Metabolic acetate therapy for the treatment of traumatic brain injury
Patients suffering from traumatic brain injury (TBI) have decreased markers of energy metabolism, including N-acetylaspartate (NAA) and ATP. In the nervous system, NAA-derived acetate provides acetyl-CoA required for myelin lipid synthesis. Acetate can also be oxidized in mitochondria for the deriva...
Gespeichert in:
Veröffentlicht in: | Journal of neurotrauma 2010-01, Vol.27 (1), p.293-298 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 298 |
---|---|
container_issue | 1 |
container_start_page | 293 |
container_title | Journal of neurotrauma |
container_volume | 27 |
creator | Arun, Peethambaran Ariyannur, Prasanth S Moffett, John R Xing, Guoqiang Hamilton, Kristen Grunberg, Neil E Ives, John A Namboodiri, Aryan M A |
description | Patients suffering from traumatic brain injury (TBI) have decreased markers of energy metabolism, including N-acetylaspartate (NAA) and ATP. In the nervous system, NAA-derived acetate provides acetyl-CoA required for myelin lipid synthesis. Acetate can also be oxidized in mitochondria for the derivation of metabolic energy. In the current study, using the controlled cortical impact model of TBI in rats, we investigated the effects of the hydrophobic acetate precursor, glyceryltriacetate (GTA), as a method of delivering metabolizable acetate to the injured brain. We found that GTA administration significantly increased the levels of both NAA and ATP in the injured hemisphere 4 and 6 days after injury, and also resulted in significantly improved motor performance in rats 3 days after injury. |
doi_str_mv | 10.1089/neu.2009.0994 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2824219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A218651257</galeid><sourcerecordid>A218651257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-9862103588191b6bf4888ce73447d2f1b7ae70598ae8b2588196fb820a65083a3</originalsourceid><addsrcrecordid>eNptkc1LAzEQxYMoWqtHr7LoeWsmm2ySiyDiFyhe9ByyaVJTupuazQr9701t8QMkh8xkfvN44SF0AngCWMiLzg4TgrGcYCnpDhoBY7yUmJJdNMpzXnJgcIAO-36OMVQ14fvoAKTAFRdshG6ebNJNWHhTaJPLZIv0ZqNergoX4rouUrQ6tbZLRXC50UOrU8abqH1X-G4-xNUR2nN60dvj7T1Gr7c3L9f35ePz3cP11WNpGK1TKUVNAFdMCJDQ1I2jQghjeUUpnxIHDdeWYyaFtqIhX1jtGkGwrhkWla7G6HKjuxya1k5NNhX1Qi2jb3VcqaC9-jvp_JuahQ9FBKEEZBY42wrE8D7YPql5GGKXPSuQFCgXQDJ0voFmemGV71zIWqb1vVFXBETNgDCeqck_VD5T23oTOut8fv-zUG4WTAx9H6379g1YrbNUOUu1zlKts8z86e_P_tDb8KpPrDGYuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194147812</pqid></control><display><type>article</type><title>Metabolic acetate therapy for the treatment of traumatic brain injury</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Arun, Peethambaran ; Ariyannur, Prasanth S ; Moffett, John R ; Xing, Guoqiang ; Hamilton, Kristen ; Grunberg, Neil E ; Ives, John A ; Namboodiri, Aryan M A</creator><creatorcontrib>Arun, Peethambaran ; Ariyannur, Prasanth S ; Moffett, John R ; Xing, Guoqiang ; Hamilton, Kristen ; Grunberg, Neil E ; Ives, John A ; Namboodiri, Aryan M A</creatorcontrib><description>Patients suffering from traumatic brain injury (TBI) have decreased markers of energy metabolism, including N-acetylaspartate (NAA) and ATP. In the nervous system, NAA-derived acetate provides acetyl-CoA required for myelin lipid synthesis. Acetate can also be oxidized in mitochondria for the derivation of metabolic energy. In the current study, using the controlled cortical impact model of TBI in rats, we investigated the effects of the hydrophobic acetate precursor, glyceryltriacetate (GTA), as a method of delivering metabolizable acetate to the injured brain. We found that GTA administration significantly increased the levels of both NAA and ATP in the injured hemisphere 4 and 6 days after injury, and also resulted in significantly improved motor performance in rats 3 days after injury.