Augmented potassium current is a shared phenotype for two genetic defects associated with familial atrial fibrillation

Abstract Mutations in multiple genes have been implicated in familial atrial fibrillation (AF), but the underlying mechanisms, and thus implications for therapy, remain ill-defined. Among 231 participants in the Vanderbilt AF Registry, we found a mutation in KCNQ1 (encoding the α-subunit of slow del...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular and cellular cardiology 2010-01, Vol.48 (1), p.181-190
Hauptverfasser: Abraham, Robert L, Yang, Tao, Blair, Marcia, Roden, Dan M, Darbar, Dawood
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190
container_issue 1
container_start_page 181
container_title Journal of molecular and cellular cardiology
container_volume 48
creator Abraham, Robert L
Yang, Tao
Blair, Marcia
Roden, Dan M
Darbar, Dawood
description Abstract Mutations in multiple genes have been implicated in familial atrial fibrillation (AF), but the underlying mechanisms, and thus implications for therapy, remain ill-defined. Among 231 participants in the Vanderbilt AF Registry, we found a mutation in KCNQ1 (encoding the α-subunit of slow delayed rectifier potassium current [ IKs ]) and separately a mutation in natriuretic peptide precursor A ( NPPA ) gene (encoding atrial natriuretic peptide, ANP), both segregating with early onset lone AF in different kindreds. The functional effects of these mutations yielded strikingly similar IKs “gain-of-function.” In Chinese Hamster Ovary (CHO) cells, coexpression of mutant KCNQ1 with its ancillary subunit KCNE1 generated ∼ 3-fold larger currents that activated much faster than wild-type (WT)- IKs . Application of the WT NPPA peptide fragment produced similar changes in WT- IKs , and these were exaggerated with the mutant NPPA S64R peptide fragment. Anantin, a competitive ANP receptor antagonist, completely inhibited the changes in IKs gating observed with NPPA S64R. Computational simulations identified accelerated transitions into open states as the mechanism for variant IKs gating. Incorporating these IKs changes into computed human atrial action potentials (AP) resulted in 37% shortening (120 vs. 192 ms at 300 ms cycle length), reflecting loss of the phase II dome which is dependent on L-type calcium channel current. We found striking functional similarities due to mutations in KCNQ1 and NPPA genes which led to IKs “gain-of-function”, atrial AP shortening, and consequently altered calcium current as a common mechanism between diverse familial AF syndromes.
doi_str_mv 10.1016/j.yjmcc.2009.07.020
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2813326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0022282809003125</els_id><sourcerecordid>733900026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-8a0561583d49400a507f11c613f7b6e76e54f834497c55201b508a074c5b13cc3</originalsourceid><addsrcrecordid>eNqFUk1v1DAQtRCIbgu_AAn5xilhbMf5OFCpqqAgVeIAnC3Hmew6JPFiO1vtv8fprvi6cBrJ894bv3lDyCsGOQNWvh3y4zAZk3OAJocqBw5PyIZBI7Na1sVTsgHgPOM1ry_IZQgDJGAhxHNywZqyKJuGbcjhZtlOOEfs6N5FHYJdJmoW79MbtYFqGnbar90dzi4e90h752l8cHSLM0ZraIc9mpigIThj9Sr1YOOO9nqyo9Uj1dGvpbett-Ooo3XzC_Ks12PAl-d6Rb59eP_19mN2__nu0-3NfWYkEzGrNciSyVp0RVMAaAlVz5gpmeirtsSqRFn0tSiKpjJScmCthMSpCiNbJowRV-T6pLtf2gk7k1x5Paq9t5P2R-W0VX93ZrtTW3dQvGZC8DIJvDkLePdjwRDVZIPBZGNGtwRVCdGkvT4ixQlpvAvBY_9rCgO1BqYG9RiYWgNTUKkUWGK9_vODvznnhBLg3QmAaU0Hi14FY3E22Fmf1q46Z_8z4PofvhntbI0ev-MRw-AWP6cEFFOBK1Bf1ptZTwaSLcG4FD8B8se_bg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733900026</pqid></control><display><type>article</type><title>Augmented potassium current is a shared phenotype for two genetic defects associated with familial atrial fibrillation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Abraham, Robert L ; Yang, Tao ; Blair, Marcia ; Roden, Dan M ; Darbar, Dawood</creator><creatorcontrib>Abraham, Robert L ; Yang, Tao ; Blair, Marcia ; Roden, Dan M ; Darbar, Dawood</creatorcontrib><description>Abstract Mutations in multiple