Impact of endogenous nitric oxide on microglial cell energy metabolism and labile iron pool

Microglial activation is common in several neurodegenerative disorders. In the present study, we used the murine BV‐2 microglial cell line stimulated with γ‐interferon and lipopolysaccharide to gain new insights into the effects of endogenously produced NO on mitochondrial respiratory capacity, iron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry 2002-05, Vol.81 (3), p.615-623
Hauptverfasser: Chénais, Benoît, Morjani, Hamid, Drapier, Jean‐Claude
Format: Artikel
Sprache:eng
Schlagworte:
RNA
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 623
container_issue 3
container_start_page 615
container_title Journal of neurochemistry
container_volume 81
creator Chénais, Benoît
Morjani, Hamid
Drapier, Jean‐Claude
description Microglial activation is common in several neurodegenerative disorders. In the present study, we used the murine BV‐2 microglial cell line stimulated with γ‐interferon and lipopolysaccharide to gain new insights into the effects of endogenously produced NO on mitochondrial respiratory capacity, iron regulatory protein activity, and redox‐active iron level. Using polarographic measurement of respiration of both intact and digitonin‐permeabilized cells, and spectrophotometric determination of individual respiratory chain complex activity, we showed that in addition to the reversible inhibition of cytochrome‐c oxidase, long‐term endogenous NO production reduced complex‐I and complex‐II activities in an irreversible manner. As a consequence, the cellular ATP level was decreased in NO‐producing cells, whereas ATPase activity was unaffected. We show that NO up‐regulates RNA‐binding of iron regulatory protein 1 in microglial cells, and strongly reduces the labile iron pool. Together these results point to a contribution of NO derived from inflammatory microglia to the misregulation of energy‐producing reactions and iron metabolism, often associated with the pathogenesis of neurodegenerative disorders.
doi_str_mv 10.1046/j.1471-4159.2002.00864.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2816204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18407810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5654-c962717bc838b7b2a2c0cfb366a996c4755f9db81caea49cd0898ce61dfde2a43</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS0EotvCX0C-gMQhweM4jnMAqVpRWrSCC5w4WI7jbL1y4sXOlt1_j82uWuACJ1ue741n3kMIAymBMP5mUwJroGBQtyUlhJaECM7K_SO0uC88RotUoUVFGD1D5zFuCAHOODxFZ0AJr3lDFujbzbhVesZ-wGbq_dpMfhfxZOdgNfZ72xvsJzxaHfzaWeWwNs4l1IT1AY9mVp13No5YTT12qrPOYBuSYuu9e4aeDMpF8_x0XqCvV--_LK-L1ecPN8vLVaFrXrNCt5w20HRaVKJrOqqoJnroKs5V23LNmroe2r4ToJVRrNU9Ea3QhkM_9IYqVl2gd8e-2103ml6baQ7KyW2wowoH6ZWVf1YmeyvX_k5SAZyS3OD1scHtX7Lry5XMbyR5SFuAO0jsq9NnwX_fmTjL0cZsippMsk42ICgFVv8TBMFII4AkUBzB5HGMwQz3IwCROW65kTlVmVOVOW75K265T9IXv2_-IDzlm4CXJ0BFrdwQ1KRtfOAqXjeC563eHrkfKcHDfw8gP35a5lv1E5iDxvM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18407810</pqid></control><display><type>article</type><title>Impact of endogenous nitric oxide on microglial cell energy metabolism and labile iron pool</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Chénais, Benoît ; Morjani, Hamid ; Drapier, Jean‐Claude</creator><creatorcontrib>Chénais, Benoît ; Morjani, Hamid ; Drapier, Jean‐Claude</creatorcontrib><description>Microglial activation is common in several neurodegenerative disorders. In the present study, we used the murine BV‐2 microglial cell line stimulated with γ‐interferon and lipopolysaccharide to gain new insights into the effects of endogenously produced NO on mitochondrial respiratory capacity, iron regulatory protein activity, and redox‐active iron level. Using polarographic measurement of respiration of both intact and digitonin‐permeabilized cells, and spectrophotometric determination of individual respiratory chain complex activity, we showed that in addition to the reversible inhibition of cytochrome‐c oxidase, long‐term endogenous NO production reduced complex‐I and complex‐II activities in an irreversible manner. As a consequence, the cellular ATP level was decreased in NO‐producing cells, whereas ATPase activity was unaffected. We show that NO up‐regulates RNA‐binding of iron regulatory protein 1 in microglial cells, and strongly reduces the labile iron pool. Together these results point to a contribution of NO derived from inflammatory microglia to the misregulation of energy‐producing reactions and iron metabolism, often associated with the pathogenesis of neurodegenerative disorders.