Defining the Pathogenesis of the Human Atp12p W94R Mutation Using a Saccharomyces cerevisiae Yeast Model

Studies in yeast have shown that a deficiency in Atp12p prevents assembly of the extrinsic domain (F1) of complex V and renders cells unable to make ATP through oxidative phosphorylation. De Meirleir et al. (De Meirleir, L., Seneca, S., Lissens, W., De Clercq, I., Eyskens, F., Gerlo, E., Smet, J., a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2010-02, Vol.285 (6), p.4099-4109
Hauptverfasser: Meulemans, Ann, Seneca, Sara, Pribyl, Thomas, Smet, Joel, Alderweirldt, Valerie, Waeytens, Anouk, Lissens, Willy, Van Coster, Rudy, De Meirleir, Linda, di Rago, Jean-Paul, Gatti, Domenico L., Ackerman, Sharon H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4109
container_issue 6
container_start_page 4099
container_title The Journal of biological chemistry
container_volume 285
creator Meulemans, Ann
Seneca, Sara
Pribyl, Thomas
Smet, Joel
Alderweirldt, Valerie
Waeytens, Anouk
Lissens, Willy
Van Coster, Rudy
De Meirleir, Linda
di Rago, Jean-Paul
Gatti, Domenico L.
Ackerman, Sharon H.
description Studies in yeast have shown that a deficiency in Atp12p prevents assembly of the extrinsic domain (F1) of complex V and renders cells unable to make ATP through oxidative phosphorylation. De Meirleir et al. (De Meirleir, L., Seneca, S., Lissens, W., De Clercq, I., Eyskens, F., Gerlo, E., Smet, J., and Van Coster, R. (2004) J. Med. Genet. 41, 120–124) have reported that a homozygous missense mutation in the gene for human Atp12p (HuAtp12p), which replaces Trp-94 with Arg, was linked to the death of a 14-month-old patient. We have investigated the impact of the pathogenic W94R mutation on Atp12p structure/function. Plasmid-borne wild type human Atp12p rescues the respiratory defect of a yeast ATP12 deletion mutant (Δatp12). The W94R mutation alters the protein at the most highly conserved position in the Pfam sequence and renders HuAtp12p insoluble in the background of Δatp12. In contrast, the yeast protein harboring the corresponding mutation, ScAtp12p(W103R), is soluble in the background of Δatp12 but not in the background of Δatp12Δfmc1, a strain that also lacks Fmc1p. Fmc1p is a yeast mitochondrial protein not found in higher eukaryotes. Tryptophan 94 (human) or 103 (yeast) is located in a positively charged region of Atp12p, and hence its mutation to arginine does not alter significantly the electrostatic properties of the protein. Instead, we provide evidence that the primary effect of the substitution is on the dynamic properties of Atp12p.
doi_str_mv 10.1074/jbc.M109.046920
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2823550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820810801</els_id><sourcerecordid>S0021925820810801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-2050dbecfd3686d70edce5aa00bb31188db4e9763dc93f35967463131f7a7ac23</originalsourceid><addsrcrecordid>eNp1kcuP0zAQxi0EYruFMzewuHFI1484ji9I1fIoUisQSwWcLMeZNF41cWWnXe1_j0MqXhK-WJr5fd-M5kPoGSULSmR-dVvZxYYStSB5oRh5gGaUlDzjgn57iGaEMJopJsoLdBnjLUkvV_QxuqBKcc4knaH2DTSud_0ODy3gT2Zo_Q56iC5i3_ysrY6d6fFyOFB2wF9V_hlvjoMZnO_xNo5Cg2-Mta0Jvru3ELGFACcXnQH8HUwc8MbXsH-CHjVmH-Hp-Z-j7bu3X65X2frj-w_Xy3VmBZNDxoggdQW2qXlRFrUkUFsQxhBSVZzSsqyrHJQseG0Vb7hQhcwLTjltpJHGMj5Hryffw7HqRnE_BLPXh-A6E-61N07_3eldq3f-pFnJuBAkGbyaDNp_ZKvlWo-1dERBipKfaGKvJtYGH2OA5peAEj0GpFNAegxITwElxfM_1_vNnxNJwMvzeLdr71wAXTlvW-jSgkIXOieJnKMXE9QYr80uuKi3N4xQTqhUkubjHDURkG59chB0tA56C3WytIOuvfvvjj8ArwK0Sw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Defining the Pathogenesis of the Human Atp12p W94R Mutation Using a Saccharomyces cerevisiae Yeast Model</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Meulemans, Ann ; Seneca, Sara ; Pribyl, Thomas ; Smet, Joel ; Alderweirldt, Valerie ; Waeytens, Anouk ; Lissens, Willy ; Van Coster, Rudy ; De Meirleir, Linda ; di Rago, Jean-Paul ; Gatti, Domenico L. ; Ackerman, Sharon H.