Post-translational Modification of Ribosomal Proteins: STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF RimO FROM THERMOTOGA MARITIMA, A RADICAL S-ADENOSYLMETHIONINE METHYLTHIOTRANSFERASE
Post-translational modifications of ribosomal proteins are important for the accuracy of the decoding machinery. A recent in vivo study has shown that the rimO gene is involved in generation of the 3-methylthio derivative of residue Asp-89 in ribosomal protein S12 (Anton, B. P., Saleh, L., Benner, J...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2010-02, Vol.285 (8), p.5792-5801 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5801 |
---|---|
container_issue | 8 |
container_start_page | 5792 |
container_title | The Journal of biological chemistry |
container_volume | 285 |
creator | Arragain, Simon Garcia-Serres, Ricardo Blondin, Geneviève Douki, Thierry Clemancey, Martin Latour, Jean-Marc Forouhar, Farhad Neely, Helen Montelione, Gaetano T Hunt, John F Mulliez, Etienne Fontecave, Marc Atta, Mohamed |
description | Post-translational modifications of ribosomal proteins are important for the accuracy of the decoding machinery. A recent in vivo study has shown that the rimO gene is involved in generation of the 3-methylthio derivative of residue Asp-89 in ribosomal protein S12 (Anton, B. P., Saleh, L., Benner, J. S., Raleigh, E. A., Kasif, S., and Roberts, R. J. (2008) PROC: Natl. Acad. Sci. U. S. A. 105, 1826-1831). This reaction is formally identical to that catalyzed by MiaB on the C2 of adenosine 37 near the anticodon of several tRNAs. We present spectroscopic evidence that Thermotoga maritima RimO, like MiaB, contains two [4Fe-4S] centers, one presumably bound to three invariant cysteines in the central radical S-adenosylmethionine (AdoMet) domain and the other to three invariant cysteines in the N-terminal UPF0004 domain. We demonstrate that holo-RimO can specifically methylthiolate the aspartate residue of a 20-mer peptide derived from S12, yielding a mixture of mono- and bismethylthio derivatives. Finally, we present the 2.0 Å crystal structure of the central radical AdoMet and the C-terminal TRAM (tRNA methyltransferase 2 and MiaB) domains in apo-RimO. Although the core of the open triose-phosphate isomerase (TIM) barrel of the radical AdoMet domain was conserved, RimO showed differences in domain organization compared with other radical AdoMet enzymes. The unusually acidic TRAM domain, likely to bind the basic S12 protein, is located at the distal edge of the radical AdoMet domain. The basic S12 protein substrate is likely to bind RimO through interactions with both the TRAM domain and the concave surface of the incomplete TIM barrel. These biophysical results provide a foundation for understanding the mechanism of methylthioation by radical AdoMet enzymes in the MiaB/RimO family. |
doi_str_mv | 10.1074/jbc.M109.065516 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2820805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733696085</sourcerecordid><originalsourceid>FETCH-LOGICAL-f350t-3f9ee26555efba71fa801f74d7c56d77b4b95aed932c60374c896d8e35654e8c3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhiMEokvhzA0sLgiJLHacD6cHJCub7UbaJFWSlSgXy_E6ratsXOJsJf4ZPw-HLQjwxfPOvPN4NHac1wguEYz8T3etWOYIxksYBgEKnzgLBAl2cYC-PHUWEHrIjb2AnDkvjLmD9vgxeu6ceTaKsAcXzo8rbSZ3Gvlgej4pPfAe5HqvOiV-SaA7UKlWG32wlatRT1IN5gLUTbVLml1Ft4AWK7DeFUmTlYWVyYZWNGnSKvtK5xQo15ZwKMG6KnPQbNIqL5vykoKcVlmT5fQjoKCiqyyxzbVLV2lR1tfbPG02tjsrUjCH19tZNhUt6nVa0Tp96TzreG_kq8f73Nmt0ybZuNvycka5HQ7g5OIultKzywlk1_IIdZxA1EX-PhJBuI-i1m_jgMt9jD0RQhz5gsThnkgchIEvicDnzucT9_7YHuReyMEuq2f3ozrw8TvTXLF_K4O6ZTf6gXnEgwQGFvDuBLCLVswINUlxK_QwSDExBFEcEt-aPpxMt_-xN3TL5hxEMIwjiB-Q9b5_nGjU347STOygjJB9zwepj4ZFGIdxCMn89Ju_Z_8D_v391vD2ZOi4ZvxmVIbtag8iDBGBHkEY_wStRrPD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733696085</pqid></control><display><type>article</type><title>Post-translational