Oxygen Tension Modulates Neurite Outgrowth in PC12 Cells Through A Mechanism Involving HIF and VEGF
Cell-based approaches are a promising therapeutic strategy for treating injuries to the nervous system, but the optimal means to promote neurite extension and direct cellular behavior are unclear. Previous studies have examined the behavior of neural-like cells in ambient air (21% oxygen tension), y...
Gespeichert in:
Veröffentlicht in: | Journal of molecular neuroscience 2010-03, Vol.40 (3), p.360-366 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 366 |
---|---|
container_issue | 3 |
container_start_page | 360 |
container_title | Journal of molecular neuroscience |
container_volume | 40 |
creator | Genetos, Damian C. Cheung, Whitney K. Decaris, Martin L. Leach, J. Kent |
description | Cell-based approaches are a promising therapeutic strategy for treating injuries to the nervous system, but the optimal means to promote neurite extension and direct cellular behavior are unclear. Previous studies have examined the behavior of neural-like cells in ambient air (21% oxygen tension), yet these conditions are not representative of the physiological oxygen microenvironment of neural tissues. We hypothesized that neuronal differentiation of a model neural cell line (PC12) could be controlled by modulating local oxygen tension. Compared to ambient conditions, PC12 cells cultured in reduced oxygen exhibited significant increases in neurite extension and total neurite length, with 4% oxygen yielding the highest levels of both indicators. We confirmed neurite extension was mediated through oxygen-responsive mechanisms using small molecules that promote or inhibit HIF-1α stabilization. The hypoxic target gene
Vegf
was implicated as a neurotrophic factor, as neurite formation at 21% oxygen was mimicked with exogenous VEGF, and a VEGF-neutralizing antibody attenuated neurite formation under reduced oxygen conditions. These findings demonstrate that behavior of neural-like cells is driven by the oxygen microenvironment
via
VEGF function, and suggest promising approaches for future applications in neural repair. |
doi_str_mv | 10.1007/s12031-009-9326-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2825316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2374023031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-d5436212106dab0fcb1115be5ea2becf25c28fb87be65af126d337d7aea327473</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhB3BBFpeeAjP22k4uSNWq267UshwWrpaTTLKpsnaxk4X-e7LaUj4kxMmHeebxzLyMvUZ4hwDmfUIBEjOAIiuk0Bk8YTNUqsgQtX7KZpAXKst1oU_Yi5RuAQTOMX_OTgQgmEKoGavW3-9b8nxDPnXB85tQj70bKPGPNMZuIL4ehzaGb8OWd55_WqDgC-r7xDfbGMZ2y8_5DVVb57u04yu_D_2-8y2_Wi258zX_cnG5fMmeNa5P9OrhPWWflxebxVV2vb5cLc6vs0oBDFmt5lILFAi6diU0VYmIqiRFTpRUNUJVIm_K3JSklWtQ6FpKUxtHTgozN_KUfTh678ZyR3VFfoiut3ex27l4b4Pr7J8V321tG_ZW5EJJ1JPg7EEQw9eR0mB3XaqmbZ2nMCZbqLnWqKD4L2mknGClD0O9_Yu8DWP00x1sblAZpfKDDo9QFUNKkZrHoRHsIWp7jNpOUdtD1Bamnje_b_vY8TPbCRBHIE0l31L89fO_rT8A70yzag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871575589</pqid></control><display><type>article</type><title>Oxygen Tension Modulates Neurite Outgrowth in PC12 Cells Through A Mechanism Involving HIF and VEGF</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Genetos, Damian C. ; Cheung, Whitney K. ; Decaris, Martin L. ; Leach, J. Kent</creator><creatorcontrib>Genetos, Damian C. ; Cheung, Whitney K. ; Decaris, Martin L. ; Leach, J. Kent</creatorcontrib><description>Cell-based approaches are a promising therapeutic strategy for treating injuries to the nervous system, but the optimal means to promote neurite extension and direct cellular behavior are unclear. Previous studies have examined the behavior of neural-like cells in ambient air (21% oxygen tension), yet these conditions are not representative of the physiological oxygen microenvironment of neural tissues. We hypothesized that neuronal differentiation of a model neural cell line (PC12) could be controlled by modulating local oxygen tension. Compared to ambient conditions, PC12 cells cultured in reduced oxygen exhibited significant increases in neurite extension and total neurite length, with 4% oxygen yielding the highest levels of both indicators. We confirmed neurite extension was mediated through oxygen-responsive mechanisms using small molecules that promote or inhibit HIF-1α stabilization. The hypoxic target gene