</creator><creatorcontrib>Meulemans, Ann ; Seneca, Sara ; Pribyl, Thomas ; Smet, Joel ; Alderweirldt, Valerie ; Waeytens, Anouk ; Lissens, Willy ; Van Coster, Rudy ; De Meirleir, Linda ; di Rago, Jean-Paul ; Gatti, Domenico L. ; Ackerman, Sharon H.</creatorcontrib><description>Studies in yeast have shown that a deficiency in Atp12p prevents assembly of the extrinsic domain (F1) of complex V and renders cells unable to make ATP through oxidative phosphorylation. De Meirleir et al. (De Meirleir, L., Seneca, S., Lissens, W., De Clercq, I., Eyskens, F., Gerlo, E., Smet, J., and Van Coster, R. (2004) J. Med. Genet. 41, 120–124) have reported that a homozygous missense mutation in the gene for human Atp12p (HuAtp12p), which replaces Trp-94 with Arg, was linked to the death of a 14-month-old patient. We have investigated the impact of the pathogenic W94R mutation on Atp12p structure/function. Plasmid-borne wild type human Atp12p rescues the respiratory defect of a yeast ATP12 deletion mutant (Δatp12). The W94R mutation alters the protein at the most highly conserved position in the Pfam sequence and renders HuAtp12p insoluble in the background of Δatp12. In contrast, the yeast protein harboring the corresponding mutation, ScAtp12p(W103R), is soluble in the background of Δatp12 but not in the background of Δatp12Δfmc1, a strain that also lacks Fmc1p. Fmc1p is a yeast mitochondrial protein not found in higher eukaryotes. Tryptophan 94 (human) or 103 (yeast) is located in a positively charged region of Atp12p, and hence its mutation to arginine does not alter significantly the electrostatic properties of the protein. Instead, we provide evidence that the primary effect of the substitution is on the dynamic properties of Atp12p.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.046920</identifier><identifier>PMID: 19933271</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Substitution ; Arginine - genetics ; Arginine - metabolism ; Atp12p ; Bioenergetics ; Bioenergetics/ATP Synthase ; Blotting, Western ; Cells, Cultured ; Cellular Biology ; Chaperonins - chemistry ; Chaperonins - genetics ; Chaperonins - metabolism ; Diseases/Metabolic ; Electron Transport - genetics ; Fibroblasts - metabolism ; Fibroblasts - ultrastructure ; Genetic Complementation Test ; Humans ; Life Sciences ; Metabolism and Bioenergetics ; Microscopy, Electron ; Mitochondria ; Mitochondria - metabolism ; Mitochondria - ultrastructure ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Mitochondrial Proton-Translocating ATPases ; Models, Molecular ; Molecular Chaperones - genetics ; Molecular Chaperones - metabolism ; Mutation ; Protein Conformation ; Proton-Translocating ATPases - chemistry ; Proton-Translocating ATPases - genetics ; Proton-Translocating ATPases - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Solubility ; Static Electricity ; Tryptophan - genetics ; Tryptophan - metabolism ; Yeast</subject><ispartof>The Journal of biological chemistry, 2010-02, Vol.285 (6), p.4099-4109</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-2050dbecfd3686d70edce5aa00bb31188db4e9763dc93f35967463131f7a7ac23</citedby><cites>FETCH-LOGICAL-c527t-2050dbecfd3686d70edce5aa00bb31188db4e9763dc93f35967463131f7a7ac23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823550/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823550/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19933271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00450683$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Meulemans, Ann</creatorcontrib><creatorcontrib>Seneca, Sara</creatorcontrib><creatorcontrib>Pribyl, Thomas</creatorcontrib><creatorcontrib>Smet, Joel</creatorcontrib><creatorcontrib>Alderweirldt, Valerie</creatorcontrib><creatorcontrib>Waeytens, Anouk</creatorcontrib><creatorcontrib>Lissens, Willy</creatorcontrib><creatorcontrib>Van Coster, Rudy</creatorcontrib><creatorcontrib>De Meirleir, Linda</creatorcontrib><creatorcontrib>di Rago, Jean-Paul</creatorcontrib><creatorcontrib>Gatti, Domenico L.