Modification of Ribosomal Proteins: STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF RimO FROM THERMOTOGA MARITIMA, A RADICAL S-ADENOSYLMETHIONINE METHYLTHIOTRANSFERASE</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Arragain, Simon ; Garcia-Serres, Ricardo ; Blondin, Geneviève ; Douki, Thierry ; Clemancey, Martin ; Latour, Jean-Marc ; Forouhar, Farhad ; Neely, Helen ; Montelione, Gaetano T ; Hunt, John F ; Mulliez, Etienne ; Fontecave, Marc ; Atta, Mohamed</creator><creatorcontrib>Arragain, Simon ; Garcia-Serres, Ricardo ; Blondin, Geneviève ; Douki, Thierry ; Clemancey, Martin ; Latour, Jean-Marc ; Forouhar, Farhad ; Neely, Helen ; Montelione, Gaetano T ; Hunt, John F ; Mulliez, Etienne ; Fontecave, Marc ; Atta, Mohamed ; Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><description>Post-translational modifications of ribosomal proteins are important for the accuracy of the decoding machinery. A recent in vivo study has shown that the rimO gene is involved in generation of the 3-methylthio derivative of residue Asp-89 in ribosomal protein S12 (Anton, B. P., Saleh, L., Benner, J. S., Raleigh, E. A., Kasif, S., and Roberts, R. J. (2008) PROC: Natl. Acad. Sci. U. S. A. 105, 1826-1831). This reaction is formally identical to that catalyzed by MiaB on the C2 of adenosine 37 near the anticodon of several tRNAs. We present spectroscopic evidence that Thermotoga maritima RimO, like MiaB, contains two [4Fe-4S] centers, one presumably bound to three invariant cysteines in the central radical S-adenosylmethionine (AdoMet) domain and the other to three invariant cysteines in the N-terminal UPF0004 domain. We demonstrate that holo-RimO can specifically methylthiolate the aspartate residue of a 20-mer peptide derived from S12, yielding a mixture of mono- and bismethylthio derivatives. Finally, we present the 2.0 Å crystal structure of the central radical AdoMet and the C-terminal TRAM (tRNA methyltransferase 2 and MiaB) domains in apo-RimO. Although the core of the open triose-phosphate isomerase (TIM) barrel of the radical AdoMet domain was conserved, RimO showed differences in domain organization compared with other radical AdoMet enzymes. The unusually acidic TRAM domain, likely to bind the basic S12 protein, is located at the distal edge of the radical AdoMet domain. The basic S12 protein substrate is likely to bind RimO through interactions with both the TRAM domain and the concave surface of the incomplete TIM barrel. These biophysical results provide a foundation for understanding the mechanism of methylthioation by radical AdoMet enzymes in the MiaB/RimO family.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.065516</identifier><identifier>PMID: 20007320</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>ACCURACY ; ADENOSINE ; BASIC BIOLOGICAL SCIENCES ; Chemical Sciences ; Coordination chemistry ; CRYSTAL STRUCTURE ; Crystallography, X-Ray ; ENZYMES ; Enzymology ; FUNCTIONALS ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; GENES ; IN VIVO ; ISOMERASES ; MACHINERY ; MIXTURES ; MODIFICATIONS ; national synchrotron light source ; PEPTIDES ; Protein Processing, Post-Translational - physiology ; Protein Structure, Tertiary ; PROTEINS ; RADICALS ; RESIDUES ; RESONANCE ; Ribosomal Proteins - chemistry ; Ribosomal Proteins - genetics ; Ribosomal Proteins - metabolism ; S-Adenosylmethionine - chemistry ; S-Adenosylmethionine - genetics ; S-Adenosylmethionine - metabolism ; SPECTROSCOPY ; Structure-Activity Relationship ; SUBSTRATES ; Sulfurtransferases - chemistry ; Sulfurtransferases - genetics ; Sulfurtransferases - metabolism ; Thermotoga maritima - enzymology ; Thermotoga maritima - genetics</subject><ispartof>The Journal of biological chemistry, 2010-02, Vol.285 (8), p.5792-5801</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8045-6328 ; 0000-0002-8016-4747 ; 0000-0002-5022-071X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820805/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820805/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20007320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01069703$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1019684$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Arragain, Simon</creatorcontrib><creatorcontrib>Garcia-Serres, Ricardo</creatorcontrib><creatorcontrib>Blondin, Geneviève</creatorcontrib><creatorcontrib>Douki, Thierry</creatorcontrib><creatorcontrib>Clemancey, Martin</creatorcontrib><creatorcontrib>Latour, Jean-Marc</creatorcontrib><creatorcontrib>Forouhar, Farhad</creatorcontrib><creatorcontrib>Neely, Helen</creatorcontrib><creatorcontrib>Montelione, Gaetano T</creatorcontrib><creatorcontrib>Hunt, John F</creatorcontrib><creatorcontrib>Mulliez, Etienne</creatorcontrib><creatorcontrib>Fontecave, Marc</creatorcontrib><creatorcontrib>Atta, Mohamed</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><title>Post-translational Modification of Ribosomal Proteins: STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF RimO FROM THERMOTOGA MARITIMA, A RADICAL S-ADENOSYLMETHIONINE METHYLTHIOTRANSFERASE</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Post-translational modifications of ribosomal proteins are important for the accuracy of the decoding machinery. A recent in vivo study has shown that the rimO gene is involved in generation of the 3-methylthio derivative of residue Asp-89 in ribosomal protein S12 (Anton, B. P., Saleh, L., Benner, J. S., Raleigh, E. A., Kasif, S., and Roberts, R. J. (2008) PROC: Natl. Acad. Sci. U. S. A. 105, 1826-1831). This reaction is formally identical to that catalyzed by MiaB on the C2 of adenosine 37 near the anticodon of several tRNAs. We present spectroscopic evidence that Thermotoga maritima RimO, like MiaB, contains two [4Fe-4S] centers, one presumably bound to three invariant cysteines in the central radical S-adenosylmethionine (AdoMet) domain and the other to three invariant cysteines in the N-terminal UPF0004 domain. We demonstrate that holo-RimO can specifically methylthiolate the aspartate residue of a 20-mer peptide derived from S12, yielding a mixture of mono- and bismethylthio derivatives. Finally, we present the 2.0 Å crystal structure of the central radical AdoMet and the C-terminal TRAM (tRNA methyltransferase 2 and MiaB) domains in apo-RimO. Although the core of the open triose-phosphate isomerase (TIM) barrel of the radical AdoMet domain was conserved, RimO showed differences in domain organization compared with other radical AdoMet enzymes. The unusually acidic TRAM domain, likely to bind the basic S12 protein, is located at the distal edge of the radical AdoMet domain. The basic S12 protein substrate is likely to bind RimO through interactions with both the TRAM domain and the concave surface of the incomplete TIM barrel. These biophysical results provide a foundation for understanding the mechanism of methylthioation by radical AdoMet enzymes in the MiaB/RimO family.