Gain-of-Function Mutation of Arabidopsis Lipid Transfer Protein 5 Disturbs Pollen Tube Tip Growth and Fertilization

During compatible pollination of the angiosperms, pollen tubes grow in the pistil transmitting tract (TT) and are guided to the ovule for fertilization. Lily (Lilium longiflorum) stigma/style Cys-rich adhesin (SCA), a plant lipid transfer protein (LTP), is a small, secreted peptide involved in polle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 2009-12, Vol.21 (12), p.3902-3914
Hauptverfasser: Chae, Keun, Kieslich, Chris A, Morikis, Dimitrios, Kim, Seung-Chul, Lord, Elizabeth M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3914
container_issue 12
container_start_page 3902
container_title The Plant cell
container_volume 21
creator Chae, Keun
Kieslich, Chris A
Morikis, Dimitrios
Kim, Seung-Chul
Lord, Elizabeth M
description During compatible pollination of the angiosperms, pollen tubes grow in the pistil transmitting tract (TT) and are guided to the ovule for fertilization. Lily (Lilium longiflorum) stigma/style Cys-rich adhesin (SCA), a plant lipid transfer protein (LTP), is a small, secreted peptide involved in pollen tube adhesion-mediated guidance. Here, we used a reverse genetic approach to study biological roles of Arabidopsis thaliana LTP5, a SCA-like LTP. The T-DNA insertional gain-of-function mutant plant for LTP5 (ltp5-1) exhibited ballooned pollen tubes, delayed pollen tube growth, and decreased numbers of fertilized eggs. Our reciprocal cross-pollination study revealed that ltp5-1 results in both male and female partial sterility. RT-PCR and β-glucuronidase analyses showed that LTP5 is present in pollen and the pistil TT in low levels. Pollen-targeted overexpression of either ltp5-1 or wild-type LTP5 resulted in defects in polar tip growth of pollen tubes and thereby decreased seed set, suggesting that mutant ltp5-1 acts as a dominant-active form of wild-type LTP5 in pollen tube growth. The ltp5-1 protein has additional hydrophobic C-terminal sequences, compared with LTP5. In our structural homology/molecular dynamics modeling, Tyr-91 in ltp5-1, replacing Val-91 in LTP5, was predicted to interact with Arg-45 and Tyr-81, which are known to interact with a lipid ligand in maize (Zea mays) LTP. Thus, Arabidopsis LTP5 plays a significant role in reproduction.
doi_str_mv 10.1105/tpc.109.070854
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2814499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40537558</jstor_id><sourcerecordid>40537558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-9325f0d0dbe3a2f679d1a7a9ef847d0dda3086046973fd7f6878d67854db40db3</originalsourceid><addsrcrecordid>eNpVkc9vFCEcxYnR2Fq9elOJ91n5NQNcTJrqriZrbOI28UaYAVo2U5gCY1P_emmnbvTEC-_zfXzDA-A1RiuMUfuhTMMKI7lCHImWPQHHuKWkIVL8fFo1YqhhXYuPwIuc9wghzLF8Do4IQowxKo5B3mgfmuia9RyG4mOA3-aiH0R08DTp3ps4ZZ_h1k_ewF3SITub4HmKxfoAW_jJ5zKnPsPzOI42wN3cW7jzE9ykeFuuoA4Grm0qfvS_H5JfgmdOj9m-ejxPwMX68-7sS7P9vvl6drptBkZIaSQlrUMGmd5STVzHpcGaa2mdYLxeG02R6BDrJKfOcNcJLkzH6zeYntUpegI-LrnT3F9bM9hQkh7VlPy1Tncqaq_-d4K_UpfxlyICMyZlDXj_GJDizWxzUfs4p1B3VgQLgTnntEKrBRpSzDlZd3gAI3XfkaodVS3V0lEdePvvWgf8bykVeLMA-1xiOvgMtZS37b3_bvGdjkpfJp_VxQ-CMK31Ss6EoH8AHNOh3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218817773</pqid></control><display><type>article</type><title>Gain-of-Function Mutation of Arabidopsis Lipid Transfer Protein 5 Disturbs Pollen Tube Tip Growth and Fertilization</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chae, Keun ; Kieslich, Chris A ; Morikis, Dimitrios ; Kim, Seung-Chul ; Lord, Elizabeth M</creator><creatorcontrib>Chae, Keun ; Kieslich, Chris A ; Morikis, Dimitrios ; Kim, Seung-Chul ; Lord, Elizabeth M</creatorcontrib><description>During compatible pollination of the angiosperms, pollen tubes grow in the pistil transmitting tract (TT) and are guided to the ovule for fertilization. Lily (Lilium longiflorum) stigma/style Cys-rich adhesin (SCA), a plant lipid transfer protein (LTP), is a small, secreted peptide involved in pollen tube adhesion-mediated guidance. Here, we used a reverse genetic approach to study biological roles of Arabidopsis thaliana