Structural Basis for the Interaction between Yeast Spt-Ada-Gcn5 Acetyltransferase (SAGA) Complex Components Sgf11 and Sus1

Sus1 is a central component of the yeast gene gating machinery, the process by which actively transcribing genes such as GAL1 become associated with nuclear pore complexes. Sus1 is a component of both the SAGA transcriptional co-activator complex and the TREX-2 complex that binds to nuclear pore com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2010-02, Vol.285 (6), p.3850-3856
Hauptverfasser: Ellisdon, Andrew M., Jani, Divyang, Köhler, Alwin, Hurt, Ed, Stewart, Murray
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3856
container_issue 6
container_start_page 3850
container_title The Journal of biological chemistry
container_volume 285
creator Ellisdon, Andrew M.
Jani, Divyang
Köhler, Alwin
Hurt, Ed
Stewart, Murray
description Sus1 is a central component of the yeast gene gating machinery, the process by which actively transcribing genes such as GAL1 become associated with nuclear pore complexes. Sus1 is a component of both the SAGA transcriptional co-activator complex and the TREX-2 complex that binds to nuclear pore complexes. TREX-2 contains two Sus1 chains that have an articulated helical hairpin fold, enabling them to wrap around an extended α-helix in Sac3, following a helical hydrophobic stripe. In SAGA, Sus1 binds to Sgf11 and has been proposed to provide a link between SAGA and TREX-2. We present here the crystal structure of the complex between Sus1 and the N-terminal region of Sgf11 that forms an extended α-helix around which Sus1 wraps in a manner that shares some similarities with the Sus1-Sac3 interface in TREX-2. However, the Sus1-binding site on Sgf11 is somewhat shorter than on Sac3 and is based on a narrower hydrophobic stripe. Engineered mutants that disrupt the Sgf11-Sus1 interaction in vitro confirm the importance of the hydrophobic helical stripe in molecular recognition. Helix α1 of the Sus1-articulated hairpin does not bind directly to Sgf11 and adopts a wide range of conformations within and between crystal forms, consistent with the presence of a flexible hinge and also with results from previous extensive mutagenesis studies (Klöckner, C., Schneider, M., Lutz, S., Jani, D., Kressler, D., Stewart, M., Hurt, E., and Köhler, A. (2009) J. Biol. Chem. 284, 12049–12056). A single Sus1 molecule cannot bind Sgf11 and Sac3 simultaneously and this, combined with the structure of the Sus1-Sgf11 complex, indicates that Sus1 forms separate subcomplexes within SAGA and TREX-2.
doi_str_mv 10.1074/jbc.M109.070839
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2823527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20007317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-635463f33154e3d40dc305cfee68b727b8364a9f64e081594fd2252f985fa05a3</originalsourceid><addsrcrecordid>eNpVUU1v1DAQtaoiuhTOvSGrJzhk68_EuSCFFWwrFXFIK8HJcpzxJtWus7K9_eDX47KlaufyRpo3bz4eQieUzCmpxNlNZ-c_KKnnpCKK1wdoRjMWXNJfh2hGCKNFzaQ6Qu9ivCE5RE3foiOWs4rTaob-tCnsbNoFs8ZfTRwjdlPAaQB84RMEY9M4edxBugPw-DeYmHC7TUXTm2JpvcSNhfSwTsH46DI_Av7UNsvmM15Mm-0a7v_h5MGniNuVoxQb3-N2F-l79MaZdYQPT3iMrr9_u1qcF5c_lxeL5rKwQslUlFyKkjvOqRTAe0F6y4m0DqBUXcWqTvFSmNqVAoiishauZ0wyVyvpDJGGH6Mve93trttAb_Mq-Vq9DePGhAc9mVG_rvhx0KvpVjPFuGRVFjjbC9gwxRjAPfdSoh9t0NkG_WiD3tuQOz6-HPnM___3TDjdE4ZxNdyNAXQ3TnaATR4qdam5koT_BbIij9U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural Basis for the Interaction between Yeast Spt-Ada-Gcn5 Acetyltransferase (SAGA) Complex Components Sgf11 and Sus1</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Ellisdon, Andrew M. ; Jani, Divyang ; Köhler, Alwin ; Hurt, Ed ; Stewart, Murray</creator><creatorcontrib>Ellisdon, Andrew M. ; Jani, Divyang ; Köhler, Alwin ; Hurt, Ed ; Stewart, Murray</creatorcontrib><description>Sus1 is a central component of the yeast gene gating machinery, the process by which actively transcribing genes such as GAL1 become associated with nuclear pore complexes. Sus1 is a component of both the SAGA transcriptional co-activator complex and the TREX-2 complex that binds to nuclear pore complexes. TREX-2 contains two Sus1 chains that have an articulated helical hairpin fold, enabling them to wrap around an extended α-helix in Sac3, following a helical hydrophobic stripe. In SAGA, Sus1 binds to Sgf11 and has been