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1046/j.1471-4159.2002.00864.x</identifier><identifier>PMID: 12065670</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Aconitate Hydratase ; Aconitate Hydratase - antagonists &amp; inhibitors ; Aconitate Hydratase - metabolism ; Adenosine Triphosphate ; Adenosine Triphosphate - metabolism ; Animals ; Biochemistry, Molecular Biology ; Biological and medical sciences ; Cell Line ; Cell Respiration ; Cell Respiration - drug effects ; Cytochrome c Group ; Cytochrome c Group - metabolism ; Electron Transport ; Electron Transport - physiology ; Electron Transport Complex I ; Electron Transport Complex II ; Energy Metabolism ; Energy Metabolism - drug effects ; Energy Metabolism - physiology ; Enzyme Activation ; Enzyme Activation - drug effects ; Fundamental and applied biological sciences. Psychology ; Interferon-gamma ; Interferon-gamma - pharmacology ; Intracellular Fluid ; Intracellular Fluid - metabolism ; Iron ; Iron - metabolism ; Iron-Regulatory Proteins ; Iron-Sulfur Proteins ; Iron-Sulfur Proteins - metabolism ; Isolated neuron and nerve. Neuroglia ; labile iron pool ; Life Sciences ; Lipopolysaccharides ; Lipopolysaccharides - pharmacology ; Mice ; Microglia ; Microglia - cytology ; Microglia - drug effects ; Microglia - metabolism ; microglial cells ; Multienzyme Complexes ; Multienzyme Complexes - antagonists &amp; inhibitors ; Multienzyme Complexes - metabolism ; NADH, NADPH Oxidoreductases ; NADH, NADPH Oxidoreductases - antagonists &amp; inhibitors ; NADH, NADPH Oxidoreductases - metabolism ; neurodegenerative diseases ; Nitric Oxide ; Nitric Oxide - metabolism ; Nitric Oxide - pharmacology ; Oxidoreductases ; Oxidoreductases - antagonists &amp; inhibitors ; Oxidoreductases - metabolism ; Protein Binding ; Protein Binding - physiology ; respiratory chain ; RNA ; RNA - metabolism ; RNA-Binding Proteins ; RNA-Binding Proteins - metabolism ; Succinate Dehydrogenase ; Succinate Dehydrogenase - antagonists &amp; inhibitors ; Succinate Dehydrogenase - metabolism ; Vertebrates: nervous system and sense organs</subject><ispartof>Journal of neurochemistry, 2002-05, Vol.81 (3), p.615-623</ispartof><rights>2002 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5654-c962717bc838b7b2a2c0cfb366a996c4755f9db81caea49cd0898ce61dfde2a43</citedby><cites>FETCH-LOGICAL-c5654-c962717bc838b7b2a2c0cfb366a996c4755f9db81caea49cd0898ce61dfde2a43</cites><orcidid>0000-0003-2441-1966 ; 0000-0003-1959-7807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1471-4159.2002.00864.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1471-4159.2002.00864.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13657861$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12065670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00422911$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chénais, Benoît</creatorcontrib><creatorcontrib>Morjani, Hamid</creatorcontrib><creatorcontrib>Drapier, Jean‐Claude</creatorcontrib><title>Impact of endogenous nitric oxide on microglial cell energy metabolism and labile iron pool</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>Microglial activation is common in several neurodegenerative disorders. In the present study, we used the murine BV‐2 microglial cell line stimulated with γ‐interferon and lipopolysaccharide to gain new insights into the effects of endogenously produced NO on mitochondrial respiratory capacity, iron regulatory protein activity, and redox‐active iron level. Using polarographic measurement of