LTP5, a SCA-like LTP. The T-DNA insertional gain-of-function mutant plant for LTP5 (ltp5-1) exhibited ballooned pollen tubes, delayed pollen tube growth, and decreased numbers of fertilized eggs. Our reciprocal cross-pollination study revealed that ltp5-1 results in both male and female partial sterility. RT-PCR and β-glucuronidase analyses showed that LTP5 is present in pollen and the pistil TT in low levels. Pollen-targeted overexpression of either ltp5-1 or wild-type LTP5 resulted in defects in polar tip growth of pollen tubes and thereby decreased seed set, suggesting that mutant ltp5-1 acts as a dominant-active form of wild-type LTP5 in pollen tube growth. The ltp5-1 protein has additional hydrophobic C-terminal sequences, compared with LTP5. In our structural homology/molecular dynamics modeling, Tyr-91 in ltp5-1, replacing Val-91 in LTP5, was predicted to interact with Arg-45 and Tyr-81, which are known to interact with a lipid ligand in maize (Zea mays) LTP. Thus, Arabidopsis LTP5 plays a significant role in reproduction.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.109.070854</identifier><identifier>PMID: 20044438</identifier><language>eng</language><publisher>England: American Society of Plant Biologists</publisher><subject>Amino Acid Sequence ; Antigens, Plant - genetics ; Antigens, Plant - metabolism ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Base Sequence ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cross-pollination ; DNA, Bacterial - genetics ; Fertilization - genetics ; Gene expression ; Gene Expression Regulation, Plant ; Lipids ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Insertional ; Mutation ; Ovules ; Phylogeny ; Plant cells ; Plant growth ; Plant Infertility - genetics ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - growth &amp; development ; Plants, Genetically Modified - metabolism ; Pollen ; Pollen Tube - growth &amp; development ; Pollen tubes ; Pollination ; Polymerase chain reaction ; Protein Structure, Tertiary ; RNA, Plant - genetics ; Seeds ; Sequence Alignment ; Sequence Homology, Amino Acid</subject><ispartof>The Plant cell, 2009-12, Vol.21 (12), p.3902-3914</ispartof><rights>Copyright 2010 American Society of Plant Biologists</rights><rights>Copyright American Society of Plant Biologists Dec 2009</rights><rights>Copyright © 2009, American Society of Plant Biologists 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-9325f0d0dbe3a2f679d1a7a9ef847d0dda3086046973fd7f6878d67854db40db3</citedby><cites>FETCH-LOGICAL-c422t-9325f0d0dbe3a2f679d1a7a9ef847d0dda3086046973fd7f6878d67854db40db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40537558$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40537558$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,781,785,804,886,27929,27930,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20044438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chae, Keun</creatorcontrib><creatorcontrib>Kieslich, Chris A</creatorcontrib><creatorcontrib>Morikis, Dimitrios</creatorcontrib><creatorcontrib>Kim, Seung-Chul</creatorcontrib><creatorcontrib>Lord, Elizabeth M</creatorcontrib><title>Gain-of-Function Mutation of Arabidopsis Lipid Transfer Protein 5 Disturbs Pollen Tube Tip Growth and Fertilization</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>During compatible pollination of the angiosperms, pollen tubes grow in the pistil transmitting tract (TT) and are guided to the ovule for fertilization. Lily (Lilium longiflorum) stigma/style Cys-rich adhesin (SCA), a plant lipid transfer protein (LTP), is a small, secreted peptide involved in pollen tube adhesion-mediated guidance. Here, we used a reverse genetic approach to study biological roles of Arabidopsis thaliana LTP5, a SCA-like LTP. The T-DNA insertional gain-of-function mutant plant for LTP5 (ltp5-1) exhibited ballooned pollen tubes, delayed pollen tube growth, and decreased numbers of fertilized eggs. Our reciprocal cross-pollination study revealed that ltp5-1 results in both male and female partial sterility. RT-PCR and β-glucuronidase analyses showed that LTP5 is present in pollen and