</creatorcontrib><creatorcontrib>Ackerman, Sharon H.</creatorcontrib><title>Defining the Pathogenesis of the Human Atp12p W94R Mutation Using a Saccharomyces cerevisiae Yeast Model</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Studies in yeast have shown that a deficiency in Atp12p prevents assembly of the extrinsic domain (F1) of complex V and renders cells unable to make ATP through oxidative phosphorylation. De Meirleir et al. (De Meirleir, L., Seneca, S., Lissens, W., De Clercq, I., Eyskens, F., Gerlo, E., Smet, J., and Van Coster, R. (2004) J. Med. Genet. 41, 120–124) have reported that a homozygous missense mutation in the gene for human Atp12p (HuAtp12p), which replaces Trp-94 with Arg, was linked to the death of a 14-month-old patient. We have investigated the impact of the pathogenic W94R mutation on Atp12p structure/function. Plasmid-borne wild type human Atp12p rescues the respiratory defect of a yeast ATP12 deletion mutant (Δatp12). The W94R mutation alters the protein at the most highly conserved position in the Pfam sequence and renders HuAtp12p insoluble in the background of Δatp12. In contrast, the yeast protein harboring the corresponding mutation, ScAtp12p(W103R), is soluble in the background of Δatp12 but not in the background of Δatp12Δfmc1, a strain that also lacks Fmc1p. Fmc1p is a yeast mitochondrial protein not found in higher eukaryotes. Tryptophan 94 (human) or 103 (yeast) is located in a positively charged region of Atp12p, and hence its mutation to arginine does not alter significantly the electrostatic properties of the protein. Instead, we provide evidence that the primary effect of the substitution is on the dynamic properties of Atp12p.</description><subject>Amino Acid Substitution</subject><subject>Arginine - genetics</subject><subject>Arginine - metabolism</subject><subject>Atp12p</subject><subject>Bioenergetics</subject><subject>Bioenergetics/ATP Synthase</subject><subject>Blotting, Western</subject><subject>Cells, Cultured</subject><subject>Cellular Biology</subject><subject>Chaperonins - chemistry</subject><subject>Chaperonins - genetics</subject><subject>Chaperonins - metabolism</subject><subject>Diseases/Metabolic</subject><subject>Electron Transport - genetics</subject><subject>Fibroblasts - metabolism</subject><subject>Fibroblasts - ultrastructure</subject><subject>Genetic Complementation Test</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Metabolism and Bioenergetics</subject><subject>Microscopy, Electron</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - ultrastructure</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Mitochondrial Proton-Translocating ATPases</subject><subject>Models, Molecular</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - metabolism</subject><subject>Mutation</subject><subject>Protein Conformation</subject><subject>Proton-Translocating ATPases - chemistry</subject><subject>Proton-Translocating ATPases - genetics</subject><subject>Proton-Translocating ATPases - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Solubility</subject><subject>Static Electricity</subject><subject>Tryptophan - genetics</subject><subject>Tryptophan - metabolism</subject><subject>Yeast</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcuP0zAQxi0EYruFMzewuHFI1484ji9I1fIoUisQSwWcLMeZNF41cWWnXe1_j0MqXhK-WJr5fd-M5kPoGSULSmR-dVvZxYYStSB5oRh5gGaUlDzjgn57iGaEMJopJsoLdBnjLUkvV_QxuqBKcc4knaH2DTSud_0ODy3gT2Zo_Q56iC5i3_ysrY6d6fFyOFB2wF9V_hlvjoMZnO_xNo5Cg2-Mta0Jvru3ELGFACcXnQH8HUwc8MbXsH-CHjVmH-Hp-Z-j7bu3X65X2frj-w_Xy3VmBZNDxoggdQW2qXlRFrUkUFsQxhBSVZzSsqyrHJQseG0Vb7hQhcwLTjltpJHGMj5Hryffw7HqRnE_BLPXh-A6E-61N07_3eldq3f-pFnJuBAkGbyaDNp_ZKvlWo-1dERBipKfaGKvJtYGH2OA5peAEj0GpFNAegxITwElxfM_1_vNnxNJwMvzeLdr71wAXTlvW-jSgkIXOieJnKMXE9QYr80uuKi3N4xQTqhUkubjHDURkG59chB0tA56C3WytIOuvfvvjj8ArwK0Sw</recordid><startdate>20100205</startdate><enddate>20100205</enddate><creator>Meulemans, Ann</creator><creator>Seneca, Sara</creator><creator>Pribyl, Thomas</creator><creator>Smet, Joel</creator><creator>Alderweirldt, Valerie</creator><creator>Waeytens, Anouk</creator><creator>Lissens, Willy</creator><creator>Van Coster, Rudy</creator><creator>De Meirleir, Linda</creator><creator>di Rago, Jean-Paul</creator><creator>Gatti, Domenico L.</creator><creator>Ackerman, Sharon H.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20100205</creationdate><title>Defining the Pathogenesis of the Human Atp12p W94R Mutation Using a Saccharomyces cerevisiae Yeast Model</title><author>Meulemans, Ann ; Seneca, Sara ; Pribyl, Thomas ; Smet, Joel ; Alderweirldt, Valerie ; Waeytens, Anouk ; Lissens, Willy ; Van Coster, Rudy ; De Meirleir, Linda ; di Rago, Jean-Paul ; Gatti, Domenico L. ; Ackerman, Sharon H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-2050dbecfd3686d70edce5aa00bb31188db4e9763dc93f35967463131f7a7ac23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino Acid Substitution</topic><topic>Arginine - genetics</topic><topic>Arginine - metabolism</topic><topic>Atp12p</topic><topic>Bioenergetics</topic><topic>Bioenergetics/ATP Synthase</topic><topic>Blotting, Western</topic><topic>Cells, Cultured</topic><topic>Cellular Biology</topic><topic>Chaperonins - chemistry</topic><topic>Chaperonins - genetics</topic><topic>Chaperonins - metabolism</topic><topic>Diseases/Metabolic</topic><topic>Electron Transport - genetics</topic><topic>Fibroblasts - metabolism</topic><topic>Fibroblasts - ultrastructure</topic><topic>Genetic Complementation Test</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Metabolism and Bioenergetics</topic><topic>Microscopy, Electron</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - ultrastructure</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Mitochondrial Proton-Translocating ATPases</topic><topic>Models, Molecular</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - metabolism</topic><topic>Mutation</topic><topic>Protein Conformation</topic><topic>Proton-Translocating ATPases - chemistry</topic><topic>Proton-Translocating ATPases - genetics</topic><topic>Proton-Translocating ATPases - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Solubility</topic><topic>Static Electricity</topic><topic>Tryptophan - genetics</topic><topic>Tryptophan - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meulemans, Ann</creatorcontrib><creatorcontrib>Seneca, Sara</creatorcontrib><creatorcontrib>Pribyl, Thomas</creatorcontrib><creatorcontrib>Smet, Joel</creatorcontrib><creatorcontrib>Alderweirldt, Valerie</creatorcontrib><creatorcontrib>Waeytens, Anouk</creatorcontrib><creatorcontrib>Lissens, Willy</creatorcontrib><creatorcontrib>Van Coster, Rudy</creatorcontrib><creatorcontrib>De Meirleir, Linda</creatorcontrib><creatorcontrib>di Rago, Jean-Paul</creatorcontrib><creatorcontrib>Gatti, Domenico L.</creatorcontrib><creatorcontrib>Ackerman, Sharon H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meulemans, Ann</au><au>Seneca, Sara</au><au>Pribyl, Thomas</au><au>Smet, Joel</au><au>Alderweirldt, Valerie</au><au>Waeytens, Anouk</au><au>Lissens, Willy</au><au>Van Coster, Rudy</au><au>De Meirleir, Linda</au><au>di Rago, Jean-Paul</au><au>Gatti, Domenico L.