Nonlinear modeling of neural population dynamics for hippocampal prostheses

Developing a neural prosthesis for the damaged hippocampus requires restoring the transformation of population neural activities performed by the hippocampal circuitry. To bypass a damaged region, output spike trains need to be predicted from the input spike trains and then reinstated through stimul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2009-11, Vol.22 (9), p.1340-1351
Hauptverfasser: Song, Dong, Chan, Rosa H.M., Marmarelis, Vasilis Z., Hampson, Robert E., Deadwyler, Sam A., Berger, Theodore W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1351
container_issue 9
container_start_page 1340
container_title Neural networks
container_volume 22
creator Song, Dong
Chan, Rosa H.M.
Marmarelis, Vasilis Z.
Hampson, Robert E.
Deadwyler, Sam A.
Berger, Theodore W.
description Developing a neural prosthesis for the damaged hippocampus requires restoring the transformation of population neural activities performed by the hippocampal circuitry. To bypass a damaged region, output spike trains need to be predicted from the input spike trains and then reinstated through stimulation. We formulate a multiple-input, multiple-output (MIMO) nonlinear dynamic model for the input–output transformation of spike trains. In this approach, a MIMO model comprises a series of physiologically-plausible multiple-input, single-output (MISO) neuron models that consist of five components each: (1) feedforward Volterra kernels transforming the input spike trains into the synaptic potential, (2) a feedback kernel transforming the output spikes into the spike-triggered after-potential, (3) a noise term capturing the system uncertainty, (4) an adder generating the pre-threshold potential, and (5) a threshold function generating output spikes. It is shown that this model is equivalent to a generalized linear model with a probit link function. To reduce model complexity and avoid overfitting, statistical model selection and cross-validation methods are employed to choose the significant inputs and interactions between inputs. The model is applied successfully to the hippocampal CA3–CA1 population dynamics. Such a model can serve as a computational basis for the development of hippocampal prostheses.
doi_str_mv 10.1016/j.neunet.2009.05.004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2821165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089360800900094X</els_id><sourcerecordid>734116064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-4bf804c443eb12b07f2a11e676a62172eb2f708c60846d04f50f14ab0b32b87f3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EotvCP6iq3DglHTuO41wqoQpo1QoucLYcZ9z1KrGDnVTqv8erXbX0AieP5Ddv3sxHyDmFigIVl7vK4-pxqRhAV0FTAfA3ZENl25Wslewt2YDs6lKAhBNymtIOAITk9XtyQrsGKJd8Q-6-Bz86jzoWUxgwlw9FsEW2jnos5jCvo15c8MXw5PXkTCpsiMXWzXMwepr3mhjSssWE6QN5Z_WY8OPxPSO_vn75eX1T3v_4dnv9-b40jYCl5L2VwA3nNfaU9dBapilF0QotGG0Z9sy2IE0OzsUA3DZgKdc99DXrZWvrM3J18J3XfsLBoF9yWDVHN-n4pIJ26vWPd1v1EB4Vk4xS0WSDT0eDGH6vmBY1uWRwHLXHsCYlBeesY1z8V9nWPDuC4FnJD0qT75Ei2uc8FNQemNqpAzC1B6agURlYbrv4e5eXpiOhl2UxX_TRYVTJOPQGBxfRLGoI7t8T_gDNu6qp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734116064</pqid></control><display><type>article</type><title>Nonlinear modeling of neural population dynamics for hippocampal prostheses</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Song, Dong ; Chan, Rosa H.M. ; Marmarelis, Vasilis Z. ; Hampson, Robert E. ; Deadwyler, Sam A. ; Berger, Theodore W.</creator><creatorcontrib>Song, Dong ; Chan, Rosa H.M. ; Marmarelis, Vasilis Z. ; Hampson, Robert E. ; Deadwyler, Sam A. ; Berger, Theodore W.</creatorcontrib><description>Developing a neural prosthesis for the damaged hippocampus requires restoring the transformation of population neural activities performed by the hippocampal circuitry. To bypass a damaged region, output spike trains need to be predicted from the input spike trains and then reinstated through stimulation. We formulate a multiple-input, multiple-output (MIMO) nonlinear dynamic model for the input–output transformation of spike trains. In this approach, a MIMO model comprises a series of physiologically-plausible multiple-input, single-output (MISO) neuron models that consist of five components each: (1) feedforward Volterra kernels transforming the input spike trains into the synaptic potential, (2) a feedback kernel transforming the output spikes into the spike-triggered after-potential, (3) a noise term capturing the system uncertainty, (4) an adder generating the pre-threshold potential, and (5) a threshold function generating output spikes. It is shown that this model is equivalent to a generalized linear model with a probit link function. To reduce model complexity and avoid overfitting, statistical model selection and cross-validation methods are employed to choose the significant inputs and interactions between inputs. The model is applied successfully to the hippocampal CA3–CA1 population dynamics. Such a model can serve as a computational basis for the development of hippocampal prostheses.