Structural Basis for the Interaction between Yeast Spt-Ada-Gcn5 Acetyltransferase (SAGA) Complex Components Sgf11 and Sus1
Sus1 is a central component of the yeast gene gating machinery, the process by which actively transcribing genes such as GAL1 become associated with nuclear pore complexes. Sus1 is a component of both the SAGA transcriptional co-activator complex and the TREX-2 complex that binds to nuclear pore com...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2010-02, Vol.285 (6), p.3850-3856 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3856 |
---|---|
container_issue | 6 |
container_start_page | 3850 |
container_title | The Journal of biological chemistry |
container_volume | 285 |
creator | Ellisdon, Andrew M. Jani, Divyang Köhler, Alwin Hurt, Ed Stewart, Murray |
description | Sus1 is a central component of the yeast gene gating machinery, the process by which actively transcribing genes such as GAL1 become associated with nuclear pore complexes. Sus1 is a component of both the SAGA transcriptional co-activator complex
and the TREX-2 complex that binds to nuclear pore complexes. TREX-2 contains two Sus1 chains that have an articulated helical
hairpin fold, enabling them to wrap around an extended α-helix in Sac3, following a helical hydrophobic stripe. In SAGA, Sus1
binds to Sgf11 and has been proposed to provide a link between SAGA and TREX-2. We present here the crystal structure of the
complex between Sus1 and the N-terminal region of Sgf11 that forms an extended α-helix around which Sus1 wraps in a manner
that shares some similarities with the Sus1-Sac3 interface in TREX-2. However, the Sus1-binding site on Sgf11 is somewhat
shorter than on Sac3 and is based on a narrower hydrophobic stripe. Engineered mutants that disrupt the Sgf11-Sus1 interaction
in vitro confirm the importance of the hydrophobic helical stripe in molecular recognition. Helix α1 of the Sus1-articulated hairpin
does not bind directly to Sgf11 and adopts a wide range of conformations within and between crystal forms, consistent with
the presence of a flexible hinge and also with results from previous extensive mutagenesis studies (Klöckner, C., Schneider,
M., Lutz, S., Jani, D., Kressler, D., Stewart, M., Hurt, E., and Köhler, A. (2009) J. Biol. Chem. 284, 12049â12056). A single Sus1 molecule cannot bind Sgf11 and Sac3 simultaneously and this, combined with the structure
of the Sus1-Sgf11 complex, indicates that Sus1 forms separate subcomplexes within SAGA and TREX-2. |
doi_str_mv | 10.1074/jbc.M109.070839 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2823527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20007317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-635463f33154e3d40dc305cfee68b727b8364a9f64e081594fd2252f985fa05a3</originalsourceid><addsrcrecordid>eNpVUU1v1DAQtaoiuhTOvSGrJzhk68_EuSCFFWwrFXFIK8HJcpzxJtWus7K9_eDX47KlaufyRpo3bz4eQieUzCmpxNlNZ-c_KKnnpCKK1wdoRjMWXNJfh2hGCKNFzaQ6Qu9ivCE5RE3foiOWs4rTaob-tCnsbNoFs8ZfTRwjdlPAaQB84RMEY9M4edxBugPw-DeYmHC7TUXTm2JpvcSNhfSwTsH46DI_Av7UNsvmM15Mm-0a7v_h5MGniNuVoxQb3-N2F-l79MaZdYQPT3iMrr9_u1qcF5c_lxeL5rKwQslUlFyKkjvOqRTAe0F6y4m0DqBUXcWqTvFSmNqVAoiishauZ0wyVyvpDJGGH6Mve93trttAb_Mq-Vq9DePGhAc9mVG_rvhx0KvpVjPFuGRVFjjbC9gwxRjAPfdSoh9t0NkG_WiD3tuQOz6-HPnM___3TDjdE4ZxNdyNAXQ3TnaATR4qdam5koT_BbIij9U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural Basis for the Interaction between Yeast Spt-Ada-Gcn5 Acetyltransferase (SAGA) Complex Components Sgf11 and Sus1</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Ellisdon, Andrew M. ; Jani, Divyang ; Köhler, Alwin ; Hurt, Ed ; Stewart, Murray</creator><creatorcontrib>Ellisdon, Andrew M. ; Jani, Divyang ; Köhler, Alwin ; Hurt, Ed ; Stewart, Murray</creatorcontrib><description>Sus1 is a central component of the yeast gene gating machinery, the process by which actively transcribing genes such as GAL1 become associated with nuclear pore complexes. Sus1 is a component of both the SAGA transcriptional co-activator complex
and the TREX-2 complex that binds to nuclear pore complexes. TREX-2 contains two Sus1 chains that have an articulated helical
hairpin fold, enabling them to wrap around an extended α-helix in Sac3, following a helical hydrophobic stripe. In SAGA, Sus1
binds to Sgf11 and has been proposed to provide a link between SAGA and TREX-2. We present here the crystal structure of the