Vegf
was implicated as a neurotrophic factor, as neurite formation at 21% oxygen was mimicked with exogenous VEGF, and a VEGF-neutralizing antibody attenuated neurite formation under reduced oxygen conditions. These findings demonstrate that behavior of neural-like cells is driven by the oxygen microenvironment
via
VEGF function, and suggest promising approaches for future applications in neural repair.</description><identifier>ISSN: 0895-8696</identifier><identifier>EISSN: 1559-1166</identifier><identifier>DOI: 10.1007/s12031-009-9326-0</identifier><identifier>PMID: 20107925</identifier><language>eng</language><publisher>New York: Humana Press Inc</publisher><subject>Animals ; Antibodies ; Apoptosis ; Axon guidance ; Axonogenesis ; Biomedical and Life Sciences ; Biomedicine ; Bone marrow ; Carbon dioxide ; Cell Biology ; Cell culture ; Cell Differentiation - physiology ; Differentiation ; Humans ; Hypoxia ; Hypoxia - metabolism ; Hypoxia-inducible factor 1 alpha ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Injuries ; Microenvironments ; Morphology ; Nervous system ; Neurites - metabolism ; Neurites - ultrastructure ; Neurochemistry ; Neurology ; Neurosciences ; Neurotrophic factors ; Oxygen - metabolism ; Oxygen tension ; PC12 Cells - cytology ; PC12 Cells - metabolism ; Pheochromocytoma cells ; Physiology ; Proteomics ; Rats ; Signal Transduction - physiology ; Stem cells ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factors - metabolism</subject><ispartof>Journal of molecular neuroscience, 2010-03, Vol.40 (3), p.360-366</ispartof><rights>The Author(s) 2010</rights><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-d5436212106dab0fcb1115be5ea2becf25c28fb87be65af126d337d7aea327473</citedby><cites>FETCH-LOGICAL-c500t-d5436212106dab0fcb1115be5ea2becf25c28fb87be65af126d337d7aea327473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12031-009-9326-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12031-009-9326-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20107925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Genetos, Damian C.</creatorcontrib><creatorcontrib>Cheung, Whitney K.</creatorcontrib><creatorcontrib>Decaris, Martin L.</creatorcontrib><creatorcontrib>Leach, J. Kent</creatorcontrib><title>Oxygen Tension Modulates Neurite Outgrowth in PC12 Cells Through A Mechanism Involving HIF and VEGF</title><title>Journal of molecular neuroscience</title><addtitle>J Mol Neurosci</addtitle><addtitle>J Mol Neurosci</addtitle><description>Cell-based approaches are a promising therapeutic strategy for treating injuries to the nervous system, but the optimal means to promote neurite extension and direct cellular behavior are unclear. Previous studies have examined the behavior of neural-like cells in ambient air (21% oxygen tension), yet these conditions are not representative of the physiological oxygen microenvironment of neural tissues. We hypothesized that neuronal differentiation of a model neural cell line (PC12) could be controlled by modulating local oxygen tension. Compared to ambient conditions, PC12 cells cultured in reduced oxygen exhibited significant increases in neurite extension and total neurite length, with 4% oxygen yielding the highest levels of both indicators. We confirmed neurite extension was mediated through oxygen-responsive mechanisms using small molecules that promote or inhibit HIF-1α stabilization. The hypoxic target gene
Vegf
