In vivo selection of human embryonic stem cell-derived cells expressing methotrexate-resistant dihydrofolate reductase

Human embryonic stem cells (hESCs) provide a novel source of hematopoietic and other cell populations suitable for gene therapy applications. Preclinical studies to evaluate engraftment of hESC-derived hematopoietic cells transplanted into immunodeficient mice demonstrate only limited repopulation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene therapy 2010-02, Vol.17 (2), p.238-249
Hauptverfasser: Gori, J L, Tian, X, Swanson, D, Gunther, R, Shultz, L D, McIvor, R S, Kaufman, D S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 249
container_issue 2
container_start_page 238
container_title Gene therapy
container_volume 17
creator Gori, J L
Tian, X
Swanson, D
Gunther, R
Shultz, L D
McIvor, R S
Kaufman, D S
description Human embryonic stem cells (hESCs) provide a novel source of hematopoietic and other cell populations suitable for gene therapy applications. Preclinical studies to evaluate engraftment of hESC-derived hematopoietic cells transplanted into immunodeficient mice demonstrate only limited repopulation. Expression of a drug-resistance gene, such as Tyr22-dihydrofolate reductase (Tyr22-DHFR), coupled to methotrexate (MTX) chemotherapy has the potential to selectively increase the engraftment of gene-modified, hESC-derived cells in mouse xenografts. Here, we describe the generation of Tyr22-DHFR–GFP-expressing hESCs that maintain pluripotency, produce teratomas and can differentiate into MTXr-hemato-endothelial cells. We demonstrate that MTX administered to nonobese diabetic/severe combined immunodeficient/IL-2Rγc null (NSG) mice after injection of Tyr22-DHFR-hESC-derived cells significantly increases human CD34 + and CD45 + cell engraftment in the bone marrow (BM) and peripheral blood of transplanted MTX-treated mice. These results demonstrate that MTX treatment supports selective, long-term engraftment of Tyr22-DHFR cells in vivo , and provides a novel approach for combined human cell and gene therapy.
doi_str_mv 10.1038/gt.2009.131
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2820606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A219449555</galeid><sourcerecordid>A219449555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626t-726b19273f6df5d60b76b8f4eae348200d0006428fd6a0fbdc56169aa2708f033</originalsourceid><addsrcrecordid>eNp1kt2L1DAUxYso7uzqk-8SFBdEOyZpm7YvwrL4MbAg-PEc0vSmzdImY5IOM__9ps6wsyP6FHLvj3NzTm6SvCB4SXBWfejCkmJcL0lGHiULkpcsLXJGHycLXLM6LQmtzpJz728xxnlZ0afJGakrWmeELZLNyqCN3ljkYQAZtDXIKtRPozAIxsbtrNES-QAjkjAMaQtOb6D9c_EItmsH3mvToRFCb4ODrQiQxqL2QZiAWt3vWmeVHWIdOWgnGYSHZ8kTJQYPzw_nRfLr86ef11_Tm29fVtdXN6lklIW0pKwhNS0zxVpVtAw3JWsqlYOALK-i6zZ6YjmtVMsEVk0rC0ZYLQQtcaVwll0kH_e666kZoZVgghMDXzs9CrfjVmh-2jG6553dcBrVGWZR4PIg4OzvCXzgo_azeWHATp7TmDorMhzB13-Bt3ZyJprjlOU5K2pSVJF69V-KVGV8dk2PUp0YgGujYq5CznP5FSV1ntdFUUTq7QklrQmwDZ2YvOerH99P2csHbA9iCL23wzT_tz8F3-1B6az3DtR9VATzedt4F_i8bTz6jvTLh-ke2cN6ReDNARBeikE5YaT29xylGasyMo99v-d8bJkO3DGWf829A9Za6p0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218727092</pqid></control><display><type>article</type><title>In vivo selection of human embryonic stem cell-derived cells expressing methotrexate-resistant dihydrofolate reductase</title><source>MEDLINE</source><source>Free E-Journal (出版社公開部分のみ)</source><source>SpringerLink (Online service)</source><creator>Gori, J L ; Tian, X ; Swanson, D ; Gunther, R ; Shultz, L D ; McIvor, R S ; Kaufman, D S</creator><creatorcontrib>Gori, J L ; Tian, X ; Swanson, D ; Gunther, R ; Shultz, L D ; McIvor, R S ; Kaufman, D S</creatorcontrib><description>Human embryonic stem cells (hESCs) provide a novel source of hematopoietic and other cell populations suitable for gene therapy applications. Preclinical studies to evaluate engraftment of hESC-derived hematopoietic cells transplanted into immunodeficient mice demonstrate only limited repopulation. Expression of a drug-resistance gene, such as Tyr22-dihydrofolate reductase (Tyr22-DHFR), coupled to methotrexate (MTX) chemotherapy has the potential to selectively increase the engraftment of gene-modified, hESC-derived cells in mouse xenografts. Here, we describe the generation of Tyr22-DHFR–GFP-expressing hESCs that maintain pluripotency, produce teratomas and can differentiate into MTXr-hemato-endothelial cells. We demonstrate that MTX administered to nonobese diabetic/severe combined immunodeficient/IL-2Rγc null (NSG) mice after injection of Tyr22-DHFR-hESC-derived cells significantly increases human CD34 + and CD45 + cell engraftment in the bone marrow (BM) and peripheral blood of transplanted MTX-treated mice. These results demonstrate that MTX treatment supports selective, long-term engraftment of Tyr22-DHFR cells in vivo , and provides a novel approach for combined human cell and gene therapy.