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2009.05.004</identifier><identifier>PMID: 19501484</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Action Potentials ; Algorithms ; Animals ; CA1 Region, Hippocampal - physiology ; CA3 Region, Hippocampal - physiology ; Evoked Potentials ; Feedback ; Hippocampus ; Linear Models ; Male ; Multiple-input multiple-output system ; Neural Networks (Computer) ; Neurons - physiology ; Neuropsychological Tests ; Nonlinear Dynamics ; Prostheses and Implants ; Rats ; Rats, Long-Evans ; Signal Processing, Computer-Assisted ; Spatio-temporal pattern ; Spike ; Time Factors ; Uncertainty ; Volterra kernel</subject><ispartof>Neural networks, 2009-11, Vol.22 (9), p.1340-1351</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 Elsevier Ltd. All rights reserved 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-4bf804c443eb12b07f2a11e676a62172eb2f708c60846d04f50f14ab0b32b87f3</citedby><cites>FETCH-LOGICAL-c560t-4bf804c443eb12b07f2a11e676a62172eb2f708c60846d04f50f14ab0b32b87f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2009.05.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19501484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Dong</creatorcontrib><creatorcontrib>Chan, Rosa H.M.</creatorcontrib><creatorcontrib>Marmarelis, Vasilis Z.</creatorcontrib><creatorcontrib>Hampson, Robert E.</creatorcontrib><creatorcontrib>Deadwyler, Sam A.</creatorcontrib><creatorcontrib>Berger, Theodore W.</creatorcontrib><title>Nonlinear modeling of neural population dynamics for hippocampal prostheses</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Developing a neural prosthesis for the damaged hippocampus requires restoring the transformation of population neural activities performed by the hippocampal circuitry. To bypass a damaged region, output spike trains need to be predicted from the input spike trains and then reinstated through stimulation. We formulate a multiple-input, multiple-output (MIMO) nonlinear dynamic model for the input–output transformation of spike trains. In this approach, a MIMO model comprises a series of physiologically-plausible multiple-input, single-output (MISO) neuron models that consist of five components each: (1) feedforward Volterra kernels transforming the input spike trains into the synaptic potential, (2) a feedback kernel transforming the output spikes into the spike-triggered after-potential, (3) a noise term capturing the system uncertainty, (4) an adder generating the pre-threshold potential, and (5) a threshold function generating output spikes. It is shown that this model is equivalent to a generalized linear model with a probit link function. To reduce model complexity and avoid overfitting, statistical model selection and cross-validation methods are employed to choose the significant inputs and interactions between inputs. The model is applied successfully to the hippocampal CA3–CA1 population dynamics. Such a model can serve as a computational basis for the development of hippocampal prostheses.</description><subject>Action Potentials</subject><subject>Algorithms</subject><subject>Animals</subject><subject>CA1 Region, Hippocampal - physiology</subject><subject>CA3 Region, Hippocampal - physiology</subject><subject>Evoked Potentials</subject><subject>Feedback</subject><subject>Hippocampus</subject><subject>Linear Models</subject><subject>Male</subject><subject>Multiple-input multiple-output system</subject><subject>Neural Networks (Computer)</subject><subject>Neurons - physiology</subject><subject>Neuropsychological Tests</subject><subject>Nonlinear Dynamics</subject><subject>Prostheses and Implants</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Spatio-temporal pattern</subject><subject>Spike</subject><subject>Time Factors</subject><subject>Uncertainty</subject><subject>Volterra kernel</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EotvCP6iq3DglHTuO41wqoQpo1QoucLYcZ9z1KrGDnVTqv8erXbX0AieP5Ddv3sxHyDmFigIVl7vK4-pxqRhAV0FTAfA3ZENl25Wslewt2YDs6lKAhBNymtIOAITk9XtyQrsGKJd8Q-6-Bz86jzoWUxgwlw9FsEW2jnos5jCvo15c8MXw5PXkTCpsiMXWzXMwepr3mhjSssWE6QN5Z_WY8OPxPSO_vn75eX1T3v_4dnv9-b40jYCl5L2VwA3nNfaU9dBapilF0QotGG0Z9sy2IE0OzsUA3DZgKdc99DXrZWvrM3J18J3XfsLBoF9yWDVHN-n4pIJ26vWPd1v1EB4Vk4xS0WSDT0eDGH6vmBY1uWRwHLXHsCYlBeesY1z8V9nWPDuC4FnJD0qT75Ei2uc8FNQemNqpAzC1B6agURlYbrv4e5eXpiOhl2UxX_TRYVTJOPQGBxfRLGoI7t8T_gDNu6qp</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Song, Dong</creator><creator>Chan, Rosa H.M.</creator><creator>Marmarelis, Vasilis Z.</creator><creator>Hampson, Robert E.</creator><creator>Deadwyler, Sam A.