</description><identifier>ISSN: 0897-7151</identifier><identifier>EISSN: 1557-9042</identifier><identifier>DOI: 10.1089/neu.2009.0994</identifier><identifier>PMID: 19803785</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Acetates ; Acetates - pharmacology ; Acetates - therapeutic use ; Acetic Acid - metabolism ; Acetyl Coenzyme A - biosynthesis ; Animals ; Aspartic Acid - analogs & derivatives ; Aspartic Acid - metabolism ; Brain ; Brain - drug effects ; Brain - metabolism ; Brain - physiopathology ; Brain damage ; Brain Injuries - drug therapy ; Brain Injuries - metabolism ; Brain Injuries - physiopathology ; Disease Models, Animal ; Energy Metabolism - drug effects ; Energy Metabolism - physiology ; Health aspects ; Injuries ; Lipid Metabolism - drug effects ; Lipid Metabolism - physiology ; Male ; Membrane Lipids - biosynthesis ; Metabolism ; Mitochondrial DNA ; Myelin Sheath - metabolism ; Neurology ; Neuroprotective Agents - pharmacology ; Neuroprotective Agents - therapeutic use ; Pharmacology ; Physiological aspects ; Rats ; Rats, Sprague-Dawley ; Rodents ; Short Communications ; Treatment Outcome ; Triacetin - pharmacology ; Triacetin - therapeutic use ; Up-Regulation - drug effects ; Up-Regulation - physiology</subject><ispartof>Journal of neurotrauma, 2010-01, Vol.27 (1), p.293-298</ispartof><rights>COPYRIGHT 2010 Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2010, Mary Ann Liebert, Inc.</rights><rights>Copyright 2010, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-9862103588191b6bf4888ce73447d2f1b7ae70598ae8b2588196fb820a65083a3</citedby><cites>FETCH-LOGICAL-c546t-9862103588191b6bf4888ce73447d2f1b7ae70598ae8b2588196fb820a65083a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19803785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arun, Peethambaran</creatorcontrib><creatorcontrib>Ariyannur, Prasanth S</creatorcontrib><creatorcontrib>Moffett, John R</creatorcontrib><creatorcontrib>Xing, Guoqiang</creatorcontrib><creatorcontrib>Hamilton, Kristen</creatorcontrib><creatorcontrib>Grunberg, Neil E</creatorcontrib><creatorcontrib>Ives, John A</creatorcontrib><creatorcontrib>Namboodiri, Aryan M A</creatorcontrib><title>Metabolic acetate therapy for the treatment of traumatic brain injury</title><title>Journal of neurotrauma</title><addtitle>J Neurotrauma</addtitle><description>Patients suffering from traumatic brain injury (TBI) have decreased markers of energy metabolism, including N-acetylaspartate (NAA) and ATP. In the nervous system, NAA-derived acetate provides acetyl-CoA required for myelin lipid synthesis. Acetate can also be oxidized in mitochondria for the derivation of metabolic energy. In the current study, using the controlled cortical impact model of TBI in rats, we investigated the effects of the hydrophobic acetate precursor, glyceryltriacetate (GTA), as a method of delivering metabolizable acetate to the injured brain. We found that GTA administration significantly increased the levels of both NAA and ATP in the injured hemisphere 4 and 6 days after injury, and also resulted in significantly improved motor performance in rats 3 days after injury.</description><subject>Acetates</subject><subject>Acetates - pharmacology</subject><subject>Acetates - therapeutic use</subject><subject>Acetic Acid - metabolism</subject><subject>Acetyl Coenzyme A - biosynthesis</subject><subject>Animals</subject><subject>Aspartic Acid - analogs & derivatives</subject><subject>Aspartic Acid - metabolism</subject><subject>Brain</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Brain - physiopathology</subject><subject>Brain damage</subject><subject>Brain Injuries - drug therapy</subject><subject>Brain Injuries - metabolism</subject><subject>Brain Injuries - physiopathology</subject><subject>Disease Models, Animal</subject><subject>Energy