genes have been implicated in familial atrial fibrillation (AF), but the underlying mechanisms, and thus implications for therapy, remain ill-defined. Among 231 participants in the Vanderbilt AF Registry, we found a mutation in KCNQ1 (encoding the α-subunit of slow delayed rectifier potassium current [ IKs ]) and separately a mutation in natriuretic peptide precursor A ( NPPA ) gene (encoding atrial natriuretic peptide, ANP), both segregating with early onset lone AF in different kindreds. The functional effects of these mutations yielded strikingly similar IKs “gain-of-function.” In Chinese Hamster Ovary (CHO) cells, coexpression of mutant KCNQ1 with its ancillary subunit KCNE1 generated ∼ 3-fold larger currents that activated much faster than wild-type (WT)- IKs . Application of the WT NPPA peptide fragment produced similar changes in WT- IKs , and these were exaggerated with the mutant NPPA S64R peptide fragment. Anantin, a competitive ANP receptor antagonist, completely inhibited the changes in IKs gating observed with NPPA S64R. Computational simulations identified accelerated transitions into open states as the mechanism for variant IKs gating. Incorporating these IKs changes into computed human atrial action potentials (AP) resulted in 37% shortening (120 vs. 192 ms at 300 ms cycle length), reflecting loss of the phase II dome which is dependent on L-type calcium channel current. We found striking functional similarities due to mutations in KCNQ1 and NPPA genes which led to IKs “gain-of-function”, atrial AP shortening, and consequently altered calcium current as a common mechanism between diverse familial AF syndromes.</description><identifier>ISSN: 0022-2828</identifier><identifier>EISSN: 1095-8584</identifier><identifier>DOI: 10.1016/j.yjmcc.2009.07.020</identifier><identifier>PMID: 19646991</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Action potentials ; Action Potentials - genetics ; Action Potentials - physiology ; Adult ; Atrial fibrillation ; Atrial Fibrillation - genetics ; Atrial Natriuretic Factor - genetics ; Atrial natriuretic peptide ; Cardiovascular ; Computer Simulation ; Electrophysiology ; Female ; Genetics ; Humans ; Ion channels ; KCNQ1 Potassium Channel - genetics ; Male ; Middle Aged ; Mutation ; Phenotype ; Polymerase Chain Reaction ; Potassium - metabolism</subject><ispartof>Journal of molecular and cellular cardiology, 2010-01, Vol.48 (1), p.181-190</ispartof><rights>Elsevier Inc.</rights><rights>2009 Elsevier Inc.</rights><rights>Copyright 2009 Elsevier Inc. All rights reserved.</rights><rights>2009 Elsevier Ltd. All rights reserved 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-8a0561583d49400a507f11c613f7b6e76e54f834497c55201b508a074c5b13cc3</citedby><cites>FETCH-LOGICAL-c513t-8a0561583d49400a507f11c613f7b6e76e54f834497c55201b508a074c5b13cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022282809003125$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19646991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abraham, Robert L</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Blair, Marcia</creatorcontrib><creatorcontrib>Roden, Dan M</creatorcontrib><creatorcontrib>Darbar, Dawood</creatorcontrib><title>Augmented potassium current is a shared phenotype for two genetic defects associated with familial atrial fibrillation</title><title>Journal of molecular and cellular cardiology</title><addtitle>J Mol Cell Cardiol</addtitle><description>Abstract Mutations in multiple genes have been implicated in familial atrial fibrillation (AF), but the underlying mechanisms, and thus implications for therapy, remain ill-defined. Among 231 participants in the Vanderbilt AF Registry, we found a mutation in KCNQ1 (encoding the α-subunit of slow delayed rectifier potassium current [ IKs ]) and separately a mutation in natriuretic peptide precursor A ( NPPA ) gene (encoding atrial natriuretic peptide, ANP), both segregating with early onset lone AF in different kindreds. The functional effects of these