Defining the Pathogenesis of the Human Atp12p W94R Mutation Using a Saccharomyces cerevisiae Yeast Model
Studies in yeast have shown that a deficiency in Atp12p prevents assembly of the extrinsic domain (F1) of complex V and renders cells unable to make ATP through oxidative phosphorylation. De Meirleir et al. (De Meirleir, L., Seneca, S., Lissens, W., De Clercq, I., Eyskens, F., Gerlo, E., Smet, J., a...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2010-02, Vol.285 (6), p.4099-4109 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4109 |
---|---|
container_issue | 6 |
container_start_page | 4099 |
container_title | The Journal of biological chemistry |
container_volume | 285 |
creator | Meulemans, Ann Seneca, Sara Pribyl, Thomas Smet, Joel Alderweirldt, Valerie Waeytens, Anouk Lissens, Willy Van Coster, Rudy De Meirleir, Linda di Rago, Jean-Paul Gatti, Domenico L. Ackerman, Sharon H. |
description | Studies in yeast have shown that a deficiency in Atp12p prevents assembly of the extrinsic domain (F1) of complex V and renders cells unable to make ATP through oxidative phosphorylation. De Meirleir et al. (De Meirleir, L., Seneca, S., Lissens, W., De Clercq, I., Eyskens, F., Gerlo, E., Smet, J., and Van Coster, R. (2004) J. Med. Genet. 41, 120–124) have reported that a homozygous missense mutation in the gene for human Atp12p (HuAtp12p), which replaces Trp-94 with Arg, was linked to the death of a 14-month-old patient. We have investigated the impact of the pathogenic W94R mutation on Atp12p structure/function. Plasmid-borne wild type human Atp12p rescues the respiratory defect of a yeast ATP12 deletion mutant (Δatp12). The W94R mutation alters the protein at the most highly conserved position in the Pfam sequence and renders HuAtp12p insoluble in the background of Δatp12. In contrast, the yeast protein harboring the corresponding mutation, ScAtp12p(W103R), is soluble in the background of Δatp12 but not in the background of Δatp12Δfmc1, a strain that also lacks Fmc1p. Fmc1p is a yeast mitochondrial protein not found in higher eukaryotes. Tryptophan 94 (human) or 103 (yeast) is located in a positively charged region of Atp12p, and hence its mutation to arginine does not alter significantly the electrostatic properties of the protein. Instead, we provide evidence that the primary effect of the substitution is on the dynamic properties of Atp12p. |
doi_str_mv | 10.1074/jbc.M109.046920 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2823550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820810801</els_id><sourcerecordid>S0021925820810801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-2050dbecfd3686d70edce5aa00bb31188db4e9763dc93f35967463131f7a7ac23</originalsourceid><addsrcrecordid>eNp1kcuP0zAQxi0EYruFMzewuHFI1484ji9I1fIoUisQSwWcLMeZNF41cWWnXe1_j0MqXhK-WJr5fd-M5kPoGSULSmR-dVvZxYYStSB5oRh5gGaUlDzjgn57iGaEMJopJsoLdBnjLUkvV_QxuqBKcc4knaH2DTSud_0ODy3gT2Zo_Q56iC5i3_ysrY6d6fFyOFB2wF9V_hlvjoMZnO_xNo5Cg2-Mta0Jvru3ELGFACcXnQH8HUwc8MbXsH-CHjVmH-Hp-Z-j7bu3X65X2frj-w_Xy3VmBZNDxoggdQW2qXlRFrUkUFsQxhBSVZzSsqyrHJQseG0Vb7hQhcwLTjltpJHGMj5Hryffw7HqRnE_BLPXh-A6E-61N07_3eldq3f-pFnJuBAkGbyaDNp_ZKvlWo-1dERBipKfaGKvJtYGH2OA5peAEj0GpFNAegxITwElxfM_1_vNnxNJwMvzeLdr71wAXTlvW-jSgkIXOieJnKMXE9QYr80uuKi3N4xQTqhUkubjHDURkG59chB0tA56C3WytIOuvfvvjj8ArwK0Sw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Defining the Pathogenesis of the Human Atp12p W94R Mutation Using a Saccharomyces cerevisiae Yeast Model</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Meulemans, Ann ; Seneca, Sara ; Pribyl, Thomas ; Smet, Joel ; Alderweirldt, Valerie ; Waeytens, Anouk ; Lissens, Willy ; Van Coster, Rudy ; De Meirleir, Linda ; di Rago, Jean-Paul ; Gatti, Domenico L. ; Ackerman, Sharon H.