respiration of both intact and digitonin‐permeabilized cells, and spectrophotometric determination of individual respiratory chain complex activity, we showed that in addition to the reversible inhibition of cytochrome‐c oxidase, long‐term endogenous NO production reduced complex‐I and complex‐II activities in an irreversible manner. As a consequence, the cellular ATP level was decreased in NO‐producing cells, whereas ATPase activity was unaffected. We show that NO up‐regulates RNA‐binding of iron regulatory protein 1 in microglial cells, and strongly reduces the labile iron pool. Together these results point to a contribution of NO derived from inflammatory microglia to the misregulation of energy‐producing reactions and iron metabolism, often associated with the pathogenesis of neurodegenerative disorders.</description><subject>Aconitate Hydratase</subject><subject>Aconitate Hydratase - antagonists &amp; inhibitors</subject><subject>Aconitate Hydratase - metabolism</subject><subject>Adenosine Triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological and medical sciences</subject><subject>Cell Line</subject><subject>Cell Respiration</subject><subject>Cell Respiration - drug effects</subject><subject>Cytochrome c Group</subject><subject>Cytochrome c Group - metabolism</subject><subject>Electron Transport</subject><subject>Electron Transport - physiology</subject><subject>Electron Transport Complex I</subject><subject>Electron Transport Complex II</subject><subject>Energy Metabolism</subject><subject>Energy Metabolism - drug effects</subject><subject>Energy Metabolism - physiology</subject><subject>Enzyme Activation</subject><subject>Enzyme Activation - drug effects</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Interferon-gamma</subject><subject>Interferon-gamma - pharmacology</subject><subject>Intracellular Fluid</subject><subject>Intracellular Fluid - metabolism</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Iron-Regulatory Proteins</subject><subject>Iron-Sulfur Proteins</subject><subject>Iron-Sulfur Proteins - metabolism</subject><subject>Isolated neuron and nerve. Neuroglia</subject><subject>labile iron pool</subject><subject>Life Sciences</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Mice</subject><subject>Microglia</subject><subject>Microglia - cytology</subject><subject>Microglia - drug effects</subject><subject>Microglia - metabolism</subject><subject>microglial cells</subject><subject>Multienzyme Complexes</subject><subject>Multienzyme Complexes - antagonists &amp; inhibitors</subject><subject>Multienzyme Complexes - metabolism</subject><subject>NADH, NADPH Oxidoreductases</subject><subject>NADH, NADPH Oxidoreductases - antagonists &amp; inhibitors</subject><subject>NADH, NADPH Oxidoreductases - metabolism</subject><subject>neurodegenerative diseases</subject><subject>Nitric Oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitric Oxide - pharmacology</subject><subject>Oxidoreductases</subject><subject>Oxidoreductases - antagonists &amp; inhibitors</subject><subject>Oxidoreductases - metabolism</subject><subject>Protein Binding</subject><subject>Protein Binding - physiology</subject><subject>respiratory chain</subject><subject>RNA</subject><subject>RNA - metabolism</subject><subject>RNA-Binding Proteins</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Succinate Dehydrogenase</subject><subject>Succinate Dehydrogenase - antagonists &amp; inhibitors</subject><subject>Succinate Dehydrogenase - metabolism</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUFv1DAQhS0EotvCX0C-gMQhweM4jnMAqVpRWrSCC5w4WI7jbL1y4sXOlt1_j82uWuACJ1ue741n3kMIAymBMP5mUwJroGBQtyUlhJaECM7K_SO0uC88RotUoUVFGD1D5zFuCAHOODxFZ0AJr3lDFujbzbhVesZ-wGbq_dpMfhfxZOdgNfZ72xvsJzxaHfzaWeWwNs4l1IT1AY9mVp13No5YTT12qrPOYBuSYuu9e4aeDMpF8_x0XqCvV--_LK-L1ecPN8vLVaFrXrNCt5w20HRaVKJrOqqoJnroKs5V23LNmroe2r4ToJVRrNU9Ea3QhkM_9IYqVl2gd8e-2103ml6baQ7KyW2wowoH6ZWVf1YmeyvX_k5SAZyS3OD1scHtX7Lry5XMbyR5SFuAO0jsq9NnwX_fmTjL0cZsippMsk42ICgFVv8TBMFII4AkUBzB5HGMwQz3IwCROW65kTlVmVOVOW75K265T9IXv2_-IDzlm4CXJ0BFrdwQ1KRtfOAqXjeC563eHrkfKcHDfw8gP35a5lv1E5iDxvM</recordid><startdate>200205</startdate><enddate>200205</enddate><creator>Chénais, Benoît</creator><creator>Morjani, Hamid</creator><creator>Drapier, Jean‐Claude</creator><general>Blackwell