mutations yielded strikingly similar IKs “gain-of-function.” In Chinese Hamster Ovary (CHO) cells, coexpression of mutant KCNQ1 with its ancillary subunit KCNE1 generated ∼ 3-fold larger currents that activated much faster than wild-type (WT)- IKs . Application of the WT NPPA peptide fragment produced similar changes in WT- IKs , and these were exaggerated with the mutant NPPA S64R peptide fragment. Anantin, a competitive ANP receptor antagonist, completely inhibited the changes in IKs gating observed with NPPA S64R. Computational simulations identified accelerated transitions into open states as the mechanism for variant IKs gating. Incorporating these IKs changes into computed human atrial action potentials (AP) resulted in 37% shortening (120 vs. 192 ms at 300 ms cycle length), reflecting loss of the phase II dome which is dependent on L-type calcium channel current. We found striking functional similarities due to mutations in KCNQ1 and NPPA genes which led to IKs “gain-of-function”, atrial AP shortening, and consequently altered calcium current as a common mechanism between diverse familial AF syndromes.</description><subject>Action potentials</subject><subject>Action Potentials - genetics</subject><subject>Action Potentials - physiology</subject><subject>Adult</subject><subject>Atrial fibrillation</subject><subject>Atrial Fibrillation - genetics</subject><subject>Atrial Natriuretic Factor - genetics</subject><subject>Atrial natriuretic peptide</subject><subject>Cardiovascular</subject><subject>Computer Simulation</subject><subject>Electrophysiology</subject><subject>Female</subject><subject>Genetics</subject><subject>Humans</subject><subject>Ion channels</subject><subject>KCNQ1 Potassium Channel - genetics</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Polymerase Chain Reaction</subject><subject>Potassium - metabolism</subject><issn>0022-2828</issn><issn>1095-8584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUk1v1DAQtRCIbgu_AAn5xilhbMf5OFCpqqAgVeIAnC3Hmew6JPFiO1vtv8fprvi6cBrJ894bv3lDyCsGOQNWvh3y4zAZk3OAJocqBw5PyIZBI7Na1sVTsgHgPOM1ry_IZQgDJGAhxHNywZqyKJuGbcjhZtlOOEfs6N5FHYJdJmoW79MbtYFqGnbar90dzi4e90h752l8cHSLM0ZraIc9mpigIThj9Sr1YOOO9nqyo9Uj1dGvpbett-Ooo3XzC_Ks12PAl-d6Rb59eP_19mN2__nu0-3NfWYkEzGrNciSyVp0RVMAaAlVz5gpmeirtsSqRFn0tSiKpjJScmCthMSpCiNbJowRV-T6pLtf2gk7k1x5Paq9t5P2R-W0VX93ZrtTW3dQvGZC8DIJvDkLePdjwRDVZIPBZGNGtwRVCdGkvT4ixQlpvAvBY_9rCgO1BqYG9RiYWgNTUKkUWGK9_vODvznnhBLg3QmAaU0Hi14FY3E22Fmf1q46Z_8z4PofvhntbI0ev-MRw-AWP6cEFFOBK1Bf1ptZTwaSLcG4FD8B8se_bg</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Abraham, Robert L</creator><creator>Yang, Tao</creator><creator>Blair, Marcia</creator><creator>Roden, Dan M</creator><creator>Darbar, Dawood</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100101</creationdate><title>Augmented potassium current is a shared phenotype for two genetic defects associated with familial atrial fibrillation</title><author>Abraham, Robert L ; Yang, Tao ; Blair, Marcia ; Roden, Dan M ; Darbar, Dawood</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-8a0561583d49400a507f11c613f7b6e76e54f834497c55201b508a074c5b13cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Action potentials</topic><topic>Action Potentials - genetics</topic><topic>Action Potentials - physiology</topic><topic>Adult</topic><topic>Atrial fibrillation</topic><topic>Atrial Fibrillation - genetics</topic><topic>Atrial Natriuretic Factor - genetics</topic><topic>Atrial natriuretic peptide</topic><topic>Cardiovascular</topic><topic>Computer Simulation</topic><topic>Electrophysiology</topic><topic>Female</topic><topic>Genetics</topic><topic>Humans</topic><topic>Ion channels</topic><topic>KCNQ1 Potassium Channel - genetics</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Polymerase Chain Reaction</topic><topic>Potassium - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abraham, Robert L</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Blair, Marcia</creatorcontrib><creatorcontrib>Roden, Dan