proposed to provide a link between SAGA and TREX-2. We present here the crystal structure of the complex between Sus1 and the N-terminal region of Sgf11 that forms an extended α-helix around which Sus1 wraps in a manner that shares some similarities with the Sus1-Sac3 interface in TREX-2. However, the Sus1-binding site on Sgf11 is somewhat shorter than on Sac3 and is based on a narrower hydrophobic stripe. Engineered mutants that disrupt the Sgf11-Sus1 interaction in vitro confirm the importance of the hydrophobic helical stripe in molecular recognition. Helix α1 of the Sus1-articulated hairpin does not bind directly to Sgf11 and adopts a wide range of conformations within and between crystal forms, consistent with the presence of a flexible hinge and also with results from previous extensive mutagenesis studies (Klöckner, C., Schneider, M., Lutz, S., Jani, D., Kressler, D., Stewart, M., Hurt, E., and Köhler, A. (2009) J. Biol. Chem. 284, 12049–12056). A single Sus1 molecule cannot bind Sgf11 and Sac3 simultaneously and this, combined with the structure of the Sus1-Sgf11 complex, indicates that Sus1 forms separate subcomplexes within SAGA and TREX-2.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.070839</identifier><identifier>PMID: 20007317</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Acetyltransferases - chemistry ; Acetyltransferases - genetics ; Acetyltransferases - metabolism ; Amino Acid Sequence ; Binding Sites ; Binding, Competitive ; Crystallography, X-Ray ; Electrophoresis, Polyacrylamide Gel ; Exodeoxyribonucleases - chemistry ; Exodeoxyribonucleases - genetics ; Exodeoxyribonucleases - metabolism ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nuclear Proteins - chemistry ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Nucleocytoplasmic Transport Proteins - genetics ; Nucleocytoplasmic Transport Proteins - metabolism ; Porins - genetics ; Porins - metabolism ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA-Binding Proteins - chemistry ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; RNA: Processing and Catalysis ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sequence Homology, Amino Acid ; Structure-Activity Relationship ; Trans-Activators - chemistry ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription Factors - chemistry ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>The Journal of biological chemistry, 2010-02, Vol.285 (6), p.3850-3856</ispartof><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-635463f33154e3d40dc305cfee68b727b8364a9f64e081594fd2252f985fa05a3</citedby><cites>FETCH-LOGICAL-c485t-635463f33154e3d40dc305cfee68b727b8364a9f64e081594fd2252f985fa05a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823527/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823527/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20007317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ellisdon, Andrew M.</creatorcontrib><creatorcontrib>Jani, Divyang</creatorcontrib><creatorcontrib>Köhler, Alwin</creatorcontrib><creatorcontrib>Hurt, Ed</creatorcontrib><creatorcontrib>Stewart, Murray</creatorcontrib><title>Structural Basis for the Interaction between Yeast Spt-Ada-Gcn5 Acetyltransferase (SAGA) Complex Components Sgf11 and Sus1</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Sus1 is a central component of the yeast gene gating machinery, the process by which actively transcribing genes such as GAL1 become associated with nuclear pore complexes. Sus1 is a component of both the SAGA transcriptional co-activator complex and the TREX-2 complex that binds to nuclear pore complexes. TREX-2 contains two Sus1 chains that have an articulated helical hairpin fold, enabling them to wrap around an extended α-helix in Sac3, following a helical hydrophobic stripe. In SAGA, Sus1 binds to Sgf11 and has been proposed to provide a link between SAGA and TREX-2. We present here the crystal structure of the complex between Sus1 and the N-terminal region of Sgf11 that forms an extended α-helix around which Sus1 wraps in a manner that shares some similarities with the Sus1-Sac3 interface in TREX-2. However, the Sus1-binding site on Sgf11 is somewhat shorter than on Sac3 and is based on a narrower hydrophobic stripe. Engineered mutants that disrupt the Sgf11-Sus1 interaction in vitro confirm