Discrimination between Closely Related Cellular Metabolites by the SAM-I Riboswitch

The SAM-I riboswitch is a cis-acting element of genetic control found in bacterial mRNAs that specifically binds S-adenosylmethionine (SAM). We previously determined the 2.9-Å X-ray crystal structure of the effector-binding domain of this RNA element, revealing details of RNA–ligand recognition. To...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2010-02, Vol.396 (3), p.761-772
Hauptverfasser: Montange, Rebecca K., Mondragón, Estefanía, van Tyne, Daria, Garst, Andrew D., Ceres, Pablo, Batey, Robert T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 772
container_issue 3
container_start_page 761
container_title Journal of molecular biology
container_volume 396
creator Montange, Rebecca K.
Mondragón, Estefanía
van Tyne, Daria
Garst, Andrew D.
Ceres, Pablo
Batey, Robert T.
description The SAM-I riboswitch is a cis-acting element of genetic control found in bacterial mRNAs that specifically binds S-adenosylmethionine (SAM). We previously determined the 2.9-Å X-ray crystal structure of the effector-binding domain of this RNA element, revealing details of RNA–ligand recognition. To improve this structure, variations were made to the RNA sequence to alter lattice contacts, resulting in a 0.5-Å improvement in crystallographic resolution and allowing for a more accurate refinement of the crystallographic model. The basis for SAM specificity was addressed by a structural analysis of the RNA complexed to S-adenosylhomocysteine (SAH) and sinefungin and by measuring the affinity of SAM and SAH for a series of mutants using isothermal titration calorimetry. These data illustrate the importance of two universally conserved base pairs in the RNA that form electrostatic interactions with the positively charged sulfonium group of SAM, thereby providing a basis for discrimination between SAM and SAH.
doi_str_mv 10.1016/j.jmb.2009.12.007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2822714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283609014776</els_id><sourcerecordid>733701606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-92d696567fdefd1f643463a89230de2e7ca219f4be9feaef4601843cacc584d43</originalsourceid><addsrcrecordid>eNp9UctqGzEUFaWhcZN-QDdFdJPVTPWyRkOhENxXICGQtGuhke7UMrKUjuQE_301OA3tJist7jlH54HQW0paSqj8sGk326FlhPQtZS0h3Qu0oET1jZJcvUQLQhhrmOLyGL3OeUMIWXKhXqHjSiFSMrpAt599tpPf-miKTxEPUB4AIl6FlCHs8Q0EU8DhFYSwC2bCV1DMkIIvkPGwx2UN-Pb8qrnAN35I-cEXuz5FR6MJGd48vifo59cvP1bfm8vrbxer88vGiq4rTc-c7OVSdqOD0dFRCi4kN6pnnDhg0FnDaD-KAfoRDIxCEqoEt8bapRJO8BP06aB7txu24CzEMpmg72ocM-11Ml7_f4l-rX-le80UYx2dBd4fBFIuXmdbQ9m1TTGCLbo23Cu6rKCzx1-m9HsHuehtrazWYSKkXdYd510dg8iKpAeknVLOE4xPViiZ5aTe6DqYngfTlOk6WOW8-zfDE-PvQhXw8QCA2uS9h2n2CdGC89Ns0yX_jPwf77CnIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733701606</pqid></control><display><type>article</type><title>Discrimination between Closely Related Cellular Metabolites by the SAM-I Riboswitch</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Montange, Rebecca K. ; Mondragón, Estefanía ; van Tyne, Daria ; Garst, Andrew D. ; Ceres, Pablo ; Batey, Robert T.</creator><creatorcontrib>Montange, Rebecca K. ; Mondragón, Estefanía ; van Tyne, Daria ; Garst, Andrew D. ; Ceres, Pablo ; Batey, Robert T. ; Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><description>The SAM-I riboswitch is a cis-acting element of genetic control found in bacterial mRNAs that specifically binds S-adenosylmethionine (SAM). We previously determined the 2.9-Å X-ray crystal structure of the effector-binding domain of this RNA element, revealing details of RNA–ligand recognition. To improve this structure, variations were made to the RNA sequence to alter lattice contacts, resulting in a 0.5-Å improvement in crystallographic resolution and allowing for a more accurate refinement of the crystallographic model. The basis for SAM specificity was addressed by a structural analysis of the RNA complexed to S-adenosylhomocysteine (SAH) and sinefungin and by measuring the affinity of SAM and SAH for a series of mutants using isothermal titration calorimetry. These data illustrate the importance of two universally conserved base pairs in the RNA that form electrostatic interactions with the positively charged sulfonium group of SAM, thereby providing a basis for discrimination between SAM and SAH.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2009.12.007</identifier><identifier>PMID: 20006621</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adenosine - analogs &amp; derivatives ; Adenosine - metabolism ; AFFINITY ; Base Pairing ; BASIC BIOLOGICAL SCIENCES ; CALORIMETRY ; Conserved Sequence ; CRYSTAL STRUCTURE ; CRYSTALLOGRAPHY ; Crystallography, X-Ray ; ELECTROSTATICS ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; GENETIC CONTROL ; isothermal titration calorimetry ; Kinetics ; METABOLITES ; Models, Molecular ; MUTANTS ; Mutation ; national synchrotron light source ; non-protein-coding RNA ; Nucleic Acid Conformation ; RESOLUTION ; riboregulation ; RNA ; RNA, Bacterial - chemistry ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; RNA, Messenger - chemistry ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; S-Adenosylhomocysteine - metabolism ; S-adenosylmethionine ; S-Adenosylmethionine - metabolism ; SPECIFICITY ; TITRATION ; X-ray crystallography</subject><ispartof>Journal of molecular biology, 2010-02, Vol.396 (3), p.761-772</ispartof><rights>2009 Elsevier Ltd</rights><rights>Copyright (c) 2009. Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-92d696567fdefd1f643463a89230de2e7ca219f4be9feaef4601843cacc584d43</citedby><cites>FETCH-LOGICAL-c477t-92d696567fdefd1f643463a89230de2e7ca219f4be9feaef4601843cacc584d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022283609014776$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20006621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1019815$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Montange, Rebecca K.</creatorcontrib><creatorcontrib>Mondragón, Estefanía</creatorcontrib><creatorcontrib>van Tyne, Daria</creatorcontrib><creatorcontrib>Garst, Andrew D.</creatorcontrib><creatorcontrib>Ceres, Pablo</creatorcontrib><creatorcontrib>Batey, Robert T.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><title>Discrimination between Closely Related Cellular Metabolites by the SAM-I Riboswitch</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>The SAM-I riboswitch is a cis-acting element of genetic control found in bacterial mRNAs that specifically binds S-adenosylmethionine (SAM). We previously determined the 2.9-Å X-ray crystal structure of the effector-binding domain of this RNA element, revealing details of RNA–ligand recognition. To improve this structure, variations were made to the RNA sequence to alter lattice contacts, resulting in a 0.5-Å improvement in crystallographic resolution and allowing for a more accurate refinement of the crystallographic model. The basis for SAM specificity was addressed by a structural analysis of the RNA complexed to S-adenosylhomocysteine (SAH) and sinefungin and by measuring the affinity of SAM and SAH for a series of mutants using isothermal titration calorimetry. These data illustrate the importance of two universally conserved base pairs in the RNA that form electrostatic interactions with the positively charged sulfonium group of SAM, thereby providing a basis for discrimination between SAM and SAH.</description><subject>Adenosine - analogs &amp; derivatives</subject><subject>Adenosine - metabolism</subject><subject>AFFINITY</subject><subject>Base Pairing</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>CALORIMETRY</subject><subject>Conserved Sequence</subject><subject>CRYSTAL STRUCTURE</subject><subject>CRYSTALLOGRAPHY</subject><subject>Crystallography, X-Ray</subject><subject>ELECTROSTATICS</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>GENETIC CONTROL</subject><subject>isothermal titration calorimetry</subject><subject>Kinetics</subject><subject>METABOLITES</subject><subject>Models, Molecular</subject><subject>MUTANTS</subject><subject>Mutation</subject><subject>national synchrotron light source</subject><subject>non-protein-coding RNA</subject><subject>Nucleic Acid Conformation</subject><subject>RESOLUTION</subject><subject>riboregulation</subject><subject>RNA</subject><subject>RNA, Bacterial - chemistry</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>RNA, Messenger - chemistry</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>S-Adenosylhomocysteine - metabolism</subject><subject>S-adenosylmethionine</subject><subject>S-Adenosylmethionine - metabolism</subject><subject>SPECIFICITY</subject><subject>TITRATION</subject><subject>X-ray crystallography</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UctqGzEUFaWhcZN-QDdFdJPVTPWyRkOhENxXICGQtGuhke7UMrKUjuQE_301OA3tJist7jlH54HQW0paSqj8sGk326FlhPQtZS0h3Qu0oET1jZJcvUQLQhhrmOLyGL3OeUMIWXKhXqHjSiFSMrpAt599tpPf-miKTxEPUB4AIl6FlCHs8Q0EU8DhFYSwC2bCV1DMkIIvkPGwx2UN-Pb8qrnAN35I-cEXuz5FR6MJGd48vifo59cvP1bfm8vrbxer88vGiq4rTc-c7OVSdqOD0dFRCi4kN6pnnDhg0FnDaD-KAfoRDIxCEqoEt8bapRJO8BP06aB7txu24CzEMpmg72ocM-11Ml7_f4l-rX-le80UYx2dBd4fBFIuXmdbQ9m1TTGCLbo23Cu6rKCzx1-m9HsHuehtrazWYSKkXdYd510dg8iKpAeknVLOE4xPViiZ5aTe6DqYngfTlOk6WOW8-zfDE-PvQhXw8QCA2uS9h2n2CdGC89Ns0yX_jPwf77CnIA</recordid><startdate>20100226</startdate><enddate>20100226</enddate><creator>Montange, Rebecca K.</creator><creator>Mondragón, Estefanía</creator><creator>van Tyne, Daria</creator><creator>Garst, Andrew D.</creator><creator>Ceres, Pablo</creator><creator>Batey, Robert T.