M</creatorcontrib><creatorcontrib>Darbar, Dawood</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular and cellular cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abraham, Robert L</au><au>Yang, Tao</au><au>Blair, Marcia</au><au>Roden, Dan M</au><au>Darbar, Dawood</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmented potassium current is a shared phenotype for two genetic defects associated with familial atrial fibrillation</atitle><jtitle>Journal of molecular and cellular cardiology</jtitle><addtitle>J Mol Cell Cardiol</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>48</volume><issue>1</issue><spage>181</spage><epage>190</epage><pages>181-190</pages><issn>0022-2828</issn><eissn>1095-8584</eissn><abstract>Abstract Mutations in multiple genes have been implicated in familial atrial fibrillation (AF), but the underlying mechanisms, and thus implications for therapy, remain ill-defined. Among 231 participants in the Vanderbilt AF Registry, we found a mutation in KCNQ1 (encoding the α-subunit of slow delayed rectifier potassium current [ IKs ]) and separately a mutation in natriuretic peptide precursor A ( NPPA ) gene (encoding atrial natriuretic peptide, ANP), both segregating with early onset lone AF in different kindreds. The functional effects of these mutations yielded strikingly similar IKs “gain-of-function.” In Chinese Hamster Ovary (CHO) cells, coexpression of mutant KCNQ1 with its ancillary subunit KCNE1 generated ∼ 3-fold larger currents that activated much faster than wild-type (WT)- IKs . Application of the WT NPPA peptide fragment produced similar changes in WT- IKs , and these were exaggerated with the mutant NPPA S64R peptide fragment. Anantin, a competitive ANP receptor antagonist, completely inhibited the changes in IKs gating observed with NPPA S64R. Computational simulations identified accelerated transitions into open states as the mechanism for variant IKs gating. Incorporating these IKs changes into computed human atrial action potentials (AP) resulted in 37% shortening (120 vs. 192 ms at 300 ms cycle length), reflecting loss of the phase II dome which is dependent on L-type calcium channel current. We found striking functional similarities due to mutations in KCNQ1 and NPPA genes which led to IKs “gain-of-function”, atrial AP shortening, and consequently altered calcium current as a common mechanism between diverse familial AF syndromes.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19646991</pmid><doi>10.1016/j.yjmcc.2009.07.020</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2828
ispartof Journal of molecular and cellular cardiology, 2010-01, Vol.48 (1), p.181-190
issn 0022-2828
1095-8584
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2813326
source MEDLINE; Elsevier ScienceDirect Journals
subjects Action potentials
Action Potentials - genetics
Action Potentials - physiology
Adult
Atrial fibrillation
Atrial Fibrillation - genetics
Atrial Natriuretic Factor - genetics
Atrial natriuretic peptide
Cardiovascular
Computer Simulation
Electrophysiology
Female
Genetics
Humans
Ion channels
KCNQ1 Potassium Channel - genetics
Male
Middle Aged
Mutation
Phenotype
Polymerase Chain Reaction
Potassium - metabolism
title Augmented potassium current is a shared phenotype for two genetic defects associated with familial atrial fibrillation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A03%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmented%20potassium%20current%20is%20a%20shared%20phenotype%20for%20two%20genetic%20defects%20associated%20with%20familial%20atrial%20fibrillation&rft.jtitle=Journal%20of%20molecular%20and%20cellular%20cardiology&rft.au=Abraham,%20Robert%20L&rft.date=2010-01-01&rft.volume=48&rft.issue=1&rft.spage=181&rft.epage=190&rft.pages=181-190&rft.issn=0022-2828&rft.eissn=1095-8584&rft_id=info:doi/10.1016/j.yjmcc.2009.07.020&rft_dat=%3Cproquest_pubme%3E733900026%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733900026&rft_id=info:pmid/19646991&rft_els_id=1_s2_0_S0022282809003125&rfr_iscdi=true