroscience
container_volume 40
creator Genetos, Damian C.
Cheung, Whitney K.
Decaris, Martin L.
Leach, J. Kent
description Cell-based approaches are a promising therapeutic strategy for treating injuries to the nervous system, but the optimal means to promote neurite extension and direct cellular behavior are unclear. Previous studies have examined the behavior of neural-like cells in ambient air (21% oxygen tension), yet these conditions are not representative of the physiological oxygen microenvironment of neural tissues. We hypothesized that neuronal differentiation of a model neural cell line (PC12) could be controlled by modulating local oxygen tension. Compared to ambient conditions, PC12 cells cultured in reduced oxygen exhibited significant increases in neurite extension and total neurite length, with 4% oxygen yielding the highest levels of both indicators. We confirmed neurite extension was mediated through oxygen-responsive mechanisms using small molecules that promote or inhibit HIF-1α stabilization. The hypoxic target gene Vegf was implicated as a neurotrophic factor, as neurite formation at 21% oxygen was mimicked with exogenous VEGF, and a VEGF-neutralizing antibody attenuated neurite formation under reduced oxygen conditions. These findings demonstrate that behavior of neural-like cells is driven by the oxygen microenvironment via VEGF function, and suggest promising approaches for future applications in neural repair.
doi_str_mv 10.1007/s12031-009-9326-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2825316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2374023031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-d5436212106dab0fcb1115be5ea2becf25c28fb87be65af126d337d7aea327473</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhB3BBFpeeAjP22k4uSNWq267UshwWrpaTTLKpsnaxk4X-e7LaUj4kxMmHeebxzLyMvUZ4hwDmfUIBEjOAIiuk0Bk8YTNUqsgQtX7KZpAXKst1oU_Yi5RuAQTOMX_OTgQgmEKoGavW3-9b8nxDPnXB85tQj70bKPGPNMZuIL4ehzaGb8OWd55_WqDgC-r7xDfbGMZ2y8_5DVVb57u04yu_D_2-8y2_Wi258zX_cnG5fMmeNa5P9OrhPWWflxebxVV2vb5cLc6vs0oBDFmt5lILFAi6diU0VYmIqiRFTpRUNUJVIm_K3JSklWtQ6FpKUxtHTgozN_KUfTh678ZyR3VFfoiut3ex27l4b4Pr7J8V321tG_ZW5EJJ1JPg7EEQw9eR0mB3XaqmbZ2nMCZbqLnWqKD4L2mknGClD0O9_Yu8DWP00x1sblAZpfKDDo9QFUNKkZrHoRHsIWp7jNpOUdtD1Bamnje_b_vY8TPbCRBHIE0l31L89fO_rT8A70yzag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871575589</pqid></control><display><type>article</type><title>Oxygen Tension Modulates Neurite Outgrowth in PC12 Cells Through A Mechanism Involving HIF and VEGF</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Genetos, Damian C. ; Cheung, Whitney K. ; Decaris, Martin L. ; Leach, J. Kent</creator><creatorcontrib>Genetos, Damian C. ; Cheung, Whitney K. ; Decaris, Martin L. ; Leach, J. Kent</creatorcontrib><description>Cell-based approaches are a promising therapeutic strategy for treating injuries to the nervous system, but the optimal means to promote neurite extension and direct cellular behavior are unclear. Previous studies have examined the behavior of neural-like cells in ambient air (21% oxygen tension), yet these conditions are not representative of the physiological oxygen microenvironment of neural tissues. We hypothesized that neuronal differentiation of a model neural cell line (PC12) could be controlled by modulating local oxygen tension. Compared to ambient conditions, PC12 cells cultured in reduced oxygen exhibited significant increases in neurite extension and total neurite length, with 4% oxygen yielding the highest levels of both indicators. We confirmed neurite extension was mediated through oxygen-responsive mechanisms using small molecules that promote or inhibit HIF-1α stabilization. The hypoxic target gene Vegf was implicated as a neurotrophic factor, as neurite formation at 21% oxygen was mimicked with exogenous VEGF, and a VEGF-neutralizing antibody attenuated neurite formation under reduced oxygen conditions. These findings demonstrate that behavior of neural-like cells is driven by the oxygen microenvironment via VEGF function, and suggest promising approaches for future applications in neural repair.</description><identifier>ISSN: 0895-8696</identifier><identifier>EISSN: 1559-1166</identifier><identifier>DOI: 10.1007/s12031-009-9326-0</identifier><identifier>PMID: 20107925</identifier><language>eng</language><publisher>New York: Humana Press Inc</publisher><subject>Animals ; Antibodies ; Apoptosis ; Axon guidance ; Axonogenesis ; Biomedical and Life Sciences ; Biomedicine ; Bone marrow ; Carbon dioxide ; Cell Biology ; Cell culture ; Cell Differentiation - physiology ; Differentiation ; Humans ; Hypoxia ; Hypoxia - metabolism ; Hypoxia-inducible factor 1 alpha ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Injuries ; Microenvironments ; Morphology ; Nervous system ; Neurites - metabolism ; Neurites - ultrastructure ; Neurochemistry ; Neurology ; Neurosciences ; Neurotrophic factors ; Oxygen - metabolism ; Oxygen tension ; PC12 Cells - cytology ; PC12 Cells - metabolism ; Pheochromocytoma cells ; Physiology ; Proteomics ; Rats ; Signal Transduction - physiology ; Stem cells ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factors - metabolism</subject><ispartof>Journal of molecular neuroscience, 2010-03, Vol.40 (3), p.360-366</ispartof><rights>The Author(s) 2010</rights><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-d5436212106dab0fcb1115be5ea2becf25c28fb87be65af126d337d7aea327473</citedby><cites>FETCH-LOGICAL-c500t-d5436212106dab0fcb1115be5ea2becf25c28fb87be65af126d337d7aea327473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12031-009-9326-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12031-009-9326-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20107925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Genetos, Damian C.</creatorcontrib><creatorcontrib>Cheung, Whitney K.</creatorcontrib><creatorcontrib>Decaris, Martin L.</creatorcontrib><creatorcontrib>Leach, J. Kent</creatorcontrib><title>Oxygen Tension Modulates Neurite Outgrowth in PC12 Cells Through A Mechanism Involving HIF and VEGF</title><title>Journal of molecular neuroscience</title><addtitle>J Mol Neurosci</addtitle><addtitle>J Mol Neurosci</addtitle><description>Cell-based approaches are a promising therapeutic strategy for treating injuries to the nervous system, but the optimal means to promote neurite extension and direct cellular behavior are unclear. Previous studies have examined the behavior of neural-like cells in ambient air (21% oxygen tension), yet these conditions are not representative of the physiological oxygen microenvironment of neural tissues. We hypothesized that neuronal differentiation of a model neural cell line (PC12) could be controlled by modulating local oxygen tension. Compared to ambient conditions, PC12 cells cultured in reduced oxygen exhibited significant increases in neurite extension and total neurite length, with 4% oxygen yielding the highest levels of both indicators. We confirmed neurite extension was mediated through oxygen-responsive mechanisms using small molecules that promote or inhibit HIF-1α stabilization. The hypoxic target gene Vegf was implicated as a neurotrophic factor, as neurite formation at 21% oxygen was mimicked with exogenous VEGF, and a VEGF-neutralizing antibody attenuated neurite formation under reduced oxygen conditions. These findings demonstrate that behavior of neural-like cells is driven by the oxygen microenvironment via VEGF function, and suggest promising approaches for future applications in neural repair.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Axon guidance</subject><subject>Axonogenesis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bone marrow</subject><subject>Carbon dioxide</subject><subject>Cell Biology</subject><subject>Cell culture</subject><subject>Cell Differentiation - physiology</subject><subject>Differentiation</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia - metabolism</subject><subject>Hypoxia-inducible factor 1 alpha</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Injuries</subject><subject>Microenvironments</subject><subject>Morphology</subject><subject>Nervous system</subject><subject>Neurites - metabolism</subject><subject>Neurites - ultrastructure</subject><subject>Neurochemistry</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Neurotrophic factors</subject><subject>Oxygen - metabolism</subject><subject>Oxygen tension</subject><subject>PC12 Cells - cytology</subject><subject>PC12 Cells - metabolism</subject><subject>Pheochromocytoma cells</subject><subject>Physiology</subject><subject>Proteomics</subject><subject>Rats</subject><subject>Signal Transduction - physiology</subject><subject>Stem cells</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factors - metabolism</subject><issn>0895-8696</issn><issn>1559-1166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1v1DAQhi0EokvhB3BBFpeeAjP22k4uSNWq267UshwWrpaTTLKpsnaxk4X-e7LaUj4kxMmHeebxzLyMvUZ4hwDmfUIBEjOAIiuk0Bk8YTNUqsgQtX7KZpAXKst1oU_Yi5RuAQTOMX_OTgQgmEKoGavW3-9b8nxDPnXB85tQj70bKPGPNMZuIL4ehzaGb8OWd55_WqDgC-r7xDfbGMZ2y8_5DVVb57u04yu_D_2-8y2_Wi258zX_cnG5fMmeNa5P9OrhPWWflxebxVV2vb5cLc6vs0oBDFmt5lILFAi6diU0VYmIqiRFTpRUNUJVIm_K3JSklWtQ6FpKUxtHTgozN_KUfTh678ZyR3VFfoiut3ex27l4b4Pr7J8V321tG_ZW5EJJ1JPg7EEQw9eR0mB3XaqmbZ2nMCZbqLnWqKD4L2mknGClD0O9_Yu8DWP00x1sblAZpfKDDo9QFUNKkZrHoRHsIWp7jNpOUdtD1Bamnje_b_vY8TPbCRBHIE0l31L89fO_rT8A70yzag</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Genetos, Damian C.</creator><creator>Cheung, Whitney K.</creator><creator>Decaris, Martin L.