the pistil TT in low levels. Pollen-targeted overexpression of either ltp5-1 or wild-type LTP5 resulted in defects in polar tip growth of pollen tubes and thereby decreased seed set, suggesting that mutant ltp5-1 acts as a dominant-active form of wild-type LTP5 in pollen tube growth. The ltp5-1 protein has additional hydrophobic C-terminal sequences, compared with LTP5. In our structural homology/molecular dynamics modeling, Tyr-91 in ltp5-1, replacing Val-91 in LTP5, was predicted to interact with Arg-45 and Tyr-81, which are known to interact with a lipid ligand in maize (Zea mays) LTP. Thus, Arabidopsis LTP5 plays a significant role in reproduction.</description><subject>Amino Acid Sequence</subject><subject>Antigens, Plant - genetics</subject><subject>Antigens, Plant - metabolism</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Base Sequence</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cross-pollination</subject><subject>DNA, Bacterial - genetics</subject><subject>Fertilization - genetics</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Lipids</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Insertional</subject><subject>Mutation</subject><subject>Ovules</subject><subject>Phylogeny</subject><subject>Plant cells</subject><subject>Plant growth</subject><subject>Plant Infertility - genetics</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - growth &amp; development</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Pollen</subject><subject>Pollen Tube - growth &amp; development</subject><subject>Pollen tubes</subject><subject>Pollination</subject><subject>Polymerase chain reaction</subject><subject>Protein Structure, Tertiary</subject><subject>RNA, Plant - genetics</subject><subject>Seeds</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpVkc9vFCEcxYnR2Fq9elOJ91n5NQNcTJrqriZrbOI28UaYAVo2U5gCY1P_emmnbvTEC-_zfXzDA-A1RiuMUfuhTMMKI7lCHImWPQHHuKWkIVL8fFo1YqhhXYuPwIuc9wghzLF8Do4IQowxKo5B3mgfmuia9RyG4mOA3-aiH0R08DTp3ps4ZZ_h1k_ewF3SITub4HmKxfoAW_jJ5zKnPsPzOI42wN3cW7jzE9ykeFuuoA4Grm0qfvS_H5JfgmdOj9m-ejxPwMX68-7sS7P9vvl6drptBkZIaSQlrUMGmd5STVzHpcGaa2mdYLxeG02R6BDrJKfOcNcJLkzH6zeYntUpegI-LrnT3F9bM9hQkh7VlPy1Tncqaq_-d4K_UpfxlyICMyZlDXj_GJDizWxzUfs4p1B3VgQLgTnntEKrBRpSzDlZd3gAI3XfkaodVS3V0lEdePvvWgf8bykVeLMA-1xiOvgMtZS37b3_bvGdjkpfJp_VxQ-CMK31Ss6EoH8AHNOh3Q</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Chae, Keun</creator><creator>Kieslich, Chris A</creator><creator>Morikis, Dimitrios</creator><creator>Kim, Seung-Chul</creator><creator>Lord, Elizabeth M</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QO</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>5PM</scope></search><sort><creationdate>20091201</creationdate><title>Gain-of-Function Mutation of Arabidopsis Lipid Transfer Protein 5 Disturbs Pollen Tube Tip Growth and Fertilization</title><author>Chae, Keun ; Kieslich, Chris A ; Morikis, Dimitrios ; Kim, Seung-Chul ; Lord, Elizabeth M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-9325f0d0dbe3a2f679d1a7a9ef847d0dda3086046973fd7f6878d67854db40db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Antigens, Plant - genetics</topic><topic>Antigens, Plant - metabolism</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Base Sequence</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cross-pollination</topic><topic>DNA, Bacterial - genetics</topic><topic>Fertilization - genetics</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Lipids</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Insertional</topic><topic>Mutation</topic><topic>Ovules</topic><topic>Phylogeny</topic><topic>Plant cells</topic><topic>Plant growth</topic><topic>Plant Infertility - genetics</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - growth &amp; development</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Pollen</topic><topic>Pollen Tube - growth &amp; development</topic><topic>Pollen tubes</topic><topic>Pollination</topic><topic>Polymerase chain reaction</topic><topic>Protein Structure, Tertiary</topic><topic>RNA, Plant - genetics</topic><topic>Seeds</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chae, Keun</creatorcontrib><creatorcontrib>Kieslich, Chris