was implicated as a neurotrophic factor, as neurite formation at 21% oxygen was mimicked with exogenous VEGF, and a VEGF-neutralizing antibody attenuated neurite formation under reduced oxygen conditions. These findings demonstrate that behavior of neural-like cells is driven by the oxygen microenvironment
via
VEGF function, and suggest promising approaches for future applications in neural repair.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Axon guidance</subject><subject>Axonogenesis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bone marrow</subject><subject>Carbon dioxide</subject><subject>Cell Biology</subject><subject>Cell culture</subject><subject>Cell Differentiation - physiology</subject><subject>Differentiation</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia - metabolism</subject><subject>Hypoxia-inducible factor 1 alpha</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Injuries</subject><subject>Microenvironments</subject><subject>Morphology</subject><subject>Nervous system</subject><subject>Neurites - metabolism</subject><subject>Neurites - ultrastructure</subject><subject>Neurochemistry</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Neurotrophic factors</subject><subject>Oxygen - metabolism</subject><subject>Oxygen tension</subject><subject>PC12 Cells - cytology</subject><subject>PC12 Cells - metabolism</subject><subject>Pheochromocytoma cells</subject><subject>Physiology</subject><subject>Proteomics</subject><subject>Rats</subject><subject>Signal Transduction - physiology</subject><subject>Stem cells</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factors - metabolism</subject><issn>0895-8696</issn><issn>1559-1166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1v1DAQhi0EokvhB3BBFpeeAjP22k4uSNWq267UshwWrpaTTLKpsnaxk4X-e7LaUj4kxMmHeebxzLyMvUZ4hwDmfUIBEjOAIiuk0Bk8YTNUqsgQtX7KZpAXKst1oU_Yi5RuAQTOMX_OTgQgmEKoGavW3-9b8nxDPnXB85tQj70bKPGPNMZuIL4ehzaGb8OWd55_WqDgC-r7xDfbGMZ2y8_5DVVb57u04yu_D_2-8y2_Wi258zX_cnG5fMmeNa5P9OrhPWWflxebxVV2vb5cLc6vs0oBDFmt5lILFAi6diU0VYmIqiRFTpRUNUJVIm_K3JSklWtQ6FpKUxtHTgozN_KUfTh678ZyR3VFfoiut3ex27l4b4Pr7J8V321tG_ZW5EJJ1JPg7EEQw9eR0mB3XaqmbZ2nMCZbqLnWqKD4L2mknGClD0O9_Yu8DWP00x1sblAZpfKDDo9QFUNKkZrHoRHsIWp7jNpOUdtD1Bamnje_b_vY8TPbCRBHIE0l31L89fO_rT8A70yzag</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Genetos, Damian C.</creator><creator>Cheung, Whitney K.</creator><creator>Decaris, Martin L.</creator><creator>Leach, J. Kent</creator><general>Humana Press Inc</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7N</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100301</creationdate><title>Oxygen Tension Modulates Neurite Outgrowth in PC12 Cells Through A Mechanism Involving HIF and VEGF</title><author>Genetos, Damian C. ; Cheung, Whitney K. ; Decaris, Martin L. ; Leach, J. Kent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-d5436212106dab0fcb1115be5ea2becf25c28fb87be65af126d337d7aea327473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Axon guidance</topic><topic>Axonogenesis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bone marrow</topic><topic>Carbon dioxide</topic><topic>Cell Biology</topic><topic>Cell culture</topic><topic>Cell Differentiation - physiology</topic><topic>Differentiation</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia - metabolism</topic><topic>Hypoxia-inducible factor 1 alpha</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Injuries</topic><topic>Microenvironments</topic><topic>Morphology</topic><topic>Nervous system</topic><topic>Neurites - metabolism</topic><topic>Neurites - ultrastructure</topic><topic>Neurochemistry</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Neurotrophic factors</topic><topic>Oxygen - metabolism</topic><topic>Oxygen tension</topic><topic>PC12 Cells - cytology</topic><topic>PC12 Cells - metabolism</topic><topic>Pheochromocytoma cells</topic><topic>Physiology</topic><topic>Proteomics</topic><topic>Rats</topic><topic>Signal Transduction - physiology</topic><topic>Stem cells</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Genetos, Damian C.