</creator><creator>Leach, J. Kent</creator><general>Humana Press Inc</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7N</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100301</creationdate><title>Oxygen Tension Modulates Neurite Outgrowth in PC12 Cells Through A Mechanism Involving HIF and VEGF</title><author>Genetos, Damian C. ; Cheung, Whitney K. ; Decaris, Martin L. ; Leach, J. Kent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-d5436212106dab0fcb1115be5ea2becf25c28fb87be65af126d337d7aea327473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Axon guidance</topic><topic>Axonogenesis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bone marrow</topic><topic>Carbon dioxide</topic><topic>Cell Biology</topic><topic>Cell culture</topic><topic>Cell Differentiation - physiology</topic><topic>Differentiation</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia - metabolism</topic><topic>Hypoxia-inducible factor 1 alpha</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Injuries</topic><topic>Microenvironments</topic><topic>Morphology</topic><topic>Nervous system</topic><topic>Neurites - metabolism</topic><topic>Neurites - ultrastructure</topic><topic>Neurochemistry</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Neurotrophic factors</topic><topic>Oxygen - metabolism</topic><topic>Oxygen tension</topic><topic>PC12 Cells - cytology</topic><topic>PC12 Cells - metabolism</topic><topic>Pheochromocytoma cells</topic><topic>Physiology</topic><topic>Proteomics</topic><topic>Rats</topic><topic>Signal Transduction - physiology</topic><topic>Stem cells</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Genetos, Damian C.</creatorcontrib><creatorcontrib>Cheung, Whitney K.</creatorcontrib><creatorcontrib>Decaris, Martin L.</creatorcontrib><creatorcontrib>Leach, J. Kent</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Genetos, Damian C.</au><au>Cheung, Whitney K.</au><au>Decaris, Martin L.</au><au>Leach, J. Kent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Tension Modulates Neurite Outgrowth in PC12 Cells Through A Mechanism Involving HIF and VEGF</atitle><jtitle>Journal of molecular neuroscience</jtitle><stitle>J Mol Neurosci</stitle><addtitle>J Mol Neurosci</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>40</volume><issue>3</issue><spage>360</spage><epage>366</epage><pages>360-366</pages><issn>0895-8696</issn><eissn>1559-1166</eissn><abstract>Cell-based approaches are a promising therapeutic strategy for treating injuries to the nervous system, but the optimal means to promote neurite extension and direct cellular behavior are unclear. Previous studies have examined the behavior of neural-like cells in ambient air (21% oxygen tension), yet these conditions are not representative of the physiological oxygen microenvironment of neural tissues. We hypothesized that neuronal differentiation of a model neural cell line (PC12) could be controlled by modulating local oxygen tension. Compared to ambient conditions, PC12 cells cultured in reduced oxygen exhibited significant increases in neurite extension and total neurite length, with 4% oxygen yielding the highest levels of both indicators. We confirmed neurite extension was mediated through oxygen-responsive mechanisms using small molecules that promote or inhibit HIF-1α stabilization. The hypoxic target gene Vegf was implicated as a neurotrophic factor, as neurite formation at 21% oxygen was mimicked with exogenous VEGF, and a VEGF-neutralizing antibody attenuated neurite formation under reduced oxygen conditions. These findings demonstrate that behavior of neural-like cells is driven by the oxygen microenvironment via VEGF function, and suggest promising approaches for future applications in neural repair.</abstract><cop>New York</cop><pub>Humana Press Inc</pub><pmid>20107925</pmid><doi>10.1007/s12031-009-9326-0</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0895-8696
ispartof Journal of molecular neuroscience, 2010-03, Vol.40 (3), p.360-366
issn 0895-8696
1559-1166
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2825316
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animals
Antibodies
Apoptosis
Axon guidance
Axonogenesis
Biomedical and Life Sciences
Biomedicine
Bone marrow
Carbon dioxide
Cell Biology
Cell culture
Cell Differentiation - physiology
Differentiation
Humans
Hypoxia
Hypoxia - metabolism
Hypoxia-inducible factor 1 alpha
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Injuries
Microenvironments
Morphology
Nervous system
Neurites - metabolism
Neurites - ultrastructure
Neurochemistry
Neurology
Neurosciences
Neurotrophic factors
Oxygen - metabolism
Oxygen tension
PC12 Cells - cytology
PC12 Cells - metabolism
Pheochromocytoma cells
Physiology
Proteomics
Rats
Signal Transduction - physiology
Stem cells
Vascular endothelial growth factor
Vascular Endothelial Growth Factors - metabolism
title Oxygen Tension Modulates Neurite Outgrowth in PC12 Cells Through A Mechanism Involving HIF and VEGF
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Tension%20Modulates%20Neurite%20Outgrowth%20in%20PC12%20Cells%20Through%20A%20Mechanism%20Involving%20HIF%20and%20VEGF&rft.jtitle=Journal%20of%20molecular%20neuroscience&rft.au=Genetos,%20Damian%20C.&rft.date=2010-03-01&rft.volume=40&rft.issue=3&rft.spage=360&rft.epage=366&rft.pages=360-366&rft.issn=0895-8696&rft.eissn=1559-1166&rft_id=info:doi/10.1007/s12031-009-9326-0&rft_dat=%3Cproquest_pubme%3E2374023031%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871575589&rft_id=info:pmid/20107925&rfr_iscdi=true