</creator><creatorcontrib>Meulemans, Ann ; Seneca, Sara ; Pribyl, Thomas ; Smet, Joel ; Alderweirldt, Valerie ; Waeytens, Anouk ; Lissens, Willy ; Van Coster, Rudy ; De Meirleir, Linda ; di Rago, Jean-Paul ; Gatti, Domenico L. ; Ackerman, Sharon H.</creatorcontrib><description>Studies in yeast have shown that a deficiency in Atp12p prevents assembly of the extrinsic domain (F1) of complex V and renders cells unable to make ATP through oxidative phosphorylation. De Meirleir et al. (De Meirleir, L., Seneca, S., Lissens, W., De Clercq, I., Eyskens, F., Gerlo, E., Smet, J., and Van Coster, R. (2004) J. Med. Genet. 41, 120–124) have reported that a homozygous missense mutation in the gene for human Atp12p (HuAtp12p), which replaces Trp-94 with Arg, was linked to the death of a 14-month-old patient. We have investigated the impact of the pathogenic W94R mutation on Atp12p structure/function. Plasmid-borne wild type human Atp12p rescues the respiratory defect of a yeast ATP12 deletion mutant (Δatp12). The W94R mutation alters the protein at the most highly conserved position in the Pfam sequence and renders HuAtp12p insoluble in the background of Δatp12. In contrast, the yeast protein harboring the corresponding mutation, ScAtp12p(W103R), is soluble in the background of Δatp12 but not in the background of Δatp12Δfmc1, a strain that also lacks Fmc1p. Fmc1p is a yeast mitochondrial protein not found in higher eukaryotes. Tryptophan 94 (human) or 103 (yeast) is located in a positively charged region of Atp12p, and hence its mutation to arginine does not alter significantly the electrostatic properties of the protein. Instead, we provide evidence that the primary effect of the substitution is on the dynamic properties of Atp12p.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.046920</identifier><identifier>PMID: 19933271</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Substitution ; Arginine - genetics ; Arginine - metabolism ; Atp12p ; Bioenergetics ; Bioenergetics/ATP Synthase ; Blotting, Western ; Cells, Cultured ; Cellular Biology ; Chaperonins - chemistry ; Chaperonins - genetics ; Chaperonins - metabolism ; Diseases/Metabolic ; Electron Transport - genetics ; Fibroblasts - metabolism ; Fibroblasts - ultrastructure ; Genetic Complementation Test ; Humans ; Life Sciences ; Metabolism and Bioenergetics ; Microscopy, Electron ; Mitochondria ; Mitochondria - metabolism ; Mitochondria - ultrastructure ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Mitochondrial Proton-Translocating ATPases ; Models, Molecular ; Molecular Chaperones - genetics ; Molecular Chaperones - metabolism ; Mutation ; Protein Conformation ; Proton-Translocating ATPases - chemistry ; Proton-Translocating ATPases - genetics ; Proton-Translocating ATPases - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Solubility ; Static Electricity ; Tryptophan - genetics ; Tryptophan - metabolism ; Yeast</subject><ispartof>The Journal of biological chemistry, 2010-02, Vol.285 (6), p.4099-4109</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-2050dbecfd3686d70edce5aa00bb31188db4e9763dc93f35967463131f7a7ac23</citedby><cites>FETCH-LOGICAL-c527t-2050dbecfd3686d70edce5aa00bb31188db4e9763dc93f35967463131f7a7ac23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823550/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823550/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19933271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00450683$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Meulemans, Ann</creatorcontrib><creatorcontrib>Seneca, Sara</creatorcontrib><creatorcontrib>Pribyl, Thomas</creatorcontrib><creatorcontrib>Smet, Joel</creatorcontrib><creatorcontrib>Alderweirldt, Valerie</creatorcontrib><creatorcontrib>Waeytens, Anouk</creatorcontrib><creatorcontrib>Lissens, Willy</creatorcontrib><creatorcontrib>Van Coster, Rudy</creatorcontrib><creatorcontrib>De Meirleir, Linda</creatorcontrib><creatorcontrib>di Rago, Jean-Paul</creatorcontrib><creatorcontrib>Gatti, Domenico L.