</description><subject>ACCURACY</subject><subject>ADENOSINE</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Chemical Sciences</subject><subject>Coordination chemistry</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallography, X-Ray</subject><subject>ENZYMES</subject><subject>Enzymology</subject><subject>FUNCTIONALS</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>GENES</subject><subject>IN VIVO</subject><subject>ISOMERASES</subject><subject>MACHINERY</subject><subject>MIXTURES</subject><subject>MODIFICATIONS</subject><subject>national synchrotron light source</subject><subject>PEPTIDES</subject><subject>Protein Processing, Post-Translational - physiology</subject><subject>Protein Structure, Tertiary</subject><subject>PROTEINS</subject><subject>RADICALS</subject><subject>RESIDUES</subject><subject>RESONANCE</subject><subject>Ribosomal Proteins - chemistry</subject><subject>Ribosomal Proteins - genetics</subject><subject>Ribosomal Proteins - metabolism</subject><subject>S-Adenosylmethionine - chemistry</subject><subject>S-Adenosylmethionine - genetics</subject><subject>S-Adenosylmethionine - metabolism</subject><subject>SPECTROSCOPY</subject><subject>Structure-Activity Relationship</subject><subject>SUBSTRATES</subject><subject>Sulfurtransferases - chemistry</subject><subject>Sulfurtransferases - genetics</subject><subject>Sulfurtransferases - metabolism</subject><subject>Thermotoga maritima - enzymology</subject><subject>Thermotoga maritima - genetics</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhiMEokvhzA0sLgiJLHacD6cHJCub7UbaJFWSlSgXy_E6ratsXOJsJf4ZPw-HLQjwxfPOvPN4NHac1wguEYz8T3etWOYIxksYBgEKnzgLBAl2cYC-PHUWEHrIjb2AnDkvjLmD9vgxeu6ceTaKsAcXzo8rbSZ3Gvlgej4pPfAe5HqvOiV-SaA7UKlWG32wlatRT1IN5gLUTbVLml1Ft4AWK7DeFUmTlYWVyYZWNGnSKvtK5xQo15ZwKMG6KnPQbNIqL5vykoKcVlmT5fQjoKCiqyyxzbVLV2lR1tfbPG02tjsrUjCH19tZNhUt6nVa0Tp96TzreG_kq8f73Nmt0ybZuNvycka5HQ7g5OIultKzywlk1_IIdZxA1EX-PhJBuI-i1m_jgMt9jD0RQhz5gsThnkgchIEvicDnzucT9_7YHuReyMEuq2f3ozrw8TvTXLF_K4O6ZTf6gXnEgwQGFvDuBLCLVswINUlxK_QwSDExBFEcEt-aPpxMt_-xN3TL5hxEMIwjiB-Q9b5_nGjU347STOygjJB9zwepj4ZFGIdxCMn89Ju_Z_8D_v391vD2ZOi4ZvxmVIbtag8iDBGBHkEY_wStRrPD</recordid><startdate>20100219</startdate><enddate>20100219</enddate><creator>Arragain, Simon</creator><creator>Garcia-Serres, Ricardo</creator><creator>Blondin, Geneviève</creator><creator>Douki, Thierry</creator><creator>Clemancey, Martin</creator><creator>Latour, Jean-Marc</creator><creator>Forouhar, Farhad</creator><creator>Neely, Helen</creator><creator>Montelione, Gaetano T</creator><creator>Hunt, John F</creator><creator>Mulliez, Etienne</creator><creator>Fontecave, Marc</creator><creator>Atta, Mohamed</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>1XC</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8045-6328</orcidid><orcidid>https://orcid.org/0000-0002-8016-4747</orcidid><orcidid>https://orcid.org/0000-0002-5022-071X</orcidid></search><sort><creationdate>20100219</creationdate><title>Post-translational Modification of Ribosomal Proteins: STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF RimO FROM THERMOTOGA MARITIMA, A RADICAL S-ADENOSYLMETHIONINE METHYLTHIOTRANSFERASE</title><author>Arragain, Simon ; Garcia-Serres, Ricardo ; Blondin, Geneviève ; Douki, Thierry ; Clemancey, Martin ; Latour, Jean-Marc ; Forouhar, Farhad ; Neely, Helen ; Montelione, Gaetano T ; Hunt, John F ; Mulliez, Etienne ; Fontecave, Marc ; Atta, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f350t-3f9ee26555efba71fa801f74d7c56d77b4b95aed932c60374c896d8e35654e8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ACCURACY</topic><topic>ADENOSINE</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Chemical Sciences</topic><topic>Coordination chemistry</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallography, X-Ray</topic><topic>ENZYMES</topic><topic>Enzymology</topic><topic>FUNCTIONALS</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>GENES</topic><topic>IN VIVO</topic><topic>ISOMERASES</topic><topic>MACHINERY</topic><topic>MIXTURES</topic><topic>MODIFICATIONS</topic><topic>national synchrotron light source</topic><topic>PEPTIDES</topic><topic>Protein Processing, Post-Translational - physiology</topic><topic>Protein Structure, Tertiary</topic><topic>PROTEINS</topic><topic>RADICALS</topic><topic>RESIDUES</topic><topic>RESONANCE</topic><topic>Ribosomal Proteins - chemistry</topic><topic>Ribosomal Proteins - genetics</topic><topic>Ribosomal Proteins - metabolism</topic><topic>S-Adenosylmethionine - chemistry</topic><topic>S-Adenosylmethionine - genetics</topic><topic>S-Adenosylmethionine - metabolism</topic><topic>SPECTROSCOPY</topic><topic>Structure-Activity Relationship</topic><topic>SUBSTRATES</topic><topic>Sulfurtransferases - chemistry</topic><topic>Sulfurtransferases - genetics</topic><topic>Sulfurtransferases - metabolism</topic><topic>Thermotoga maritima - enzymology</topic><topic>Thermotoga maritima - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arragain, Simon</creatorcontrib><creatorcontrib>Garcia-Serres, Ricardo</creatorcontrib><creatorcontrib>Blondin, Geneviève</creatorcontrib><creatorcontrib>Douki, Thierry</creatorcontrib><creatorcontrib>Clemancey, Martin</creatorcontrib><creatorcontrib>Latour, Jean-Marc</creatorcontrib><creatorcontrib>Forouhar, Farhad</creatorcontrib><creatorcontrib>Neely, Helen</creatorcontrib><creatorcontrib>Montelione, Gaetano T</creatorcontrib><creatorcontrib>Hunt, John F</creatorcontrib><creatorcontrib>Mulliez, Etienne</creatorcontrib><creatorcontrib>Fontecave, Marc</creatorcontrib><creatorcontrib>Atta, Mohamed</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arragain, Simon</au><au>Garcia-Serres, Ricardo</au><au>Blondin, Geneviève</au><au>Douki, Thierry</au><au>Clemancey, Martin</au><au>Latour, Jean-Marc</au><au>Forouhar, Farhad</au><au>Neely, Helen</au><au>Montelione, Gaetano T</au><au>Hunt, John F</au><au>Mulliez, Etienne</au><au>Fontecave, Marc</au><au>Atta, Mohamed</au><aucorp>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post-translational Modification of Ribosomal Proteins: STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF RimO FROM THERMOTOGA MARITIMA, A RADICAL S-ADENOSYLMETHIONINE METHYLTHIOTRANSFERASE</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-02-19</date><risdate>2010</risdate><volume>285</volume><issue>8</issue><spage>5792</spage><epage>5801</epage><pages>5792-5801</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Post-translational modifications of ribosomal proteins are important for the accuracy of the decoding machinery. A recent in vivo study has shown that the rimO gene is involved in generation of the 3-methylthio derivative of residue Asp-89 in ribosomal protein S12 (Anton, B. P., Saleh, L., Benner, J. S., Raleigh, E. A., Kasif, S., and Roberts, R. J. (2008) PROC: Natl. Acad. Sci. U. S. A. 105, 1826-1831). This reaction is formally identical to that catalyzed by MiaB on the C2 of adenosine 37 near