</description><identifier>ISSN: 0969-7128</identifier><identifier>EISSN: 1476-5462</identifier><identifier>DOI: 10.1038/gt.2009.131</identifier><identifier>PMID: 19829316</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Animals ; Applied cell therapy and gene therapy ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedicine ; Biotechnology ; Bone Marrow ; Bone marrow transplantation ; CD34 antigen ; CD45 antigen ; Cell Biology ; Cell Differentiation ; Cell Line ; Chemotherapy ; Diabetes mellitus ; Dihydrofolate reductase ; Drug Resistance ; Embryo cells ; Embryonic stem cells ; Embryonic Stem Cells - metabolism ; Embryos ; Endothelial cells ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Gene Therapy ; Genetic aspects ; Genetic Therapy - methods ; Graft Survival ; Health aspects ; Health. Pharmaceutical industry ; Human Genetics ; Humans ; Immunodeficiency ; Industrial applications and implications. Economical aspects ; Interleukin 2 receptors ; Medical sciences ; Methotrexate ; Methotrexate - pharmacology ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Nanotechnology ; original-article ; Peripheral blood ; Physiological aspects ; Pluripotency ; Rodents ; Stem cell transplantation ; Stem Cell Transplantation - methods ; Stem cells ; Teratoma - genetics ; Tetrahydrofolate Dehydrogenase - genetics ; Tetrahydrofolate Dehydrogenase - metabolism ; Transfusions. Complications. Transfusion reactions. Cell and gene therapy ; Xenografts</subject><ispartof>Gene therapy, 2010-02, Vol.17 (2), p.238-249</ispartof><rights>Macmillan Publishers Limited 2010</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 2010</rights><rights>Macmillan Publishers Limited 2010.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c626t-726b19273f6df5d60b76b8f4eae348200d0006428fd6a0fbdc56169aa2708f033</citedby><cites>FETCH-LOGICAL-c626t-726b19273f6df5d60b76b8f4eae348200d0006428fd6a0fbdc56169aa2708f033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/gt.2009.131$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/gt.2009.131$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22368315$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19829316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gori, J L</creatorcontrib><creatorcontrib>Tian, X</creatorcontrib><creatorcontrib>Swanson, D</creatorcontrib><creatorcontrib>Gunther, R</creatorcontrib><creatorcontrib>Shultz, L D</creatorcontrib><creatorcontrib>McIvor, R S</creatorcontrib><creatorcontrib>Kaufman, D S</creatorcontrib><title>In vivo selection of human embryonic stem cell-derived cells expressing methotrexate-resistant dihydrofolate reductase</title><title>Gene therapy</title><addtitle>Gene Ther</addtitle><addtitle>Gene Ther</addtitle><description>Human embryonic stem cells (hESCs) provide a novel source of hematopoietic and other cell populations suitable for gene therapy applications. Preclinical studies to evaluate engraftment of hESC-derived hematopoietic cells transplanted into immunodeficient mice demonstrate only limited repopulation. Expression of a drug-resistance gene, such as Tyr22-dihydrofolate reductase (Tyr22-DHFR), coupled to methotrexate (MTX) chemotherapy has the potential to selectively increase the engraftment of gene-modified, hESC-derived cells in mouse xenografts. Here, we describe the generation of Tyr22-DHFR–GFP-expressing hESCs that maintain pluripotency, produce teratomas and can differentiate into MTXr-hemato-endothelial cells. We demonstrate that MTX administered to nonobese diabetic/severe combined immunodeficient/IL-2Rγc null (NSG) mice after injection of Tyr22-DHFR-hESC-derived cells significantly increases human CD34 + and CD45 + cell engraftment in the bone marrow (BM) and peripheral blood of transplanted MTX-treated mice. These results demonstrate that MTX treatment supports selective, long-term engraftment of Tyr22-DHFR cells in vivo , and provides a novel approach for combined human cell and gene therapy.