</creatorcontrib><creatorcontrib>Ackerman, Sharon H.</creatorcontrib><title>Defining the Pathogenesis of the Human Atp12p W94R Mutation Using a Saccharomyces cerevisiae Yeast Model</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Studies in yeast have shown that a deficiency in Atp12p prevents assembly of the extrinsic domain (F1) of complex V and renders cells unable to make ATP through oxidative phosphorylation. De Meirleir et al. (De Meirleir, L., Seneca, S., Lissens, W., De Clercq, I., Eyskens, F., Gerlo, E., Smet, J., and Van Coster, R. (2004) J. Med. Genet. 41, 120–124) have reported that a homozygous missense mutation in the gene for human Atp12p (HuAtp12p), which replaces Trp-94 with Arg, was linked to the death of a 14-month-old patient. We have investigated the impact of the pathogenic W94R mutation on Atp12p structure/function. Plasmid-borne wild type human Atp12p rescues the respiratory defect of a yeast ATP12 deletion mutant (Δatp12). The W94R mutation alters the protein at the most highly conserved position in the Pfam sequence and renders HuAtp12p insoluble in the background of Δatp12. In contrast, the yeast protein harboring the corresponding mutation, ScAtp12p(W103R), is soluble in the background of Δatp12 but not in the background of Δatp12Δfmc1, a strain that also lacks Fmc1p. Fmc1p is a yeast mitochondrial protein not found in higher eukaryotes. Tryptophan 94 (human) or 103 (yeast) is located in a positively charged region of Atp12p, and hence its mutation to arginine does not alter significantly the electrostatic properties of the protein. Instead, we provide evidence that the primary effect of the substitution is on the dynamic properties of Atp12p.</description><subject>Amino Acid Substitution</subject><subject>Arginine - genetics</subject><subject>Arginine - metabolism</subject><subject>Atp12p</subject><subject>Bioenergetics</subject><subject>Bioenergetics/ATP Synthase</subject><subject>Blotting, Western</subject><subject>Cells, Cultured</subject><subject>Cellular Biology</subject><subject>Chaperonins - chemistry</subject><subject>Chaperonins - genetics</subject><subject>Chaperonins - metabolism</subject><subject>Diseases/Metabolic</subject><subject>Electron Transport - genetics</subject><subject>Fibroblasts - metabolism</subject><subject>Fibroblasts - ultrastructure</subject><subject>Genetic Complementation Test</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Metabolism and Bioenergetics</subject><subject>Microscopy, Electron</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - ultrastructure</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Mitochondrial Proton-Translocating ATPases</subject><subject>Models, Molecular</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - metabolism</subject><subject>Mutation</subject><subject>Protein Conformation</subject><subject>Proton-Translocating ATPases - chemistry</subject><subject>Proton-Translocating ATPases - genetics</subject><subject>Proton-Translocating ATPases - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Solubility</subject><subject>Static Electricity</subject><subject>Tryptophan - genetics</subject><subject>Tryptophan - metabolism</subject><subject>Yeast</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcuP0zAQxi0EYruFMzewuHFI1484ji9I1fIoUisQSwWcLMeZNF41cWWnXe1_j0MqXhK-WJr5fd-M5kPoGSULSmR-dVvZxYYStSB5oRh5gGaUlDzjgn57iGaEMJopJsoLdBnjLUkvV_QxuqBKcc4knaH2DTSud_0ODy3gT2Zo_Q56iC5i3_ysrY6d6fFyOFB2wF9V_hlvjoMZnO_xNo5Cg2-Mta0Jvru3ELGFACcXnQH8HUwc8MbXsH-CHjVmH-Hp-Z-j7bu3X65X2frj-w_Xy3VmBZNDxoggdQW2qXlRFrUkUFsQxhBSVZzSsqyrHJQseG0Vb7hQhcwLTjltpJHGMj5Hryffw7HqRnE_BLPXh-A6E-61N07_3eldq3f-pFnJuBAkGbyaDNp_ZKvlWo-1dERBipKfaGKvJtYGH2OA5peAEj0GpFNAegxITwElxfM_1_vNnxNJwMvzeLdr71wAXTlvW-jSgkIXOieJnKMXE9QYr80uuKi3N4xQTqhUkubjHDURkG59chB0tA56C3WytIOuvfvvjj8ArwK0Sw</recordid><startdate>20100205</startdate><enddate>20100205</enddate><creator>Meulemans, Ann</creator><creator>Seneca, Sara</creator><creator>Pribyl, Thomas</creator><creator>Smet, Joel</creator><creator>Alderweirldt, Valerie</creator><creator>Waeytens, Anouk</creator><creator>Lissens, Willy</creator><creator>Van Coster, Rudy</creator><creator>De Meirleir, Linda</creator><creator>di Rago, Jean-Paul</creator><creator>Gatti, Domenico L.</creator><creator>Ackerman, Sharon H.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20100205</creationdate><title>Defining the Pathogenesis of the Human Atp12p W94R Mutation Using a Saccharomyces cerevisiae Yeast Model</title><author>Meulemans, Ann ; Seneca, Sara ; Pribyl, Thomas ; Smet, Joel ; Alderweirldt, Valerie ; Waeytens, Anouk ; Lissens, Willy ; Van Coster, Rudy ; De Meirleir, Linda ; di Rago, Jean-Paul ; Gatti, Domenico L. ; Ackerman, Sharon H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-2050dbecfd3686d70edce5aa00bb31188db4e9763dc93f35967463131f7a7ac23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino Acid Substitution</topic><topic>Arginine - genetics</topic><topic>Arginine - metabolism</topic><topic>Atp12p</topic><topic>Bioenergetics</topic><topic>Bioenergetics/ATP Synthase</topic><topic>Blotting, Western</topic><topic>Cells, Cultured</topic><topic>Cellular Biology</topic><topic>Chaperonins - chemistry</topic><topic>Chaperonins - genetics</topic><topic>Chaperonins - metabolism</topic><topic>Diseases/Metabolic</topic><topic>Electron Transport - genetics</topic><topic>Fibroblasts - metabolism</topic><topic>Fibroblasts - ultrastructure</topic><topic>Genetic Complementation Test</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Metabolism and Bioenergetics</topic><topic>Microscopy, Electron</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - ultrastructure</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Mitochondrial Proton-Translocating ATPases</topic><topic>Models, Molecular</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - metabolism</topic><topic>Mutation</topic><topic>Protein Conformation</topic><topic>Proton-Translocating ATPases - chemistry</topic><topic>Proton-Translocating ATPases - genetics</topic><topic>Proton-Translocating ATPases - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Solubility</topic><topic>Static Electricity</topic><topic>Tryptophan - genetics</topic><topic>Tryptophan - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meulemans, Ann</creatorcontrib><creatorcontrib>Seneca, Sara</creatorcontrib><creatorcontrib>Pribyl, Thomas</creatorcontrib><creatorcontrib>Smet, Joel</creatorcontrib><creatorcontrib>Alderweirldt, Valerie</creatorcontrib><creatorcontrib>Waeytens, Anouk</creatorcontrib><creatorcontrib>Lissens, Willy</creatorcontrib><creatorcontrib>Van Coster, Rudy</creatorcontrib><creatorcontrib>De Meirleir, Linda</creatorcontrib><creatorcontrib>di Rago, Jean-Paul</creatorcontrib><creatorcontrib>Gatti, Domenico L.</creatorcontrib><creatorcontrib>Ackerman, Sharon H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meulemans, Ann</au><au>Seneca, Sara</au><au>Pribyl, Thomas</au><au>Smet, Joel</au><au>Alderweirldt, Valerie</au><au>Waeytens, Anouk</au><au>Lissens, Willy</au><au>Van Coster, Rudy</au><au>De Meirleir, Linda</au><au>di Rago, Jean-Paul</au><au>Gatti, Domenico L.