Metabolic acetate therapy for the treatment of traumatic brain injury

Patients suffering from traumatic brain injury (TBI) have decreased markers of energy metabolism, including N-acetylaspartate (NAA) and ATP. In the nervous system, NAA-derived acetate provides acetyl-CoA required for myelin lipid synthesis. Acetate can also be oxidized in mitochondria for the deriva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurotrauma 2010-01, Vol.27 (1), p.293-298
Hauptverfasser: Arun, Peethambaran, Ariyannur, Prasanth S, Moffett, John R, Xing, Guoqiang, Hamilton, Kristen, Grunberg, Neil E, Ives, John A, Namboodiri, Aryan M A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 298
container_issue 1
container_start_page 293
container_title Journal of neurotrauma
container_volume 27
creator Arun, Peethambaran
Ariyannur, Prasanth S
Moffett, John R
Xing, Guoqiang
Hamilton, Kristen
Grunberg, Neil E
Ives, John A
Namboodiri, Aryan M A
description Patients suffering from traumatic brain injury (TBI) have decreased markers of energy metabolism, including N-acetylaspartate (NAA) and ATP. In the nervous system, NAA-derived acetate provides acetyl-CoA required for myelin lipid synthesis. Acetate can also be oxidized in mitochondria for the derivation of metabolic energy. In the current study, using the controlled cortical impact model of TBI in rats, we investigated the effects of the hydrophobic acetate precursor, glyceryltriacetate (GTA), as a method of delivering metabolizable acetate to the injured brain. We found that GTA administration significantly increased the levels of both NAA and ATP in the injured hemisphere 4 and 6 days after injury, and also resulted in significantly improved motor performance in rats 3 days after injury.
doi_str_mv 10.1089/neu.2009.0994
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2824219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A218651257</galeid><sourcerecordid>A218651257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-9862103588191b6bf4888ce73447d2f1b7ae70598ae8b2588196fb820a65083a3</originalsourceid><addsrcrecordid>eNptkc1LAzEQxYMoWqtHr7LoeWsmm2ySiyDiFyhe9ByyaVJTupuazQr9701t8QMkh8xkfvN44SF0AngCWMiLzg4TgrGcYCnpDhoBY7yUmJJdNMpzXnJgcIAO-36OMVQ14fvoAKTAFRdshG6ebNJNWHhTaJPLZIv0ZqNergoX4rouUrQ6tbZLRXC50UOrU8abqH1X-G4-xNUR2nN60dvj7T1Gr7c3L9f35ePz3cP11WNpGK1TKUVNAFdMCJDQ1I2jQghjeUUpnxIHDdeWYyaFtqIhX1jtGkGwrhkWla7G6HKjuxya1k5NNhX1Qi2jb3VcqaC9-jvp_JuahQ9FBKEEZBY42wrE8D7YPql5GGKXPSuQFCgXQDJ0voFmemGV71zIWqb1vVFXBETNgDCeqck_VD5T23oTOut8fv-zUG4WTAx9H6379g1YrbNUOUu1zlKts8z86e_P_tDb8KpPrDGYuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194147812</pqid></control><display><type>article</type><title>Metabolic acetate therapy for the treatment of traumatic brain injury</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Arun, Peethambaran ; Ariyannur, Prasanth S ; Moffett, John R ; Xing, Guoqiang ; Hamilton, Kristen ; Grunberg, Neil E ; Ives, John A ; Namboodiri, Aryan M A</creator><creatorcontrib>Arun, Peethambaran ; Ariyannur, Prasanth S ; Moffett, John R ; Xing, Guoqiang ; Hamilton, Kristen ; Grunberg, Neil E ; Ives, John A ; Namboodiri, Aryan M A</creatorcontrib><description>Patients suffering from traumatic brain injury (TBI) have decreased markers of energy metabolism, including N-acetylaspartate (NAA) and ATP. In the nervous system, NAA-derived acetate provides acetyl-CoA required for myelin lipid synthesis. Acetate can also be oxidized in mitochondria for the derivation of metabolic energy. In the current study, using the controlled cortical impact model of TBI in rats, we investigated the effects of the hydrophobic acetate precursor, glyceryltriacetate (GTA), as a method of delivering metabolizable acetate to the injured brain. We found that GTA administration significantly increased the levels of both NAA and ATP in the injured hemisphere 4 and 6 days after injury, and also resulted in significantly improved motor performance in rats 3 days after injury.