</creatorcontrib><creatorcontrib>Cheung, Whitney K.</creatorcontrib><creatorcontrib>Decaris, Martin L.</creatorcontrib><creatorcontrib>Leach, J. Kent</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Genetos, Damian C.</au><au>Cheung, Whitney K.</au><au>Decaris, Martin L.</au><au>Leach, J. Kent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Tension Modulates Neurite Outgrowth in PC12 Cells Through A Mechanism Involving HIF and VEGF</atitle><jtitle>Journal of molecular neuroscience</jtitle><stitle>J Mol Neurosci</stitle><addtitle>J Mol Neurosci</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>40</volume><issue>3</issue><spage>360</spage><epage>366</epage><pages>360-366</pages><issn>0895-8696</issn><eissn>1559-1166</eissn><abstract>Cell-based approaches are a promising therapeutic strategy for treating injuries to the nervous system, but the optimal means to promote neurite extension and direct cellular behavior are unclear. Previous studies have examined the behavior of neural-like cells in ambient air (21% oxygen tension), yet these conditions are not representative of the physiological oxygen microenvironment of neural tissues. We hypothesized that neuronal differentiation of a model neural cell line (PC12) could be controlled by modulating local oxygen tension. Compared to ambient conditions, PC12 cells cultured in reduced oxygen exhibited significant increases in neurite extension and total neurite length, with 4% oxygen yielding the highest levels of both indicators. We confirmed neurite extension was mediated through oxygen-responsive mechanisms using small molecules that promote or inhibit HIF-1α stabilization. The hypoxic target gene
Vegf
was implicated as a neurotrophic factor, as neurite formation at 21% oxygen was mimicked with exogenous VEGF, and a VEGF-neutralizing antibody attenuated neurite formation under reduced oxygen conditions. These findings demonstrate that behavior of neural-like cells is driven by the oxygen microenvironment
via
VEGF function, and suggest promising approaches for future applications in neural repair.</abstract><cop>New York</cop><pub>Humana Press Inc</pub><pmid>20107925</pmid><doi>10.1007/s12031-009-9326-0</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-8696 |
ispartof | Journal of molecular neuroscience, 2010-03, Vol.40 (3), p.360-366 |
issn | 0895-8696 1559-1166 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2825316 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Animals Antibodies Apoptosis Axon guidance Axonogenesis Biomedical and Life Sciences Biomedicine Bone marrow Carbon dioxide Cell Biology Cell culture Cell Differentiation - physiology Differentiation Humans Hypoxia Hypoxia - metabolism Hypoxia-inducible factor 1 alpha Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Injuries Microenvironments Morphology Nervous system Neurites - metabolism Neurites - ultrastructure Neurochemistry Neurology Neurosciences Neurotrophic factors Oxygen - metabolism Oxygen tension PC12 Cells - cytology PC12 Cells - metabolism Pheochromocytoma cells Physiology Proteomics Rats Signal Transduction - physiology Stem cells Vascular endothelial growth factor Vascular Endothelial Growth Factors - metabolism |
title | Oxygen Tension Modulates Neurite Outgrowth in PC12 Cells Through A Mechanism Involving HIF and VEGF |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Tension%20Modulates%20Neurite%20Outgrowth%20in%20PC12%20Cells%20Through%20A%20Mechanism%20Involving%20HIF%20and%20VEGF&rft.jtitle=Journal%20of%20molecular%20neuroscience&rft.au=Genetos,%20Damian%20C.&rft.date=2010-03-01&rft.volume=40&rft.issue=3&rft.spage=360&rft.epage=366&rft.pages=360-366&rft.issn=0895-8696&rft.eissn=1559-1166&rft_id=info:doi/10.1007/s12031-009-9326-0&rft_dat=%3Cproquest_pubme%3E2374023031%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871575589&rft_id=info:pmid/20107925&rfr_iscdi=true |