Science Ltd</general><general>Blackwell</general><general>Wiley</general><general>Blackwell Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2441-1966</orcidid><orcidid>https://orcid.org/0000-0003-1959-7807</orcidid></search><sort><creationdate>200205</creationdate><title>Impact of endogenous nitric oxide on microglial cell energy metabolism and labile iron pool</title><author>Chénais, Benoît ; Morjani, Hamid ; Drapier, Jean‐Claude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5654-c962717bc838b7b2a2c0cfb366a996c4755f9db81caea49cd0898ce61dfde2a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aconitate Hydratase</topic><topic>Aconitate Hydratase - antagonists &amp; inhibitors</topic><topic>Aconitate Hydratase - metabolism</topic><topic>Adenosine Triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological and medical sciences</topic><topic>Cell Line</topic><topic>Cell Respiration</topic><topic>Cell Respiration - drug effects</topic><topic>Cytochrome c Group</topic><topic>Cytochrome c Group - metabolism</topic><topic>Electron Transport</topic><topic>Electron Transport - physiology</topic><topic>Electron Transport Complex I</topic><topic>Electron Transport Complex II</topic><topic>Energy Metabolism</topic><topic>Energy Metabolism - drug effects</topic><topic>Energy Metabolism - physiology</topic><topic>Enzyme Activation</topic><topic>Enzyme Activation - drug effects</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Interferon-gamma</topic><topic>Interferon-gamma - pharmacology</topic><topic>Intracellular Fluid</topic><topic>Intracellular Fluid - metabolism</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Iron-Regulatory Proteins</topic><topic>Iron-Sulfur Proteins</topic><topic>Iron-Sulfur Proteins - metabolism</topic><topic>Isolated neuron and nerve. Neuroglia</topic><topic>labile iron pool</topic><topic>Life Sciences</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Mice</topic><topic>Microglia</topic><topic>Microglia - cytology</topic><topic>Microglia - drug effects</topic><topic>Microglia - metabolism</topic><topic>microglial cells</topic><topic>Multienzyme Complexes</topic><topic>Multienzyme Complexes - antagonists &amp; inhibitors</topic><topic>Multienzyme Complexes - metabolism</topic><topic>NADH, NADPH Oxidoreductases</topic><topic>NADH, NADPH Oxidoreductases - antagonists &amp; inhibitors</topic><topic>NADH, NADPH Oxidoreductases - metabolism</topic><topic>neurodegenerative diseases</topic><topic>Nitric Oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitric Oxide - pharmacology</topic><topic>Oxidoreductases</topic><topic>Oxidoreductases - antagonists &amp; inhibitors</topic><topic>Oxidoreductases - metabolism</topic><topic>Protein Binding</topic><topic>Protein Binding - physiology</topic><topic>respiratory chain</topic><topic>RNA</topic><topic>RNA - metabolism</topic><topic>RNA-Binding Proteins</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Succinate Dehydrogenase</topic><topic>Succinate Dehydrogenase - antagonists &amp; inhibitors</topic><topic>Succinate Dehydrogenase - metabolism</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chénais, Benoît</creatorcontrib><creatorcontrib>Morjani, Hamid</creatorcontrib><creatorcontrib>Drapier, Jean‐Claude</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chénais, Benoît</au><au>Morjani, Hamid</au><au>Drapier, Jean‐Claude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of endogenous nitric oxide on microglial cell energy metabolism and labile iron pool</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2002-05</date><risdate>2002</risdate><volume>81</volume><issue>3</issue><spage>615</spage><epage>623</epage><pages>615-623</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>Microglial activation is common in several neurodegenerative disorders. In