complex between Sus1 and the N-terminal region of Sgf11 that forms an extended α-helix around which Sus1 wraps in a manner
that shares some similarities with the Sus1-Sac3 interface in TREX-2. However, the Sus1-binding site on Sgf11 is somewhat
shorter than on Sac3 and is based on a narrower hydrophobic stripe. Engineered mutants that disrupt the Sgf11-Sus1 interaction
in vitro confirm the importance of the hydrophobic helical stripe in molecular recognition. Helix α1 of the Sus1-articulated hairpin
does not bind directly to Sgf11 and adopts a wide range of conformations within and between crystal forms, consistent with
the presence of a flexible hinge and also with results from previous extensive mutagenesis studies (Klöckner, C., Schneider,
M., Lutz, S., Jani, D., Kressler, D., Stewart, M., Hurt, E., and Köhler, A. (2009) J. Biol. Chem. 284, 12049â12056). A single Sus1 molecule cannot bind Sgf11 and Sac3 simultaneously and this, combined with the structure
of the Sus1-Sgf11 complex, indicates that Sus1 forms separate subcomplexes within SAGA and TREX-2.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.070839</identifier><identifier>PMID: 20007317</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Acetyltransferases - chemistry ; Acetyltransferases - genetics ; Acetyltransferases - metabolism ; Amino Acid Sequence ; Binding Sites ; Binding, Competitive ; Crystallography, X-Ray ; Electrophoresis, Polyacrylamide Gel ; Exodeoxyribonucleases - chemistry ; Exodeoxyribonucleases - genetics ; Exodeoxyribonucleases - metabolism ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nuclear Proteins - chemistry ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Nucleocytoplasmic Transport Proteins - genetics ; Nucleocytoplasmic Transport Proteins - metabolism ; Porins - genetics ; Porins - metabolism ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA-Binding Proteins - chemistry ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; RNA: Processing and Catalysis ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sequence Homology, Amino Acid ; Structure-Activity Relationship ; Trans-Activators - chemistry ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription Factors - chemistry ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>The Journal of biological chemistry, 2010-02, Vol.285 (6), p.3850-3856</ispartof><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-635463f33154e3d40dc305cfee68b727b8364a9f64e081594fd2252f985fa05a3</citedby><cites>FETCH-LOGICAL-c485t-635463f33154e3d40dc305cfee68b727b8364a9f64e081594fd2252f985fa05a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823527/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823527/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20007317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ellisdon, Andrew M.</creatorcontrib><creatorcontrib>Jani, Divyang</creatorcontrib><creatorcontrib>Köhler, Alwin</creatorcontrib><creatorcontrib>Hurt, Ed</creatorcontrib><creatorcontrib>Stewart, Murray</creatorcontrib><title>Structural Basis for the Interaction between Yeast Spt-Ada-Gcn5 Acetyltransferase (SAGA) Complex Components Sgf11 and Sus1</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Sus1 is a central component of the yeast gene gating machinery, the process by which actively transcribing genes such as GAL1 become associated with nuclear pore complexes. Sus1 is a component of both the SAGA transcriptional co-activator complex
and the TREX-2 complex that binds to nuclear pore complexes. TREX-2 contains two Sus1 chains that have an articulated helical
hairpin fold, enabling them to wrap around an extended α-helix in Sac3, following a helical hydrophobic stripe. In SAGA, Sus1
binds to Sgf11 and has been proposed to provide a link between SAGA and TREX-2. We present here the crystal structure of the
complex between Sus1 and the N-terminal region of Sgf11 that forms an extended α-helix around which Sus1 wraps in a manner
that shares some similarities with the Sus1-Sac3 interface in TREX-2. However, the Sus1-binding site on Sgf11 is somewhat
shorter than on Sac3 and is based on a narrower hydrophobic stripe. Engineered mutants that disrupt the Sgf11-Sus1 interaction