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20100226</creationdate><title>Discrimination between Closely Related Cellular Metabolites by the SAM-I Riboswitch</title><author>Montange, Rebecca K. ; Mondragón, Estefanía ; van Tyne, Daria ; Garst, Andrew D. ; Ceres, Pablo ; Batey, Robert T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-92d696567fdefd1f643463a89230de2e7ca219f4be9feaef4601843cacc584d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adenosine - analogs &amp; derivatives</topic><topic>Adenosine - metabolism</topic><topic>AFFINITY</topic><topic>Base Pairing</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>CALORIMETRY</topic><topic>Conserved Sequence</topic><topic>CRYSTAL STRUCTURE</topic><topic>CRYSTALLOGRAPHY</topic><topic>Crystallography, X-Ray</topic><topic>ELECTROSTATICS</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>GENETIC CONTROL</topic><topic>isothermal titration calorimetry</topic><topic>Kinetics</topic><topic>METABOLITES</topic><topic>Models, Molecular</topic><topic>MUTANTS</topic><topic>Mutation</topic><topic>national synchrotron light source</topic><topic>non-protein-coding RNA</topic><topic>Nucleic Acid Conformation</topic><topic>RESOLUTION</topic><topic>riboregulation</topic><topic>RNA</topic><topic>RNA, Bacterial - chemistry</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>RNA, Messenger - chemistry</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>S-Adenosylhomocysteine - metabolism</topic><topic>S-adenosylmethionine</topic><topic>S-Adenosylmethionine - metabolism</topic><topic>SPECIFICITY</topic><topic>TITRATION</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montange, Rebecca K.</creatorcontrib><creatorcontrib>Mondragón, Estefanía</creatorcontrib><creatorcontrib>van Tyne, Daria</creatorcontrib><creatorcontrib>Garst, Andrew D.</creatorcontrib><creatorcontrib>Ceres, Pablo</creatorcontrib><creatorcontrib>Batey, Robert T.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montange, Rebecca K.</au><au>Mondragón, Estefanía</au><au>van Tyne, Daria</au><au>Garst, Andrew D.</au><au>Ceres, Pablo</au><au>Batey, Robert T.</au><aucorp>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrimination between Closely Related Cellular Metabolites by the SAM-I Riboswitch</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2010-02-26</date><risdate>2010</risdate><volume>396</volume><issue>3</issue><spage>761</spage><epage>772</epage><pages>761-772</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>The SAM-I riboswitch is a cis-acting element of genetic control found in bacterial mRNAs that specifically binds S-adenosylmethionine (SAM). We previously determined the 2.9-Å X-ray crystal structure of the effector-binding domain of this RNA element, revealing details of RNA–ligand recognition. To improve this structure, variations were made to the RNA sequence to alter lattice contacts, resulting in a 0.5-Å improvement in crystallographic resolution and allowing for a more accurate refinement of the crystallographic model. The basis for SAM specificity was addressed by a structural analysis of the RNA complexed to S-adenosylhomocysteine (SAH) and sinefungin and by measuring the affinity of SAM and SAH for a series of mutants using isothermal titration calorimetry. These data illustrate the importance of two universally conserved base pairs in the RNA that form electrostatic interactions with the positively charged sulfonium group of SAM, thereby providing a basis for discrimination between SAM and SAH.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>20006621</pmid><doi>10.1016/j.jmb.2009.12.007</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2010-02, Vol.396 (3), p.761-772
issn 0022-2836
1089-8638
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2822714
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Adenosine - analogs & derivatives
Adenosine - metabolism
AFFINITY
Base Pairing
BASIC BIOLOGICAL SCIENCES
CALORIMETRY
Conserved Sequence
CRYSTAL STRUCTURE
CRYSTALLOGRAPHY
Crystallography, X-Ray
ELECTROSTATICS
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
GENETIC CONTROL
isothermal titration calorimetry
Kinetics
METABOLITES
Models, Molecular
MUTANTS
Mutation
national synchrotron light source
non-protein-coding RNA
Nucleic Acid Conformation
RESOLUTION
riboregulation
RNA
RNA, Bacterial - chemistry
RNA, Bacterial - genetics
RNA, Bacterial - metabolism
RNA, Messenger - chemistry
RNA, Messenger - genetics
RNA, Messenger - metabolism
S-Adenosylhomocysteine - metabolism
S-adenosylmethionine
S-Adenosylmethionine - metabolism
SPECIFICITY
TITRATION
X-ray crystallography
title Discrimination between Closely Related Cellular Metabolites by the SAM-I Riboswitch
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrimination%20between%20Closely%20Related%20Cellular%20Metabolites%20by%20the%20SAM-I%20Riboswitch&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Montange,%20Rebecca%20K.&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL)%20National%20Synchrotron%20Light%20Source&rft.date=2010-02-26&rft.volume=396&rft.issue=3&rft.spage=761&rft.epage=772&rft.pages=761-772&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2009.12.007&rft_dat=%3Cproquest_pubme%3E733701606%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733701606&rft_id=info:pmid/20006621&rft_els_id=S0022283609014776&rfr_iscdi=true