the importance of the hydrophobic helical stripe in molecular recognition. Helix α1 of the Sus1-articulated hairpin does not bind directly to Sgf11 and adopts a wide range of conformations within and between crystal forms, consistent with the presence of a flexible hinge and also with results from previous extensive mutagenesis studies (Klöckner, C., Schneider, M., Lutz, S., Jani, D., Kressler, D., Stewart, M., Hurt, E., and Köhler, A. (2009) J. Biol. Chem. 284, 12049–12056). A single Sus1 molecule cannot bind Sgf11 and Sac3 simultaneously and this, combined with the structure of the Sus1-Sgf11 complex, indicates that Sus1 forms separate subcomplexes within SAGA and TREX-2.</description><subject>Acetyltransferases - chemistry</subject><subject>Acetyltransferases - genetics</subject><subject>Acetyltransferases - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Binding, Competitive</subject><subject>Crystallography, X-Ray</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Exodeoxyribonucleases - chemistry</subject><subject>Exodeoxyribonucleases - genetics</subject><subject>Exodeoxyribonucleases - metabolism</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Nuclear Proteins - chemistry</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Nucleocytoplasmic Transport Proteins - genetics</subject><subject>Nucleocytoplasmic Transport Proteins - metabolism</subject><subject>Porins - genetics</subject><subject>Porins - metabolism</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>RNA-Binding Proteins - chemistry</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>RNA: Processing and Catalysis</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Structure-Activity Relationship</subject><subject>Trans-Activators - chemistry</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1v1DAQtaoiuhTOvSGrJzhk68_EuSCFFWwrFXFIK8HJcpzxJtWus7K9_eDX47KlaufyRpo3bz4eQieUzCmpxNlNZ-c_KKnnpCKK1wdoRjMWXNJfh2hGCKNFzaQ6Qu9ivCE5RE3foiOWs4rTaob-tCnsbNoFs8ZfTRwjdlPAaQB84RMEY9M4edxBugPw-DeYmHC7TUXTm2JpvcSNhfSwTsH46DI_Av7UNsvmM15Mm-0a7v_h5MGniNuVoxQb3-N2F-l79MaZdYQPT3iMrr9_u1qcF5c_lxeL5rKwQslUlFyKkjvOqRTAe0F6y4m0DqBUXcWqTvFSmNqVAoiishauZ0wyVyvpDJGGH6Mve93trttAb_Mq-Vq9DePGhAc9mVG_rvhx0KvpVjPFuGRVFjjbC9gwxRjAPfdSoh9t0NkG_WiD3tuQOz6-HPnM___3TDjdE4ZxNdyNAXQ3TnaATR4qdam5koT_BbIij9U</recordid><startdate>20100205</startdate><enddate>20100205</enddate><creator>Ellisdon, Andrew M.</creator><creator>Jani, Divyang</creator><creator>Köhler, Alwin</creator><creator>Hurt, Ed</creator><creator>Stewart, Murray</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20100205</creationdate><title>Structural Basis for the Interaction between Yeast Spt-Ada-Gcn5 Acetyltransferase (SAGA) Complex Components Sgf11 and Sus1</title><author>Ellisdon, Andrew M. ; Jani, Divyang ; Köhler, Alwin ; Hurt, Ed ; Stewart, Murray</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-635463f33154e3d40dc305cfee68b727b8364a9f64e081594fd2252f985fa05a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acetyltransferases - chemistry</topic><topic>Acetyltransferases - genetics</topic><topic>Acetyltransferases - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Binding, Competitive</topic><topic>Crystallography, X-Ray</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Exodeoxyribonucleases - chemistry</topic><topic>Exodeoxyribonucleases - genetics</topic><topic>Exodeoxyribonucleases - metabolism</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Nuclear Proteins - chemistry</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Nucleocytoplasmic Transport Proteins - genetics</topic><topic>Nucleocytoplasmic Transport Proteins - metabolism</topic><topic>Porins - genetics</topic><topic>Porins - metabolism</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>RNA-Binding Proteins - chemistry</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>RNA: Processing and Catalysis</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Structure-Activity Relationship</topic><topic>Trans-Activators - chemistry</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellisdon, Andrew M.</creatorcontrib><creatorcontrib>Jani, Divyang</creatorcontrib><creatorcontrib>Köhler, Alwin</creatorcontrib><creatorcontrib>Hurt, Ed</creatorcontrib><creatorcontrib>Stewart, Murray</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellisdon, Andrew M.