in vitro confirm the importance of the hydrophobic helical stripe in molecular recognition. Helix α1 of the Sus1-articulated hairpin
does not bind directly to Sgf11 and adopts a wide range of conformations within and between crystal forms, consistent with
the presence of a flexible hinge and also with results from previous extensive mutagenesis studies (Klöckner, C., Schneider,
M., Lutz, S., Jani, D., Kressler, D., Stewart, M., Hurt, E., and Köhler, A. (2009) J. Biol. Chem. 284, 12049â12056). A single Sus1 molecule cannot bind Sgf11 and Sac3 simultaneously and this, combined with the structure
of the Sus1-Sgf11 complex, indicates that Sus1 forms separate subcomplexes within SAGA and TREX-2.</description><subject>Acetyltransferases - chemistry</subject><subject>Acetyltransferases - genetics</subject><subject>Acetyltransferases - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Binding, Competitive</subject><subject>Crystallography, X-Ray</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Exodeoxyribonucleases - chemistry</subject><subject>Exodeoxyribonucleases - genetics</subject><subject>Exodeoxyribonucleases - metabolism</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Nuclear Proteins - chemistry</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Nucleocytoplasmic Transport Proteins - genetics</subject><subject>Nucleocytoplasmic Transport Proteins - metabolism</subject><subject>Porins - genetics</subject><subject>Porins - metabolism</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>RNA-Binding Proteins - chemistry</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>RNA: Processing and Catalysis</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Structure-Activity Relationship</subject><subject>Trans-Activators - chemistry</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1v1DAQtaoiuhTOvSGrJzhk68_EuSCFFWwrFXFIK8HJcpzxJtWus7K9_eDX47KlaufyRpo3bz4eQieUzCmpxNlNZ-c_KKnnpCKK1wdoRjMWXNJfh2hGCKNFzaQ6Qu9ivCE5RE3foiOWs4rTaob-tCnsbNoFs8ZfTRwjdlPAaQB84RMEY9M4edxBugPw-DeYmHC7TUXTm2JpvcSNhfSwTsH46DI_Av7UNsvmM15Mm-0a7v_h5MGniNuVoxQb3-N2F-l79MaZdYQPT3iMrr9_u1qcF5c_lxeL5rKwQslUlFyKkjvOqRTAe0F6y4m0DqBUXcWqTvFSmNqVAoiishauZ0wyVyvpDJGGH6Mve93trttAb_Mq-Vq9DePGhAc9mVG_rvhx0KvpVjPFuGRVFjjbC9gwxRjAPfdSoh9t0NkG_WiD3tuQOz6-HPnM___3TDjdE4ZxNdyNAXQ3TnaATR4qdam5koT_BbIij9U</recordid><startdate>20100205</startdate><enddate>20100205</enddate><creator>Ellisdon, Andrew M.</creator><creator>Jani, Divyang</creator><creator>Köhler, Alwin</creator><creator>Hurt, Ed</creator><creator>Stewart, Murray</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20100205</creationdate><title>Structural Basis for the Interaction between Yeast Spt-Ada-Gcn5 Acetyltransferase (SAGA) Complex Components Sgf11 and Sus1</title><author>Ellisdon, Andrew M. ; Jani, Divyang ; Köhler, Alwin ; Hurt, Ed ; Stewart, Murray</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-635463f33154e3d40dc305cfee68b727b8364a9f64e081594fd2252f985fa05a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acetyltransferases - chemistry</topic><topic>Acetyltransferases - genetics</topic><topic>Acetyltransferases - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Binding, Competitive</topic><topic>Crystallography, X-Ray</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Exodeoxyribonucleases - chemistry</topic><topic>Exodeoxyribonucleases - genetics</topic><topic>Exodeoxyribonucleases - metabolism</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Nuclear Proteins - chemistry</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Nucleocytoplasmic Transport Proteins - genetics</topic><topic>Nucleocytoplasmic Transport Proteins - metabolism</topic><topic>Porins - genetics</topic><topic>Porins - metabolism</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>RNA-Binding Proteins - chemistry</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>RNA: Processing and Catalysis</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Structure-Activity Relationship</topic><topic>Trans-Activators - chemistry</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellisdon, Andrew M.</creatorcontrib><creatorcontrib>Jani, Divyang</creatorcontrib><creatorcontrib>Köhler, Alwin</creatorcontrib><creatorcontrib>Hurt, Ed</creatorcontrib><creatorcontrib>Stewart, Murray</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellisdon, Andrew M.