</au><au>Ackerman, Sharon H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining the Pathogenesis of the Human Atp12p W94R Mutation Using a Saccharomyces cerevisiae Yeast Model</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-02-05</date><risdate>2010</risdate><volume>285</volume><issue>6</issue><spage>4099</spage><epage>4109</epage><pages>4099-4109</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Studies in yeast have shown that a deficiency in Atp12p prevents assembly of the extrinsic domain (F1) of complex V and renders cells unable to make ATP through oxidative phosphorylation. De Meirleir et al. (De Meirleir, L., Seneca, S., Lissens, W., De Clercq, I., Eyskens, F., Gerlo, E., Smet, J., and Van Coster, R. (2004) J. Med. Genet. 41, 120–124) have reported that a homozygous missense mutation in the gene for human Atp12p (HuAtp12p), which replaces Trp-94 with Arg, was linked to the death of a 14-month-old patient. We have investigated the impact of the pathogenic W94R mutation on Atp12p structure/function. Plasmid-borne wild type human Atp12p rescues the respiratory defect of a yeast ATP12 deletion mutant (Δatp12). The W94R mutation alters the protein at the most highly conserved position in the Pfam sequence and renders HuAtp12p insoluble in the background of Δatp12. In contrast, the yeast protein harboring the corresponding mutation, ScAtp12p(W103R), is soluble in the background of Δatp12 but not in the background of Δatp12Δfmc1, a strain that also lacks Fmc1p. Fmc1p is a yeast mitochondrial protein not found in higher eukaryotes. Tryptophan 94 (human) or 103 (yeast) is located in a positively charged region of Atp12p, and hence its mutation to arginine does not alter significantly the electrostatic properties of the protein. Instead, we provide evidence that the primary effect of the substitution is on the dynamic properties of Atp12p.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19933271</pmid><doi>10.1074/jbc.M109.046920</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2010-02, Vol.285 (6), p.4099-4109 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2823550 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Amino Acid Substitution Arginine - genetics Arginine - metabolism Atp12p Bioenergetics Bioenergetics/ATP Synthase Blotting, Western Cells, Cultured Cellular Biology Chaperonins - chemistry Chaperonins - genetics Chaperonins - metabolism Diseases/Metabolic Electron Transport - genetics Fibroblasts - metabolism Fibroblasts - ultrastructure Genetic Complementation Test Humans Life Sciences Metabolism and Bioenergetics Microscopy, Electron Mitochondria Mitochondria - metabolism Mitochondria - ultrastructure Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism Mitochondrial Proton-Translocating ATPases Models, Molecular Molecular Chaperones - genetics Molecular Chaperones - metabolism Mutation Protein Conformation Proton-Translocating ATPases - chemistry Proton-Translocating ATPases - genetics Proton-Translocating ATPases - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Solubility Static Electricity Tryptophan - genetics Tryptophan - metabolism Yeast |
title | Defining the Pathogenesis of the Human Atp12p W94R Mutation Using a Saccharomyces cerevisiae Yeast Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20the%20Pathogenesis%20of%20the%20Human%20Atp12p%20W94R%20Mutation%20Using%20a%20Saccharomyces%20cerevisiae%20Yeast%20Model&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Meulemans,%20Ann&rft.date=2010-02-05&rft.volume=285&rft.issue=6&rft.spage=4099&rft.epage=4109&rft.pages=4099-4109&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.046920&rft_dat=%3Celsevier_pubme%3ES0021925820810801%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19933271&rft_els_id=S0021925820810801&rfr_iscdi=true |