</creator><creator>Berger, Theodore W.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20091101</creationdate><title>Nonlinear modeling of neural population dynamics for hippocampal prostheses</title><author>Song, Dong ; Chan, Rosa H.M. ; Marmarelis, Vasilis Z. ; Hampson, Robert E. ; Deadwyler, Sam A. ; Berger, Theodore W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-4bf804c443eb12b07f2a11e676a62172eb2f708c60846d04f50f14ab0b32b87f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Action Potentials</topic><topic>Algorithms</topic><topic>Animals</topic><topic>CA1 Region, Hippocampal - physiology</topic><topic>CA3 Region, Hippocampal - physiology</topic><topic>Evoked Potentials</topic><topic>Feedback</topic><topic>Hippocampus</topic><topic>Linear Models</topic><topic>Male</topic><topic>Multiple-input multiple-output system</topic><topic>Neural Networks (Computer)</topic><topic>Neurons - physiology</topic><topic>Neuropsychological Tests</topic><topic>Nonlinear Dynamics</topic><topic>Prostheses and Implants</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Spatio-temporal pattern</topic><topic>Spike</topic><topic>Time Factors</topic><topic>Uncertainty</topic><topic>Volterra kernel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Dong</creatorcontrib><creatorcontrib>Chan, Rosa H.M.</creatorcontrib><creatorcontrib>Marmarelis, Vasilis Z.</creatorcontrib><creatorcontrib>Hampson, Robert E.</creatorcontrib><creatorcontrib>Deadwyler, Sam A.</creatorcontrib><creatorcontrib>Berger, Theodore W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Dong</au><au>Chan, Rosa H.M.</au><au>Marmarelis, Vasilis Z.</au><au>Hampson, Robert E.</au><au>Deadwyler, Sam A.</au><au>Berger, Theodore W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear modeling of neural population dynamics for hippocampal prostheses</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>22</volume><issue>9</issue><spage>1340</spage><epage>1351</epage><pages>1340-1351</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Developing a neural prosthesis for the damaged hippocampus requires restoring the transformation of population neural activities performed by the hippocampal circuitry. To bypass a damaged region, output spike trains need to be predicted from the input spike trains and then reinstated through stimulation. We formulate a multiple-input, multiple-output (MIMO) nonlinear dynamic model for the input–output transformation of spike trains. In this approach, a MIMO model comprises a series of physiologically-plausible multiple-input, single-output (MISO) neuron models that consist of five components each: (1) feedforward Volterra kernels transforming the input spike trains into the synaptic potential, (2) a feedback kernel transforming the output spikes into the spike-triggered after-potential, (3) a noise term capturing the system uncertainty, (4) an adder generating the pre-threshold potential, and (5) a threshold function generating output spikes. It is shown that this model is equivalent to a generalized linear model with a probit link function. To reduce model complexity and avoid overfitting, statistical model selection and cross-validation methods are employed to choose the significant inputs and interactions between inputs. The model is applied successfully to the hippocampal CA3–CA1 population dynamics. Such a model can serve as a computational basis for the development of hippocampal prostheses.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>19501484</pmid><doi>10.1016/j.neunet.2009.05.004</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2009-11, Vol.22 (9), p.1340-1351
issn 0893-6080
1879-2782
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2821165
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Action Potentials
Algorithms
Animals
CA1 Region, Hippocampal - physiology
CA3 Region, Hippocampal - physiology
Evoked Potentials
Feedback
Hippocampus
Linear Models
Male
Multiple-input multiple-output system
Neural Networks (Computer)
Neurons - physiology
Neuropsychological Tests
Nonlinear Dynamics
Prostheses and Implants
Rats
Rats, Long-Evans
Signal Processing, Computer-Assisted
Spatio-temporal pattern
Spike
Time Factors
Uncertainty
Volterra kernel
title Nonlinear modeling of neural population dynamics for hippocampal prostheses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20modeling%20of%20neural%20population%20dynamics%20for%20hippocampal%20prostheses&rft.jtitle=Neural%20networks&rft.au=Song,%20Dong&rft.date=2009-11-01&rft.volume=22&rft.issue=9&rft.spage=1340&rft.epage=1351&rft.pages=1340-1351&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2009.05.004&rft_dat=%3Cproquest_pubme%3E734116064%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734116064&rft_id=info:pmid/19501484&rft_els_id=S089360800900094X&rfr_iscdi=true