Multiscale simulations of protein landscapes: Using coarse-grained models as reference potentials to full explicit models

Evaluating the free‐energy landscape of proteins and the corresponding functional aspects presents a major challenge for computer simulation approaches. This challenge is due to the complexity of the landscape and the enormous computer time needed for converging simulations. The use of simplified co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2010-04, Vol.78 (5), p.1212-1227
Hauptverfasser: Messer, Benjamin M., Roca, Maite, Chu, Zhen T., Vicatos, Spyridon, Kilshtain, Alexandra Vardi, Warshel, Arieh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1227
container_issue 5
container_start_page 1212
container_title Proteins, structure, function, and bioinformatics
container_volume 78
creator Messer, Benjamin M.
Roca, Maite
Chu, Zhen T.
Vicatos, Spyridon
Kilshtain, Alexandra Vardi
Warshel, Arieh
description Evaluating the free‐energy landscape of proteins and the corresponding functional aspects presents a major challenge for computer simulation approaches. This challenge is due to the complexity of the landscape and the enormous computer time needed for converging simulations. The use of simplified coarse‐grained (CG) folding models offers an effective way of sampling the landscape but such a treatment, however, may not give the correct description of the effect of the actual protein residues. A general way around this problem that has been put forward in our early work (Fan et al., Theor Chem Acc 1999;103:77–80) uses the CG model as a reference potential for free‐energy calculations of different properties of the explicit model. This method is refined and extended here, focusing on improving the electrostatic treatment and on demonstrating key applications. These applications include: evaluation of changes of folding energy upon mutations, calculations of transition‐states binding free energies (which are crucial for rational enzyme design), evaluations of catalytic landscape, and evaluations of the time‐dependent responses to pH changes. Furthermore, the general potential of our approach in overcoming major challenges in studies of structure function correlation in proteins is discussed. Proteins 2010. © 2009 Wiley‐Liss, Inc.
doi_str_mv 10.1002/prot.22640
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2822134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733342603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4570-4d09b893f97669c481b5fe4606c76dc3e9fa98e9b258a7334016ad6e5ec7c9ab3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0Eokvhwg9AviEhpTh2bMcckFAFC9KWFmjVo-U4k8XgxMFO2u6_x8tuV3DhZMnzvTej9xB6XpKTkhD6eoxhOqFUVOQBWpREyYKUrHqIFqSuZcF4zY_Qk5R-EEKEYuIxOqKEcCq5WKDN2ewnl6zxgJPrZ28mF4aEQ4e3tuAG7M3QZmCE9AZfJTessQ0mJijW0bgBWtyHFnzCJuEIHUQYLOAxa4fJmfw_BdzN3mO4G72zbtrzT9GjLo_h2f49Rlcf3l-efixW58tPp-9Wha24JEXVEtXUinVKCqFsVZcN76ASRFgpWstAdUbVoBrKayMZq0gpTCuAg5VWmYYdo7c733FuemhtPisar8foehM3Ohin_50M7rtehxtNa0pzjtng5d4ghl8zpEn3OTDwORcIc9J5KauoICyTr3akjSGlHMZhS0n0tiq9zVT_qSrDL_6-64Ded5OBcgfcOg-b_1jpi6_nl_emxU7j0gR3B42JP7WQTHJ9_XmpV1-W19_OmNQX7DcHnbJl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733342603</pqid></control><display><type>article</type><title>Multiscale simulations of protein landscapes: Using coarse-grained models as reference potentials to full explicit models</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Messer, Benjamin M. ; Roca, Maite ; Chu, Zhen T. ; Vicatos, Spyridon ; Kilshtain, Alexandra Vardi ; Warshel, Arieh</creator><creatorcontrib>Messer, Benjamin M. ; Roca, Maite ; Chu, Zhen T. ; Vicatos, Spyridon ; Kilshtain, Alexandra Vardi ; Warshel, Arieh</creatorcontrib><description>Evaluating the free‐energy landscape of proteins and the corresponding functional aspects presents a major challenge for computer simulation approaches. This challenge is due to the complexity of the landscape and the enormous computer time needed for converging simulations. The use of simplified coarse‐grained (CG) folding models offers an effective way of sampling the landscape but such a treatment, however, may not give the correct description of the effect of the actual protein residues. A general way around this problem that has been put forward in our early work (Fan et al., Theor Chem Acc 1999;103:77–80) uses the CG model as a reference potential for free‐energy calculations of different properties of the explicit model. This method is refined and extended here, focusing on improving the electrostatic treatment and on demonstrating key applications. These applications include: evaluation of changes of folding energy upon mutations, calculations of transition‐states binding free energies (which are crucial for rational enzyme design), evaluations of catalytic landscape, and evaluations of the time‐dependent responses to pH changes. Furthermore, the general potential of our approach in overcoming major challenges in studies of structure function correlation in proteins is discussed. Proteins 2010. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.22640</identifier><identifier>PMID: 20052756</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Amino Acid Sequence ; coarse-grained model ; Computer Simulation ; dielectric constants ; free-energy calculations ; Hydrogen Bonding ; Mathematics ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Proteins - chemistry ; Proteins - genetics ; Proteins - metabolism ; proton transfer ; Static Electricity</subject><ispartof>Proteins, structure, function, and bioinformatics, 2010-04, Vol.78 (5), p.1212-1227</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4570-4d09b893f97669c481b5fe4606c76dc3e9fa98e9b258a7334016ad6e5ec7c9ab3</citedby><cites>FETCH-LOGICAL-c4570-4d09b893f97669c481b5fe4606c76dc3e9fa98e9b258a7334016ad6e5ec7c9ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.22640$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.22640$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20052756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Messer, Benjamin M.</creatorcontrib><creatorcontrib>Roca, Maite</creatorcontrib><creatorcontrib>Chu, Zhen T.</creatorcontrib><creatorcontrib>Vicatos, Spyridon</creatorcontrib><creatorcontrib>Kilshtain, Alexandra Vardi</creatorcontrib><creatorcontrib>Warshel, Arieh</creatorcontrib><title>Multiscale simulations of protein landscapes: Using coarse-grained models as reference potentials to full explicit models</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>Evaluating the free‐energy landscape of proteins and the corresponding functional aspects presents a major challenge for computer simulation approaches. This challenge is due to the complexity of the landscape and the enormous computer time needed for converging simulations. The use of simplified coarse‐grained (CG) folding models offers an effective way of sampling the landscape but such a treatment, however, may not give the correct description of the effect of the actual protein residues. A general way around this problem that has been put forward in our early work (Fan et al., Theor Chem Acc 1999;103:77–80) uses the CG model as a reference potential for free‐energy calculations of different properties of the explicit model. This method is refined and extended here, focusing on improving the electrostatic treatment and on demonstrating key applications. These applications include: evaluation of changes of folding energy upon mutations, calculations of transition‐states binding free energies (which are crucial for rational enzyme design), evaluations of catalytic landscape, and evaluations of the time‐dependent responses to pH changes. Furthermore, the general potential of our approach in overcoming major challenges in studies of structure function correlation in proteins is discussed. Proteins 2010. © 2009 Wiley‐Liss, Inc.</description><subject>Amino Acid Sequence</subject><subject>coarse-grained model</subject><subject>Computer Simulation</subject><subject>dielectric constants</subject><subject>free-energy calculations</subject><subject>Hydrogen Bonding</subject><subject>Mathematics</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>proton transfer</subject><subject>Static Electricity</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhS0Eokvhwg9AviEhpTh2bMcckFAFC9KWFmjVo-U4k8XgxMFO2u6_x8tuV3DhZMnzvTej9xB6XpKTkhD6eoxhOqFUVOQBWpREyYKUrHqIFqSuZcF4zY_Qk5R-EEKEYuIxOqKEcCq5WKDN2ewnl6zxgJPrZ28mF4aEQ4e3tuAG7M3QZmCE9AZfJTessQ0mJijW0bgBWtyHFnzCJuEIHUQYLOAxa4fJmfw_BdzN3mO4G72zbtrzT9GjLo_h2f49Rlcf3l-efixW58tPp-9Wha24JEXVEtXUinVKCqFsVZcN76ASRFgpWstAdUbVoBrKayMZq0gpTCuAg5VWmYYdo7c733FuemhtPisar8foehM3Ohin_50M7rtehxtNa0pzjtng5d4ghl8zpEn3OTDwORcIc9J5KauoICyTr3akjSGlHMZhS0n0tiq9zVT_qSrDL_6-64Ded5OBcgfcOg-b_1jpi6_nl_emxU7j0gR3B42JP7WQTHJ9_XmpV1-W19_OmNQX7DcHnbJl</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Messer, Benjamin M.</creator><creator>Roca, Maite</creator><creator>Chu, Zhen T.