</au><au>Ackerman, Sharon H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining the Pathogenesis of the Human Atp12p W94R Mutation Using a Saccharomyces cerevisiae Yeast Model</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-02-05</date><risdate>2010</risdate><volume>285</volume><issue>6</issue><spage>4099</spage><epage>4109</epage><pages>4099-4109</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Studies in yeast have shown that a deficiency in Atp12p prevents assembly of the extrinsic domain (F1) of complex V and renders cells unable to make ATP through oxidative phosphorylation. De Meirleir et al. (De Meirleir, L., Seneca, S., Lissens, W., De Clercq, I., Eyskens, F., Gerlo, E., Smet, J., and Van Coster, R. (2004) J. Med. Genet. 41, 120–124) have reported that a homozygous missense mutation in the gene for human Atp12p (HuAtp12p), which replaces Trp-94 with Arg, was linked to the death of a 14-month-old patient. We have investigated the impact of the pathogenic W94R mutation on Atp12p structure/function. Plasmid-borne wild type human Atp12p rescues the respiratory defect of a yeast ATP12 deletion mutant (Δatp12). The W94R mutation alters the protein at the most highly conserved position in the Pfam sequence and renders HuAtp12p insoluble in the background of Δatp12. In contrast, the yeast protein harboring the corresponding mutation, ScAtp12p(W103R), is soluble in the background of Δatp12 but not in the background of Δatp12Δfmc1, a strain that also lacks Fmc1p. Fmc1p is a yeast mitochondrial protein not found in higher eukaryotes. Tryptophan 94 (human) or 103 (yeast) is located in a positively charged region of Atp12p, and hence its mutation to arginine does not alter significantly the electrostatic properties of the protein. Instead, we provide evidence that the primary effect of the substitution is on the dynamic properties of Atp12p.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19933271</pmid><doi>10.1074/jbc.M109.046920</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2010-02, Vol.285 (6), p.4099-4109
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2823550
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Amino Acid Substitution
Arginine - genetics
Arginine - metabolism
Atp12p
Bioenergetics
Bioenergetics/ATP Synthase
Blotting, Western
Cells, Cultured
Cellular Biology
Chaperonins - chemistry
Chaperonins - genetics
Chaperonins - metabolism
Diseases/Metabolic
Electron Transport - genetics
Fibroblasts - metabolism
Fibroblasts - ultrastructure
Genetic Complementation Test
Humans
Life Sciences
Metabolism and Bioenergetics
Microscopy, Electron
Mitochondria
Mitochondria - metabolism
Mitochondria - ultrastructure
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Mitochondrial Proton-Translocating ATPases
Models, Molecular
Molecular Chaperones - genetics
Molecular Chaperones - metabolism
Mutation
Protein Conformation
Proton-Translocating ATPases - chemistry
Proton-Translocating ATPases - genetics
Proton-Translocating ATPases - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Solubility
Static Electricity
Tryptophan - genetics
Tryptophan - metabolism
Yeast
title Defining the Pathogenesis of the Human Atp12p W94R Mutation Using a Saccharomyces cerevisiae Yeast Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20the%20Pathogenesis%20of%20the%20Human%20Atp12p%20W94R%20Mutation%20Using%20a%20Saccharomyces%20cerevisiae%20Yeast%20Model&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Meulemans,%20Ann&rft.date=2010-02-05&rft.volume=285&rft.issue=6&rft.spage=4099&rft.epage=4109&rft.pages=4099-4109&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.046920&rft_dat=%3Celsevier_pubme%3ES0021925820810801%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19933271&rft_els_id=S0021925820810801&rfr_iscdi=true