Metabolism - drug effects</subject><subject>Energy Metabolism - physiology</subject><subject>Health aspects</subject><subject>Injuries</subject><subject>Lipid Metabolism - drug effects</subject><subject>Lipid Metabolism - physiology</subject><subject>Male</subject><subject>Membrane Lipids - biosynthesis</subject><subject>Metabolism</subject><subject>Mitochondrial DNA</subject><subject>Myelin Sheath - metabolism</subject><subject>Neurology</subject><subject>Neuroprotective Agents - pharmacology</subject><subject>Neuroprotective Agents - therapeutic use</subject><subject>Pharmacology</subject><subject>Physiological aspects</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rodents</subject><subject>Short Communications</subject><subject>Treatment Outcome</subject><subject>Triacetin - pharmacology</subject><subject>Triacetin - therapeutic use</subject><subject>Up-Regulation - drug effects</subject><subject>Up-Regulation - physiology</subject><issn>0897-7151</issn><issn>1557-9042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkc1LAzEQxYMoWqtHr7LoeWsmm2ySiyDiFyhe9ByyaVJTupuazQr9701t8QMkh8xkfvN44SF0AngCWMiLzg4TgrGcYCnpDhoBY7yUmJJdNMpzXnJgcIAO-36OMVQ14fvoAKTAFRdshG6ebNJNWHhTaJPLZIv0ZqNergoX4rouUrQ6tbZLRXC50UOrU8abqH1X-G4-xNUR2nN60dvj7T1Gr7c3L9f35ePz3cP11WNpGK1TKUVNAFdMCJDQ1I2jQghjeUUpnxIHDdeWYyaFtqIhX1jtGkGwrhkWla7G6HKjuxya1k5NNhX1Qi2jb3VcqaC9-jvp_JuahQ9FBKEEZBY42wrE8D7YPql5GGKXPSuQFCgXQDJ0voFmemGV71zIWqb1vVFXBETNgDCeqck_VD5T23oTOut8fv-zUG4WTAx9H6379g1YrbNUOUu1zlKts8z86e_P_tDb8KpPrDGYuQ</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Arun, Peethambaran</creator><creator>Ariyannur, Prasanth S</creator><creator>Moffett, John R</creator><creator>Xing, Guoqiang</creator><creator>Hamilton, Kristen</creator><creator>Grunberg, Neil E</creator><creator>Ives, John A</creator><creator>Namboodiri, Aryan M A</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>201001</creationdate><title>Metabolic acetate therapy for the treatment of traumatic brain injury</title><author>Arun, Peethambaran ; Ariyannur, Prasanth S ; Moffett, John R ; Xing, Guoqiang ; Hamilton, Kristen ; Grunberg, Neil E ; Ives, John A ; Namboodiri, Aryan M A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-9862103588191b6bf4888ce73447d2f1b7ae70598ae8b2588196fb820a65083a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acetates</topic><topic>Acetates - pharmacology</topic><topic>Acetates - therapeutic use</topic><topic>Acetic Acid - metabolism</topic><topic>Acetyl Coenzyme A - biosynthesis</topic><topic>Animals</topic><topic>Aspartic Acid - analogs & derivatives</topic><topic>Aspartic Acid - metabolism</topic><topic>Brain</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Brain - physiopathology</topic><topic>Brain damage</topic><topic>Brain Injuries - drug therapy</topic><topic>Brain Injuries - metabolism</topic><topic>Brain Injuries - physiopathology</topic><topic>Disease Models, Animal</topic><topic>Energy Metabolism - drug effects</topic><topic>Energy Metabolism - physiology</topic><topic>Health aspects</topic><topic>Injuries</topic><topic>Lipid Metabolism - drug effects</topic><topic>Lipid Metabolism - physiology</topic><topic>Male</topic><topic>Membrane Lipids - biosynthesis</topic><topic>Metabolism</topic><topic>Mitochondrial DNA</topic><topic>Myelin Sheath - metabolism</topic><topic>Neurology</topic><topic>Neuroprotective Agents - pharmacology</topic><topic>Neuroprotective Agents - therapeutic use</topic><topic>Pharmacology</topic><topic>Physiological aspects</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rodents</topic><topic>Short Communications</topic><topic>Treatment Outcome</topic><topic>Triacetin - pharmacology</topic><topic>Triacetin - therapeutic use</topic><topic>Up-Regulation - drug effects</topic><topic>Up-Regulation - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arun, Peethambaran</creatorcontrib><creatorcontrib>Ariyannur, Prasanth S</creatorcontrib><creatorcontrib>Moffett, John R</creatorcontrib><creatorcontrib>Xing, Guoqiang</creatorcontrib><creatorcontrib>Hamilton, Kristen</creatorcontrib><creatorcontrib>Grunberg, Neil E</creatorcontrib><creatorcontrib>Ives, John A</creatorcontrib><creatorcontrib>Namboodiri, Aryan M A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neurotrauma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arun, Peethambaran</au><au>Ariyannur, Prasanth S</au><au>Moffett, John R</au><au>Xing, Guoqiang</au><au>Hamilton, Kristen</au><au>Grunberg, Neil E</au><au>Ives, John A</au><au>Namboodiri, Aryan M A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic acetate therapy for the treatment of traumatic brain injury</atitle><jtitle>Journal of neurotrauma</jtitle><addtitle>J Neurotrauma</addtitle><date>2010-01</date><risdate>2010</risdate><volume>27</volume><issue>1</issue><spage>293</spage><epage>298</epage><pages>293-298</pages><issn>0897-7151</issn><eissn>1557-9042</eissn><abstract>Patients suffering from traumatic brain injury (TBI) have decreased markers of energy metabolism, including N-acetylaspartate (NAA) and ATP. In the nervous system, NAA-derived acetate provides acetyl-CoA required for myelin lipid synthesis. Acetate can also be oxidized in mitochondria for the derivation of metabolic energy. In the current study, using the controlled cortical impact model of TBI in rats, we investigated the effects of the hydrophobic acetate precursor, glyceryltriacetate (GTA), as a method of delivering metabolizable acetate to the injured brain. We found that GTA administration significantly increased the levels of both NAA and ATP in the injured hemisphere 4 and 6 days after injury, and also resulted in significantly improved motor performance in rats 3 days after injury.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>19803785</pmid><doi>10.1089/neu.2009.0994</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-7151 |
ispartof | Journal of neurotrauma, 2010-01, Vol.27 (1), p.293-298 |
issn | 0897-7151 1557-9042 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2824219 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Acetates Acetates - pharmacology Acetates - therapeutic use Acetic Acid - metabolism Acetyl Coenzyme A - biosynthesis Animals Aspartic Acid - analogs & derivatives Aspartic Acid - metabolism Brain Brain - drug effects Brain - metabolism Brain - physiopathology Brain damage Brain Injuries - drug therapy Brain Injuries - metabolism Brain Injuries - physiopathology Disease Models, Animal Energy Metabolism - drug effects Energy Metabolism - physiology Health aspects Injuries Lipid Metabolism - drug effects Lipid Metabolism - physiology Male Membrane Lipids - biosynthesis Metabolism Mitochondrial DNA Myelin Sheath - metabolism Neurology Neuroprotective Agents - pharmacology Neuroprotective Agents - therapeutic use Pharmacology Physiological aspects Rats Rats, Sprague-Dawley Rodents Short Communications Treatment Outcome Triacetin - pharmacology Triacetin - therapeutic use Up-Regulation - drug effects Up-Regulation - physiology |
title | Metabolic acetate therapy for the treatment of traumatic brain injury |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A06%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20acetate%20therapy%20for%20the%20treatment%20of%20traumatic%20brain%20injury&rft.jtitle=Journal%20of%20neurotrauma&rft.au=Arun,%20Peethambaran&rft.date=2010-01&rft.volume=27&rft.issue=1&rft.spage=293&rft.epage=298&rft.pages=293-298&rft.issn=0897-7151&rft.eissn=1557-9042&rft_id=info:doi/10.1089/neu.2009.0994&rft_dat=%3Cgale_pubme%3EA218651257%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194147812&rft_id=info:pmid/19803785&rft_galeid=A218651257&rfr_iscdi=true |