</creator><creator>Vicatos, Spyridon</creator><creator>Kilshtain, Alexandra Vardi</creator><creator>Warshel, Arieh</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201004</creationdate><title>Multiscale simulations of protein landscapes: Using coarse-grained models as reference potentials to full explicit models</title><author>Messer, Benjamin M. ; Roca, Maite ; Chu, Zhen T. ; Vicatos, Spyridon ; Kilshtain, Alexandra Vardi ; Warshel, Arieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4570-4d09b893f97669c481b5fe4606c76dc3e9fa98e9b258a7334016ad6e5ec7c9ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino Acid Sequence</topic><topic>coarse-grained model</topic><topic>Computer Simulation</topic><topic>dielectric constants</topic><topic>free-energy calculations</topic><topic>Hydrogen Bonding</topic><topic>Mathematics</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>proton transfer</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Messer, Benjamin M.</creatorcontrib><creatorcontrib>Roca, Maite</creatorcontrib><creatorcontrib>Chu, Zhen T.</creatorcontrib><creatorcontrib>Vicatos, Spyridon</creatorcontrib><creatorcontrib>Kilshtain, Alexandra Vardi</creatorcontrib><creatorcontrib>Warshel, Arieh</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Messer, Benjamin M.</au><au>Roca, Maite</au><au>Chu, Zhen T.</au><au>Vicatos, Spyridon</au><au>Kilshtain, Alexandra Vardi</au><au>Warshel, Arieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale simulations of protein landscapes: Using coarse-grained models as reference potentials to full explicit models</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2010-04</date><risdate>2010</risdate><volume>78</volume><issue>5</issue><spage>1212</spage><epage>1227</epage><pages>1212-1227</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>Evaluating the free‐energy landscape of proteins and the corresponding functional aspects presents a major challenge for computer simulation approaches. This challenge is due to the complexity of the landscape and the enormous computer time needed for converging simulations. The use of simplified coarse‐grained (CG) folding models offers an effective way of sampling the landscape but such a treatment, however, may not give the correct description of the effect of the actual protein residues. A general way around this problem that has been put forward in our early work (Fan et al., Theor Chem Acc 1999;103:77–80) uses the CG model as a reference potential for free‐energy calculations of different properties of the explicit model. This method is refined and extended here, focusing on improving the electrostatic treatment and on demonstrating key applications. These applications include: evaluation of changes of folding energy upon mutations, calculations of transition‐states binding free energies (which are crucial for rational enzyme design), evaluations of catalytic landscape, and evaluations of the time‐dependent responses to pH changes. Furthermore, the general potential of our approach in overcoming major challenges in studies of structure function correlation in proteins is discussed. Proteins 2010. © 2009 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20052756</pmid><doi>10.1002/prot.22640</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2010-04, Vol.78 (5), p.1212-1227
issn 0887-3585
1097-0134
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2822134
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Amino Acid Sequence
coarse-grained model
Computer Simulation
dielectric constants
free-energy calculations
Hydrogen Bonding
Mathematics
Models, Molecular
Molecular Sequence Data
Protein Conformation
Protein Folding
Proteins - chemistry
Proteins - genetics
Proteins - metabolism
proton transfer
Static Electricity
title Multiscale simulations of protein landscapes: Using coarse-grained models as reference potentials to full explicit models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20simulations%20of%20protein%20landscapes:%20Using%20coarse-grained%20models%20as%20reference%20potentials%20to%20full%20explicit%20models&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Messer,%20Benjamin%20M.&rft.date=2010-04&rft.volume=78&rft.issue=5&rft.spage=1212&rft.epage=1227&rft.pages=1212-1227&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.22640&rft_dat=%3Cproquest_pubme%3E733342603%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733342603&rft_id=info:pmid/20052756&rfr_iscdi=true