</au><au>Jani, Divyang</au><au>Köhler, Alwin</au><au>Hurt, Ed</au><au>Stewart, Murray</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Basis for the Interaction between Yeast Spt-Ada-Gcn5 Acetyltransferase (SAGA) Complex Components Sgf11 and Sus1</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-02-05</date><risdate>2010</risdate><volume>285</volume><issue>6</issue><spage>3850</spage><epage>3856</epage><pages>3850-3856</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Sus1 is a central component of the yeast gene gating machinery, the process by which actively transcribing genes such as GAL1 become associated with nuclear pore complexes. Sus1 is a component of both the SAGA transcriptional co-activator complex
and the TREX-2 complex that binds to nuclear pore complexes. TREX-2 contains two Sus1 chains that have an articulated helical
hairpin fold, enabling them to wrap around an extended α-helix in Sac3, following a helical hydrophobic stripe. In SAGA, Sus1
binds to Sgf11 and has been proposed to provide a link between SAGA and TREX-2. We present here the crystal structure of the
complex between Sus1 and the N-terminal region of Sgf11 that forms an extended α-helix around which Sus1 wraps in a manner
that shares some similarities with the Sus1-Sac3 interface in TREX-2. However, the Sus1-binding site on Sgf11 is somewhat
shorter than on Sac3 and is based on a narrower hydrophobic stripe. Engineered mutants that disrupt the Sgf11-Sus1 interaction
in vitro confirm the importance of the hydrophobic helical stripe in molecular recognition. Helix α1 of the Sus1-articulated hairpin
does not bind directly to Sgf11 and adopts a wide range of conformations within and between crystal forms, consistent with
the presence of a flexible hinge and also with results from previous extensive mutagenesis studies (Klöckner, C., Schneider,
M., Lutz, S., Jani, D., Kressler, D., Stewart, M., Hurt, E., and Köhler, A. (2009) J. Biol. Chem. 284, 12049â12056). A single Sus1 molecule cannot bind Sgf11 and Sac3 simultaneously and this, combined with the structure
of the Sus1-Sgf11 complex, indicates that Sus1 forms separate subcomplexes within SAGA and TREX-2.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>20007317</pmid><doi>10.1074/jbc.M109.070839</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2010-02, Vol.285 (6), p.3850-3856 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2823527 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Acetyltransferases - chemistry Acetyltransferases - genetics Acetyltransferases - metabolism Amino Acid Sequence Binding Sites Binding, Competitive Crystallography, X-Ray Electrophoresis, Polyacrylamide Gel Exodeoxyribonucleases - chemistry Exodeoxyribonucleases - genetics Exodeoxyribonucleases - metabolism Hydrophobic and Hydrophilic Interactions Models, Molecular Molecular Sequence Data Mutation Nuclear Proteins - chemistry Nuclear Proteins - genetics Nuclear Proteins - metabolism Nucleocytoplasmic Transport Proteins - genetics Nucleocytoplasmic Transport Proteins - metabolism Porins - genetics Porins - metabolism Protein Binding Protein Structure, Secondary Protein Structure, Tertiary RNA-Binding Proteins - chemistry RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism RNA: Processing and Catalysis Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Sequence Homology, Amino Acid Structure-Activity Relationship Trans-Activators - chemistry Trans-Activators - genetics Trans-Activators - metabolism Transcription Factors - chemistry Transcription Factors - genetics Transcription Factors - metabolism |
title | Structural Basis for the Interaction between Yeast Spt-Ada-Gcn5 Acetyltransferase (SAGA) Complex Components Sgf11 and Sus1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A07%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Basis%20for%20the%20Interaction%20between%20Yeast%20Spt-Ada-Gcn5%20Acetyltransferase%20(SAGA)%20Complex%20Components%20Sgf11%20and%20Sus1&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Ellisdon,%20Andrew%20M.&rft.date=2010-02-05&rft.volume=285&rft.issue=6&rft.spage=3850&rft.epage=3856&rft.pages=3850-3856&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.070839&rft_dat=%3Cpubmed_cross%3E20007317%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/20007317&rfr_iscdi=true |