Exogenous NAD Blocks Cardiac Hypertrophic Response via Activation of the SIRT3-LKB1-AMP-activated Kinase Pathway
Since the discovery of NAD-dependent deacetylases, sirtuins, it has been recognized that maintaining intracellular levels of NAD is crucial for the management of stress response of cells. Here we show that agonist-induced cardiac hypertrophy is associated with loss of intracellular levels of NAD, bu...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2010-01, Vol.285 (5), p.3133-3144 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since the discovery of NAD-dependent deacetylases, sirtuins, it has been recognized that maintaining intracellular levels of NAD is crucial for the management of stress response of cells. Here we show that agonist-induced cardiac hypertrophy is associated with loss of intracellular levels of NAD, but not exercise-induced physiologic hypertrophy. Exogenous addition of NAD was capable of maintaining intracellular levels of NAD and blocking the agonist-induced cardiac hypertrophic response in vitro as well as in vivo. NAD treatment blocked the activation of pro-hypertrophic Akt1 signaling, and augmented the activity of anti-hypertrophic LKB1-AMPK signaling in the heart, which prevented subsequent induction of mTOR-mediated protein synthesis. By using gene knock-out and transgenic mouse models of SIRT3 and SIRT1, we showed that the anti-hypertrophic effects of exogenous NAD are mediated through activation of SIRT3, but not SIRT1. SIRT3 deacetylates and activates LKB1, thus augmenting the activity of the LKB1-AMPK pathway. These results reveal a novel role of NAD as an inhibitor of cardiac hypertrophic signaling, and suggest that prevention of NAD depletion may be critical in the treatment of cardiac hypertrophy and heart failure. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M109.077271 |