White matter integrity and cortical metabolic associations in aging and dementia

Abstract Background Studies show that white matter hyperintensities, regardless of location, primarily affect frontal lobe metabolism and function. This report investigated how regional white matter integrity (measured as fractional anisotropy [FA]) relates to brain metabolism, to unravel the comple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alzheimer's & dementia 2010, Vol.6 (1), p.54-62
Hauptverfasser: Kuczynski, Beth, Targan, Elizabeth, Madison, Cindee, Weiner, Michael, Zhang, Yu, Reed, Bruce, Chui, Helena C, Jagust, William
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background Studies show that white matter hyperintensities, regardless of location, primarily affect frontal lobe metabolism and function. This report investigated how regional white matter integrity (measured as fractional anisotropy [FA]) relates to brain metabolism, to unravel the complex relationship between white matter changes and brain metabolism. Objective To elucidate the relationship between white matter integrity and gray matter metabolism using diffusion tensor imaging and fluorodeoxyglucose-positron emission tomography in a cohort of 16 subjects ranging from normal to demented (age, >55 years). Methods Mean FA values from white matter regions underlying the medial prefrontal, inferior-lateral prefrontal, parietal association, and posterior temporal areas and the corpus callosum were regressed with glucose metabolism (by positron emission tomography), using statistical parametric mapping ( P < 0.005; voxel cluster, >100). Regional cerebral glucose metabolism was the primary outcome measure. According to our hypothesis, those hypometabolic cortical regions affected by Alzheimer's disease would correlate with a lower FA of associated tracks. Results Our data show inter-regional positive correlations between FA and gray matter metabolism for the prefrontal cortex, temporal, and parietal regions. Our results suggest that left prefrontal FA is associated with left temporal and parietal metabolism. Further, left posterior temporal FA correlated with left prefrontal metabolism. Finally, bilateral parietal FA correlated with bilateral temporal metabolism. Conclusions These regions are associated with cognitive processes affected in Alzheimer's disease and cerebrovascular disease, suggesting a link with white matter degeneration and gray matter hypometabolism. Therefore, cortical function and white matter degeneration are related in aging and dementia.
ISSN:1552-5260
1552-5279
DOI:10.1016/j.jalz.2009.04.1228