</description><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Animals</subject><subject>Applied cell therapy and gene therapy</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Bone Marrow</subject><subject>Bone marrow transplantation</subject><subject>CD34 antigen</subject><subject>CD45 antigen</subject><subject>Cell Biology</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Chemotherapy</subject><subject>Diabetes mellitus</subject><subject>Dihydrofolate reductase</subject><subject>Drug Resistance</subject><subject>Embryo cells</subject><subject>Embryonic stem cells</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Embryos</subject><subject>Endothelial cells</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Gene Therapy</subject><subject>Genetic aspects</subject><subject>Genetic Therapy - methods</subject><subject>Graft Survival</subject><subject>Health aspects</subject><subject>Health. Pharmaceutical industry</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Immunodeficiency</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Interleukin 2 receptors</subject><subject>Medical sciences</subject><subject>Methotrexate</subject><subject>Methotrexate - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>Nanotechnology</subject><subject>original-article</subject><subject>Peripheral blood</subject><subject>Physiological aspects</subject><subject>Pluripotency</subject><subject>Rodents</subject><subject>Stem cell transplantation</subject><subject>Stem Cell Transplantation - methods</subject><subject>Stem cells</subject><subject>Teratoma - genetics</subject><subject>Tetrahydrofolate Dehydrogenase - genetics</subject><subject>Tetrahydrofolate Dehydrogenase - metabolism</subject><subject>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</subject><subject>Xenografts</subject><issn>0969-7128</issn><issn>1476-5462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kt2L1DAUxYso7uzqk-8SFBdEOyZpm7YvwrL4MbAg-PEc0vSmzdImY5IOM__9ps6wsyP6FHLvj3NzTm6SvCB4SXBWfejCkmJcL0lGHiULkpcsLXJGHycLXLM6LQmtzpJz728xxnlZ0afJGakrWmeELZLNyqCN3ljkYQAZtDXIKtRPozAIxsbtrNES-QAjkjAMaQtOb6D9c_EItmsH3mvToRFCb4ODrQiQxqL2QZiAWt3vWmeVHWIdOWgnGYSHZ8kTJQYPzw_nRfLr86ef11_Tm29fVtdXN6lklIW0pKwhNS0zxVpVtAw3JWsqlYOALK-i6zZ6YjmtVMsEVk0rC0ZYLQQtcaVwll0kH_e666kZoZVgghMDXzs9CrfjVmh-2jG6553dcBrVGWZR4PIg4OzvCXzgo_azeWHATp7TmDorMhzB13-Bt3ZyJprjlOU5K2pSVJF69V-KVGV8dk2PUp0YgGujYq5CznP5FSV1ntdFUUTq7QklrQmwDZ2YvOerH99P2csHbA9iCL23wzT_tz8F3-1B6az3DtR9VATzedt4F_i8bTz6jvTLh-ke2cN6ReDNARBeikE5YaT29xylGasyMo99v-d8bJkO3DGWf829A9Za6p0</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Gori, J L</creator><creator>Tian, X</creator><creator>Swanson, D</creator><creator>Gunther, R</creator><creator>Shultz, L D</creator><creator>McIvor, R S</creator><creator>Kaufman, D S</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>PRINS</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20100201</creationdate><title>In vivo selection of human embryonic stem cell-derived cells expressing methotrexate-resistant dihydrofolate reductase</title><author>Gori, J L ; Tian, X ; Swanson, D ; Gunther, R ; Shultz, L D ; McIvor, R S ; Kaufman, D S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626t-726b19273f6df5d60b76b8f4eae348200d0006428fd6a0fbdc56169aa2708f033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Animals</topic><topic>Applied cell therapy and gene therapy</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Bone Marrow</topic><topic>Bone marrow transplantation</topic><topic>CD34 antigen</topic><topic>CD45 antigen</topic><topic>Cell Biology</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Chemotherapy</topic><topic>Diabetes mellitus</topic><topic>Dihydrofolate reductase</topic><topic>Drug Resistance</topic><topic>Embryo cells</topic><topic>Embryonic stem cells</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Embryos</topic><topic>Endothelial cells</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Gene Therapy</topic><topic>Genetic aspects</topic><topic>Genetic Therapy - methods</topic><topic>Graft Survival</topic><topic>Health aspects</topic><topic>Health. Pharmaceutical industry</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Immunodeficiency</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Interleukin 2 receptors</topic><topic>Medical sciences</topic><topic>Methotrexate</topic><topic>Methotrexate - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>Nanotechnology</topic><topic>original-article</topic><topic>Peripheral blood</topic><topic>Physiological aspects</topic><topic>Pluripotency</topic><topic>Rodents</topic><topic>Stem cell transplantation</topic><topic>Stem Cell Transplantation - methods</topic><topic>Stem cells</topic><topic>Teratoma - genetics</topic><topic>Tetrahydrofolate Dehydrogenase - genetics</topic><topic>Tetrahydrofolate Dehydrogenase - metabolism</topic><topic>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gori, J L</creatorcontrib><creatorcontrib>Tian, X</creatorcontrib><creatorcontrib>Swanson, D</creatorcontrib><creatorcontrib>Gunther, R</creatorcontrib><creatorcontrib>Shultz, L D</creatorcontrib><creatorcontrib>McIvor, R S</creatorcontrib><creatorcontrib>Kaufman, D S</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest_Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>ProQuest Central China</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gori, J L</au><au>Tian, X</au><au>Swanson, D</au><au>Gunther, R</au><au>Shultz, L D</au><au>McIvor, R S</au><au>Kaufman, D S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo selection of human embryonic stem cell-derived cells expressing methotrexate-resistant dihydrofolate reductase</atitle><jtitle>Gene therapy</jtitle><stitle>Gene Ther</stitle><addtitle>Gene Ther</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>17</volume><issue>2</issue><spage>238</spage><epage>249</epage><pages>238-249</pages><issn>0969-7128</issn><eissn>1476-5462</eissn><abstract>Human embryonic stem cells (hESCs) provide a novel source of hematopoietic and other cell populations suitable for gene therapy applications. Preclinical studies to evaluate engraftment of hESC-derived hematopoietic cells transplanted into immunodeficient mice demonstrate only limited repopulation. Expression of a drug-resistance gene, such as Tyr22-dihydrofolate reductase (Tyr22-DHFR), coupled to methotrexate (MTX) chemotherapy has the potential to selectively increase the engraftment of gene-modified, hESC-derived cells in mouse xenografts. Here, we describe the generation of Tyr22-DHFR–GFP-expressing hESCs that maintain pluripotency, produce teratomas and can differentiate into MTXr-hemato-endothelial cells. We demonstrate that MTX administered to nonobese diabetic/severe combined immunodeficient/IL-2Rγc null (NSG) mice after injection of Tyr22-DHFR-hESC-derived cells significantly increases human CD34 + and CD45 + cell engraftment in the bone marrow (BM) and peripheral blood of transplanted MTX-treated mice. These results demonstrate that MTX treatment supports selective, long-term engraftment of Tyr22-DHFR cells in vivo , and provides a novel approach for combined human cell and gene therapy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>19829316</pmid><doi>10.1038/gt.2009.131</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-7128
ispartof Gene therapy, 2010-02, Vol.17 (2), p.238-249
issn 0969-7128
1476-5462
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2820606
source MEDLINE; Free E-Journal (出版社公開部分のみ); SpringerLink (Online service)
subjects Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Animals
Applied cell therapy and gene therapy
Biological and medical sciences
Biomedical and Life Sciences
Biomedicine
Biotechnology
Bone Marrow
Bone marrow transplantation
CD34 antigen
CD45 antigen
Cell Biology
Cell Differentiation
Cell Line
Chemotherapy
Diabetes mellitus
Dihydrofolate reductase
Drug Resistance
Embryo cells
Embryonic stem cells
Embryonic Stem Cells - metabolism
Embryos
Endothelial cells
Fundamental and applied biological sciences. Psychology
Gene Expression
Gene Therapy
Genetic aspects
Genetic Therapy - methods
Graft Survival
Health aspects
Health. Pharmaceutical industry
Human Genetics
Humans
Immunodeficiency
Industrial applications and implications. Economical aspects
Interleukin 2 receptors
Medical sciences
Methotrexate
Methotrexate - pharmacology
Mice
Mice, Inbred NOD
Mice, SCID
Nanotechnology
original-article
Peripheral blood
Physiological aspects
Pluripotency
Rodents
Stem cell transplantation
Stem Cell Transplantation - methods
Stem cells
Teratoma - genetics
Tetrahydrofolate Dehydrogenase - genetics
Tetrahydrofolate Dehydrogenase - metabolism
Transfusions. Complications. Transfusion reactions. Cell and gene therapy
Xenografts
title In vivo selection of human embryonic stem cell-derived cells expressing methotrexate-resistant dihydrofolate reductase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20selection%20of%20human%20embryonic%20stem%20cell-derived%20cells%20expressing%20methotrexate-resistant%20dihydrofolate%20reductase&rft.jtitle=Gene%20therapy&rft.au=Gori,%20J%20L&rft.date=2010-02-01&rft.volume=17&rft.issue=2&rft.spage=238&rft.epage=249&rft.pages=238-249&rft.issn=0969-7128&rft.eissn=1476-5462&rft_id=info:doi/10.1038/gt.2009.131&rft_dat=%3Cgale_pubme%3EA219449555%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218727092&rft_id=info:pmid/19829316&rft_galeid=A219449555&rfr_iscdi=true