</description><identifier>ISSN: 0897-7151</identifier><identifier>EISSN: 1557-9042</identifier><identifier>DOI: 10.1089/neu.2009.0994</identifier><identifier>PMID: 19803785</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Acetates ; Acetates - pharmacology ; Acetates - therapeutic use ; Acetic Acid - metabolism ; Acetyl Coenzyme A - biosynthesis ; Animals ; Aspartic Acid - analogs &amp; derivatives ; Aspartic Acid - metabolism ; Brain ; Brain - drug effects ; Brain - metabolism ; Brain - physiopathology ; Brain damage ; Brain Injuries - drug therapy ; Brain Injuries - metabolism ; Brain Injuries - physiopathology ; Disease Models, Animal ; Energy Metabolism - drug effects ; Energy Metabolism - physiology ; Health aspects ; Injuries ; Lipid Metabolism - drug effects ; Lipid Metabolism - physiology ; Male ; Membrane Lipids - biosynthesis ; Metabolism ; Mitochondrial DNA ; Myelin Sheath - metabolism ; Neurology ; Neuroprotective Agents - pharmacology ; Neuroprotective Agents - therapeutic use ; Pharmacology ; Physiological aspects ; Rats ; Rats, Sprague-Dawley ; Rodents ; Short Communications ; Treatment Outcome ; Triacetin - pharmacology ; Triacetin - therapeutic use ; Up-Regulation - drug effects ; Up-Regulation - physiology</subject><ispartof>Journal of neurotrauma, 2010-01, Vol.27 (1), p.293-298</ispartof><rights>COPYRIGHT 2010 Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2010, Mary Ann Liebert, Inc.</rights><rights>Copyright 2010, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-9862103588191b6bf4888ce73447d2f1b7ae70598ae8b2588196fb820a65083a3</citedby><cites>FETCH-LOGICAL-c546t-9862103588191b6bf4888ce73447d2f1b7ae70598ae8b2588196fb820a65083a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19803785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arun, Peethambaran</creatorcontrib><creatorcontrib>Ariyannur, Prasanth S</creatorcontrib><creatorcontrib>Moffett, John R</creatorcontrib><creatorcontrib>Xing, Guoqiang</creatorcontrib><creatorcontrib>Hamilton, Kristen</creatorcontrib><creatorcontrib>Grunberg, Neil E</creatorcontrib><creatorcontrib>Ives, John A</creatorcontrib><creatorcontrib>Namboodiri, Aryan M A</creatorcontrib><title>Metabolic acetate therapy for the treatment of traumatic brain injury</title><title>Journal of neurotrauma</title><addtitle>J Neurotrauma</addtitle><description>Patients suffering from traumatic brain injury (TBI) have decreased markers of energy metabolism, including N-acetylaspartate (NAA) and ATP. In the nervous system, NAA-derived acetate provides acetyl-CoA required for myelin lipid synthesis. Acetate can also be oxidized in mitochondria for the derivation of metabolic energy. In the current study, using the controlled cortical impact model of TBI in rats, we investigated the effects of the hydrophobic acetate precursor, glyceryltriacetate (GTA), as a method of delivering metabolizable acetate to the injured brain. We found that GTA administration significantly increased the levels of both NAA and ATP in the injured hemisphere 4 and 6 days after injury, and also resulted in significantly improved motor performance in rats 3 days after injury.</description><subject>Acetates</subject><subject>Acetates - pharmacology</subject><subject>Acetates - therapeutic use</subject><subject>Acetic Acid - metabolism</subject><subject>Acetyl Coenzyme A - biosynthesis</subject><subject>Animals</subject><subject>Aspartic Acid - analogs &amp; derivatives</subject><subject>Aspartic Acid - metabolism</subject><subject>Brain</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Brain - physiopathology</subject><subject>Brain damage</subject><subject>Brain Injuries - drug therapy</subject><subject>Brain Injuries - metabolism</subject><subject>Brain Injuries - physiopathology</subject><subject>Disease Models, Animal</subject><subject>Energy Metabolism - drug effects</subject><subject>Energy Metabolism - physiology</subject><subject>Health aspects</subject><subject>Injuries</subject><subject>Lipid Metabolism - drug effects</subject><subject>Lipid Metabolism - physiology</subject><subject>Male</subject><subject>Membrane Lipids - biosynthesis</subject><subject>Metabolism</subject><subject>Mitochondrial DNA</subject><subject>Myelin Sheath - metabolism</subject><subject>Neurology</subject><subject>Neuroprotective Agents - pharmacology</subject><subject>Neuroprotective Agents - therapeutic use</subject><subject>Pharmacology</subject><subject>Physiological aspects</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rodents</subject><subject>Short Communications</subject><subject>Treatment Outcome</subject><subject>Triacetin - pharmacology</subject><subject>Triacetin - therapeutic use</subject><subject>Up-Regulation - drug effects</subject><subject>Up-Regulation - physiology</subject><issn>0897-7151</issn><issn>1557-9042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkc1LAzEQxYMoWqtHr7LoeWsmm2ySiyDiFyhe9ByyaVJTupuazQr9701t8QMkh8xkfvN44SF0AngCWMiLzg4TgrGcYCnpDhoBY7yUmJJdNMpzXnJgcIAO-36OMVQ14fvoAKTAFRdshG6ebNJNWHhTaJPLZIv0ZqNergoX4rouUrQ6tbZLRXC50UOrU8abqH1X-G4-xNUR2nN60dvj7T1Gr7c3L9f35ePz3cP11WNpGK1TKUVNAFdMCJDQ1I2jQghjeUUpnxIHDdeWYyaFtqIhX1jtGkGwrhkWla7G6HKjuxya1k5NNhX1Qi2jb3VcqaC9-jvp_JuahQ9FBKEEZBY42wrE8D7YPql5GGKXPSuQFCgXQDJ0voFmemGV71zIWqb1vVFXBETNgDCeqck_VD5T23oTOut8fv-zUG4WTAx9H6379g1YrbNUOUu1zlKts8z86e_P_tDb8KpPrDGYuQ</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Arun, Peethambaran</creator><creator>Ariyannur, Prasanth S</creator><creator>Moffett, John R</creator><creator>Xing, Guoqiang</creator><creator>Hamilton, Kristen</creator><creator>Grunberg, Neil E</creator><creator>Ives, John A</creator><creator>Namboodiri, Aryan M A</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>201001</creationdate><title>Metabolic acetate therapy for the treatment of traumatic brain injury</title><author>Arun, Peethambaran ; Ariyannur, Prasanth S ; Moffett, John R ; Xing, Guoqiang ; Hamilton, Kristen ; Grunberg, Neil E ; Ives, John A ; Namboodiri, Aryan M A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-9862103588191b6bf4888ce73447d2f1b7ae70598ae8b2588196fb820a65083a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acetates</topic><topic>Acetates - pharmacology</topic><topic>Acetates - therapeutic use</topic><topic>Acetic Acid - metabolism</topic><topic>Acetyl Coenzyme A - biosynthesis</topic><topic>Animals</topic><topic>Aspartic Acid - analogs &amp; derivatives</topic><topic>Aspartic Acid - metabolism</topic><topic>Brain</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Brain - physiopathology</topic><topic>Brain damage</topic><topic>Brain Injuries - drug therapy</topic><topic>Brain Injuries - metabolism</topic><topic>Brain Injuries - physiopathology</topic><topic>Disease Models, Animal</topic><topic>Energy Metabolism - drug effects</topic><topic>Energy Metabolism - physiology</topic><topic>Health aspects</topic><topic>Injuries</topic><topic>Lipid Metabolism - drug effects</topic><topic>Lipid Metabolism - physiology</topic><topic>Male</topic><topic>Membrane Lipids - biosynthesis</topic><topic>Metabolism</topic><topic>Mitochondrial DNA</topic><topic>Myelin Sheath - metabolism</topic><topic>Neurology</topic><topic>Neuroprotective Agents - pharmacology</topic><topic>Neuroprotective Agents - therapeutic use</topic><topic>Pharmacology</topic><topic>Physiological aspects</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rodents</topic><topic>Short Communications</topic><topic>Treatment Outcome</topic><topic>Triacetin - pharmacology</topic><topic>Triacetin - therapeutic use</topic><topic>Up-Regulation - drug effects</topic><topic>Up-Regulation - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arun, Peethambaran</creatorcontrib><creatorcontrib>Ariyannur, Prasanth S</creatorcontrib><creatorcontrib>Moffett, John R</creatorcontrib><creatorcontrib>Xing, Guoqiang</creatorcontrib><creatorcontrib>Hamilton, Kristen</creatorcontrib><creatorcontrib>Grunberg, Neil E</creatorcontrib><creatorcontrib>Ives, John A</creatorcontrib><creatorcontrib>Namboodiri, Aryan M A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neurotrauma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arun, Peethambaran</au><au>Ariyannur, Prasanth S</au><au>Moffett, John R</au><au>Xing, Guoqiang</au><au>Hamilton, Kristen</au><au>Grunberg, Neil E</au><au>Ives, John A</au><au>Namboodiri, Aryan M A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic acetate therapy for the treatment of traumatic brain injury</atitle><jtitle>Journal of neurotrauma</jtitle><addtitle>J Neurotrauma</addtitle><date>2010-01</date><risdate>2010</risdate><volume>27</volume><issue>1</issue><spage>293</spage><epage>298</epage><pages>293-298</pages><issn>0897-7151</issn><eissn>1557-9042</eissn><abstract>Patients suffering from traumatic brain injury (TBI) have decreased markers of energy metabolism, including N-acetylaspartate (NAA) and ATP. In the nervous system, NAA-derived acetate provides acetyl-CoA required for myelin lipid synthesis. Acetate can also be oxidized in mitochondria for the derivation of metabolic energy. In the current study, using the controlled cortical impact model of TBI in rats, we investigated the effects of the hydrophobic acetate precursor, glyceryltriacetate (GTA), as a method of delivering metabolizable acetate to the injured brain. We found that GTA administration significantly increased the levels of both NAA and ATP in the injured hemisphere 4 and 6 days after injury, and also resulted in significantly improved motor performance in rats 3 days after injury.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>19803785</pmid><doi>10.1089/neu.2009.0994</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-7151
ispartof Journal of neurotrauma, 2010-01, Vol.27 (1), p.293-298
issn 0897-7151
1557-9042
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2824219
source MEDLINE; Alma/SFX Local Collection
subjects Acetates
Acetates - pharmacology
Acetates - therapeutic use
Acetic Acid - metabolism
Acetyl Coenzyme A - biosynthesis
Animals
Aspartic Acid - analogs & derivatives
Aspartic Acid - metabolism
Brain
Brain - drug effects
Brain - metabolism
Brain - physiopathology
Brain damage
Brain Injuries - drug therapy
Brain Injuries - metabolism
Brain Injuries - physiopathology
Disease Models, Animal
Energy Metabolism - drug effects
Energy Metabolism - physiology
Health aspects
Injuries
Lipid Metabolism - drug effects
Lipid Metabolism - physiology
Male
Membrane Lipids - biosynthesis
Metabolism
Mitochondrial DNA
Myelin Sheath - metabolism
Neurology
Neuroprotective Agents - pharmacology
Neuroprotective Agents - therapeutic use
Pharmacology
Physiological aspects
Rats
Rats, Sprague-Dawley
Rodents
Short Communications
Treatment Outcome
Triacetin - pharmacology
Triacetin - therapeutic use
Up-Regulation - drug effects
Up-Regulation - physiology
title Metabolic acetate therapy for the treatment of traumatic brain injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A06%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20acetate%20therapy%20for%20the%20treatment%20of%20traumatic%20brain%20injury&rft.jtitle=Journal%20of%20neurotrauma&rft.au=Arun,%20Peethambaran&rft.date=2010-01&rft.volume=27&rft.issue=1&rft.spage=293&rft.epage=298&rft.pages=293-298&rft.issn=0897-7151&rft.eissn=1557-9042&rft_id=info:doi/10.1089/neu.2009.0994&rft_dat=%3Cgale_pubme%3EA218651257%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194147812&rft_id=info:pmid/19803785&rft_galeid=A218651257&rfr_iscdi=true