A</creatorcontrib><creatorcontrib>Morikis, Dimitrios</creatorcontrib><creatorcontrib>Kim, Seung-Chul</creatorcontrib><creatorcontrib>Lord, Elizabeth M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chae, Keun</au><au>Kieslich, Chris A</au><au>Morikis, Dimitrios</au><au>Kim, Seung-Chul</au><au>Lord, Elizabeth M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gain-of-Function Mutation of Arabidopsis Lipid Transfer Protein 5 Disturbs Pollen Tube Tip Growth and Fertilization</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>21</volume><issue>12</issue><spage>3902</spage><epage>3914</epage><pages>3902-3914</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>During compatible pollination of the angiosperms, pollen tubes grow in the pistil transmitting tract (TT) and are guided to the ovule for fertilization. Lily (Lilium longiflorum) stigma/style Cys-rich adhesin (SCA), a plant lipid transfer protein (LTP), is a small, secreted peptide involved in pollen tube adhesion-mediated guidance. Here, we used a reverse genetic approach to study biological roles of Arabidopsis thaliana LTP5, a SCA-like LTP. The T-DNA insertional gain-of-function mutant plant for LTP5 (ltp5-1) exhibited ballooned pollen tubes, delayed pollen tube growth, and decreased numbers of fertilized eggs. Our reciprocal cross-pollination study revealed that ltp5-1 results in both male and female partial sterility. RT-PCR and β-glucuronidase analyses showed that LTP5 is present in pollen and the pistil TT in low levels. Pollen-targeted overexpression of either ltp5-1 or wild-type LTP5 resulted in defects in polar tip growth of pollen tubes and thereby decreased seed set, suggesting that mutant ltp5-1 acts as a dominant-active form of wild-type LTP5 in pollen tube growth. The ltp5-1 protein has additional hydrophobic C-terminal sequences, compared with LTP5. In our structural homology/molecular dynamics modeling, Tyr-91 in ltp5-1, replacing Val-91 in LTP5, was predicted to interact with Arg-45 and Tyr-81, which are known to interact with a lipid ligand in maize (Zea mays) LTP. Thus, Arabidopsis LTP5 plays a significant role in reproduction.</abstract><cop>England</cop><pub>American Society of Plant Biologists</pub><pmid>20044438</pmid><doi>10.1105/tpc.109.070854</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2009-12, Vol.21 (12), p.3902-3914
issn 1040-4651
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2814499
source MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Amino Acid Sequence
Antigens, Plant - genetics
Antigens, Plant - metabolism
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Base Sequence
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cross-pollination
DNA, Bacterial - genetics
Fertilization - genetics
Gene expression
Gene Expression Regulation, Plant
Lipids
Models, Molecular
Molecular Sequence Data
Mutagenesis, Insertional
Mutation
Ovules
Phylogeny
Plant cells
Plant growth
Plant Infertility - genetics
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Plants, Genetically Modified - genetics
Plants, Genetically Modified - growth & development
Plants, Genetically Modified - metabolism
Pollen
Pollen Tube - growth & development
Pollen tubes
Pollination
Polymerase chain reaction
Protein Structure, Tertiary
RNA, Plant - genetics
Seeds
Sequence Alignment
Sequence Homology, Amino Acid
title Gain-of-Function Mutation of Arabidopsis Lipid Transfer Protein 5 Disturbs Pollen Tube Tip Growth and Fertilization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T00%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gain-of-Function%20Mutation%20of%20Arabidopsis%20Lipid%20Transfer%20Protein%205%20Disturbs%20Pollen%20Tube%20Tip%20Growth%20and%20Fertilization&rft.jtitle=The%20Plant%20cell&rft.au=Chae,%20Keun&rft.date=2009-12-01&rft.volume=21&rft.issue=12&rft.spage=3902&rft.epage=3914&rft.pages=3902-3914&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.109.070854&rft_dat=%3Cjstor_pubme%3E40537558%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218817773&rft_id=info:pmid/20044438&rft_jstor_id=40537558&rfr_iscdi=true