</au><au>Jani, Divyang</au><au>Köhler, Alwin</au><au>Hurt, Ed</au><au>Stewart, Murray</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Basis for the Interaction between Yeast Spt-Ada-Gcn5 Acetyltransferase (SAGA) Complex Components Sgf11 and Sus1</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-02-05</date><risdate>2010</risdate><volume>285</volume><issue>6</issue><spage>3850</spage><epage>3856</epage><pages>3850-3856</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Sus1 is a central component of the yeast gene gating machinery, the process by which actively transcribing genes such as GAL1 become associated with nuclear pore complexes. Sus1 is a component of both the SAGA transcriptional co-activator complex and the TREX-2 complex that binds to nuclear pore complexes. TREX-2 contains two Sus1 chains that have an articulated helical hairpin fold, enabling them to wrap around an extended α-helix in Sac3, following a helical hydrophobic stripe. In SAGA, Sus1 binds to Sgf11 and has been proposed to provide a link between SAGA and TREX-2. We present here the crystal structure of the complex between Sus1 and the N-terminal region of Sgf11 that forms an extended α-helix around which Sus1 wraps in a manner that shares some similarities with the Sus1-Sac3 interface in TREX-2. However, the Sus1-binding site on Sgf11 is somewhat shorter than on Sac3 and is based on a narrower hydrophobic stripe. Engineered mutants that disrupt the Sgf11-Sus1 interaction in vitro confirm the importance of the hydrophobic helical stripe in molecular recognition. Helix α1 of the Sus1-articulated hairpin does not bind directly to Sgf11 and adopts a wide range of conformations within and between crystal forms, consistent with the presence of a flexible hinge and also with results from previous extensive mutagenesis studies (Klöckner, C., Schneider, M., Lutz, S., Jani, D., Kressler, D., Stewart, M., Hurt, E., and Köhler, A. (2009) J. Biol. Chem. 284, 12049–12056). A single Sus1 molecule cannot bind Sgf11 and Sac3 simultaneously and this, combined with the structure of the Sus1-Sgf11 complex, indicates that Sus1 forms separate subcomplexes within SAGA and TREX-2.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>20007317</pmid><doi>10.1074/jbc.M109.070839</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2010-02, Vol.285 (6), p.3850-3856
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2823527
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Acetyltransferases - chemistry
Acetyltransferases - genetics
Acetyltransferases - metabolism
Amino Acid Sequence
Binding Sites
Binding, Competitive
Crystallography, X-Ray
Electrophoresis, Polyacrylamide Gel
Exodeoxyribonucleases - chemistry
Exodeoxyribonucleases - genetics
Exodeoxyribonucleases - metabolism
Hydrophobic and Hydrophilic Interactions
Models, Molecular
Molecular Sequence Data
Mutation
Nuclear Proteins - chemistry
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Nucleocytoplasmic Transport Proteins - genetics
Nucleocytoplasmic Transport Proteins - metabolism
Porins - genetics
Porins - metabolism
Protein Binding
Protein Structure, Secondary
Protein Structure, Tertiary
RNA-Binding Proteins - chemistry
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
RNA: Processing and Catalysis
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Sequence Homology, Amino Acid
Structure-Activity Relationship
Trans-Activators - chemistry
Trans-Activators - genetics
Trans-Activators - metabolism
Transcription Factors - chemistry
Transcription Factors - genetics
Transcription Factors - metabolism
title Structural Basis for the Interaction between Yeast Spt-Ada-Gcn5 Acetyltransferase (SAGA) Complex Components Sgf11 and Sus1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A07%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Basis%20for%20the%20Interaction%20between%20Yeast%20Spt-Ada-Gcn5%20Acetyltransferase%20(SAGA)%20Complex%20Components%20Sgf11%20and%20Sus1&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Ellisdon,%20Andrew%20M.&rft.date=2010-02-05&rft.volume=285&rft.issue=6&rft.spage=3850&rft.epage=3856&rft.pages=3850-3856&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.070839&rft_dat=%3Cpubmed_cross%3E20007317%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/20007317&rfr_iscdi=true