the anticodon of several tRNAs. We present spectroscopic evidence that Thermotoga maritima RimO, like MiaB, contains two [4Fe-4S] centers, one presumably bound to three invariant cysteines in the central radical S-adenosylmethionine (AdoMet) domain and the other to three invariant cysteines in the N-terminal UPF0004 domain. We demonstrate that holo-RimO can specifically methylthiolate the aspartate residue of a 20-mer peptide derived from S12, yielding a mixture of mono- and bismethylthio derivatives. Finally, we present the 2.0 Å crystal structure of the central radical AdoMet and the C-terminal TRAM (tRNA methyltransferase 2 and MiaB) domains in apo-RimO. Although the core of the open triose-phosphate isomerase (TIM) barrel of the radical AdoMet domain was conserved, RimO showed differences in domain organization compared with other radical AdoMet enzymes. The unusually acidic TRAM domain, likely to bind the basic S12 protein, is located at the distal edge of the radical AdoMet domain. The basic S12 protein substrate is likely to bind RimO through interactions with both the TRAM domain and the concave surface of the incomplete TIM barrel. These biophysical results provide a foundation for understanding the mechanism of methylthioation by radical AdoMet enzymes in the MiaB/RimO family.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>20007320</pmid><doi>10.1074/jbc.M109.065516</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8045-6328</orcidid><orcidid>https://orcid.org/0000-0002-8016-4747</orcidid><orcidid>https://orcid.org/0000-0002-5022-071X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2010-02, Vol.285 (8), p.5792-5801 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2820805 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | ACCURACY ADENOSINE BASIC BIOLOGICAL SCIENCES Chemical Sciences Coordination chemistry CRYSTAL STRUCTURE Crystallography, X-Ray ENZYMES Enzymology FUNCTIONALS GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE GENES IN VIVO ISOMERASES MACHINERY MIXTURES MODIFICATIONS national synchrotron light source PEPTIDES Protein Processing, Post-Translational - physiology Protein Structure, Tertiary PROTEINS RADICALS RESIDUES RESONANCE Ribosomal Proteins - chemistry Ribosomal Proteins - genetics Ribosomal Proteins - metabolism S-Adenosylmethionine - chemistry S-Adenosylmethionine - genetics S-Adenosylmethionine - metabolism SPECTROSCOPY Structure-Activity Relationship SUBSTRATES Sulfurtransferases - chemistry Sulfurtransferases - genetics Sulfurtransferases - metabolism Thermotoga maritima - enzymology Thermotoga maritima - genetics |
title | Post-translational Modification of Ribosomal Proteins: STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF RimO FROM THERMOTOGA MARITIMA, A RADICAL S-ADENOSYLMETHIONINE METHYLTHIOTRANSFERASE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post-translational%20Modification%20of%20Ribosomal%20Proteins:%20STRUCTURAL%20AND%20FUNCTIONAL%20CHARACTERIZATION%20OF%20RimO%20FROM%20THERMOTOGA%20MARITIMA,%20A%20RADICAL%20S-ADENOSYLMETHIONINE%20METHYLTHIOTRANSFERASE&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Arragain,%20Simon&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL)%20National%20Synchrotron%20Light%20Source&rft.date=2010-02-19&rft.volume=285&rft.issue=8&rft.spage=5792&rft.epage=5801&rft.pages=5792-5801&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.065516&rft_dat=%3Cproquest_pubme%3E733696085%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733696085&rft_id=info:pmid/20007320&rfr_iscdi=true |