the present study, we used the murine BV‐2 microglial cell line stimulated with γ‐interferon and lipopolysaccharide to gain new insights into the effects of endogenously produced NO on mitochondrial respiratory capacity, iron regulatory protein activity, and redox‐active iron level. Using polarographic measurement of respiration of both intact and digitonin‐permeabilized cells, and spectrophotometric determination of individual respiratory chain complex activity, we showed that in addition to the reversible inhibition of cytochrome‐c oxidase, long‐term endogenous NO production reduced complex‐I and complex‐II activities in an irreversible manner. As a consequence, the cellular ATP level was decreased in NO‐producing cells, whereas ATPase activity was unaffected. We show that NO up‐regulates RNA‐binding of iron regulatory protein 1 in microglial cells, and strongly reduces the labile iron pool. Together these results point to a contribution of NO derived from inflammatory microglia to the misregulation of energy‐producing reactions and iron metabolism, often associated with the pathogenesis of neurodegenerative disorders.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>12065670</pmid><doi>10.1046/j.1471-4159.2002.00864.x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2441-1966</orcidid><orcidid>https://orcid.org/0000-0003-1959-7807</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3042
ispartof Journal of neurochemistry, 2002-05, Vol.81 (3), p.615-623
issn 0022-3042
1471-4159
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2816204
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Aconitate Hydratase
Aconitate Hydratase - antagonists & inhibitors
Aconitate Hydratase - metabolism
Adenosine Triphosphate
Adenosine Triphosphate - metabolism
Animals
Biochemistry, Molecular Biology
Biological and medical sciences
Cell Line
Cell Respiration
Cell Respiration - drug effects
Cytochrome c Group
Cytochrome c Group - metabolism
Electron Transport
Electron Transport - physiology
Electron Transport Complex I
Electron Transport Complex II
Energy Metabolism
Energy Metabolism - drug effects
Energy Metabolism - physiology
Enzyme Activation
Enzyme Activation - drug effects
Fundamental and applied biological sciences. Psychology
Interferon-gamma
Interferon-gamma - pharmacology
Intracellular Fluid
Intracellular Fluid - metabolism
Iron
Iron - metabolism
Iron-Regulatory Proteins
Iron-Sulfur Proteins
Iron-Sulfur Proteins - metabolism
Isolated neuron and nerve. Neuroglia
labile iron pool
Life Sciences
Lipopolysaccharides
Lipopolysaccharides - pharmacology
Mice
Microglia
Microglia - cytology
Microglia - drug effects
Microglia - metabolism
microglial cells
Multienzyme Complexes
Multienzyme Complexes - antagonists & inhibitors
Multienzyme Complexes - metabolism
NADH, NADPH Oxidoreductases
NADH, NADPH Oxidoreductases - antagonists & inhibitors
NADH, NADPH Oxidoreductases - metabolism
neurodegenerative diseases
Nitric Oxide
Nitric Oxide - metabolism
Nitric Oxide - pharmacology
Oxidoreductases
Oxidoreductases - antagonists & inhibitors
Oxidoreductases - metabolism
Protein Binding
Protein Binding - physiology
respiratory chain
RNA
RNA - metabolism
RNA-Binding Proteins
RNA-Binding Proteins - metabolism
Succinate Dehydrogenase
Succinate Dehydrogenase - antagonists & inhibitors
Succinate Dehydrogenase - metabolism
Vertebrates: nervous system and sense organs
title Impact of endogenous nitric oxide on microglial cell energy metabolism and labile iron pool
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20endogenous%20nitric%20oxide%20on%20microglial%20cell%20energy%20metabolism%20and%20labile%20iron%20pool&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Ch%C3%A9nais,%20Beno%C3%AEt&rft.date=2002-05&rft.volume=81&rft.issue=3&rft.spage=615&rft.epage=623&rft.pages=615-623&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1046/j.1471-4159.2002.00864.x&rft_dat=%3Cproquest_pubme%3E18407810%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18407810&rft_id=info:pmid/12065670&rfr_iscdi=true