Determination of extracellular bicarbonate and carbon dioxide concentrations in brain slices using carbonate and pH-selective microelectrodes

The extracellular pH of the brain is subject to shifts during neural activity. To understand these pH changes, it is necessary to measure [H +], [HCO 3 −], [CO 3 2−] and [CO 2]. In principle, this can be accomplished using CO 3 2− and pH-sensitive microelectrodes; however, interference from HCO 3 −...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience methods 1994-08, Vol.53 (2), p.129-136
Hauptverfasser: Chesler, M., Chen, J.C.T., Kraig, R.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue 2
container_start_page 129
container_title Journal of neuroscience methods
container_volume 53
creator Chesler, M.
Chen, J.C.T.
Kraig, R.P.
description The extracellular pH of the brain is subject to shifts during neural activity. To understand these pH changes, it is necessary to measure [H +], [HCO 3 −], [CO 3 2−] and [CO 2]. In principle, this can be accomplished using CO 3 2− and pH-sensitive microelectrodes; however, interference from HCO 3 − and Cl −, and physiological changes in [HCO 3 −], complicate measurements with CO 3 2− electrodes. Calibration requires knowledge of slope response, interference constants and corrections for [HCO 3 −] shifts. We show that when [HCO 3 −] is altered at constant [CO 2] in the absence of Cl −, the HCO 3 interference cancels and the Nikolsky equation reduces to the Nernst equation for CO 3 −. Measurement of CO 3 − slope response by this method yielded a value of 28.5 ± 0.72 mV per decade change in [CO 3 2−]. In Cl −-containing solutions, interference coefficients for HCO 3 − and Cl − were determined by altering [HCO 3] at constant [CO 2], changing [CO 2] at constant [HCO 3], then solving the simultaneous Nikolsky equations for each transition. The mean interference constants corresponded to selectivity ratios of 245:1 and 1150:1 for CO 3 2− over HCO 3 − and Cl − respectively. To correct for possible changes in [HCO 3 2−], the equilibrium relation between CO 3 2 and HCO 3 − was substituted into the Nikolsky equation to yield an equation in [CO 3 2−] and [H +]. By simultaneously measuring shifts in [H +] with a pH microelectrode, this equation is readily solved for [CO 3 2−]. These methods were tested by measuring [HCO 3 −] and [CO 2] in experimental solutions, and in the extracellular fluid of rat hippocampal slices.
doi_str_mv 10.1016/0165-0270(94)90169-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2807131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0165027094901694</els_id><sourcerecordid>76938868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-9693139e58ad8ea003706d2fcaa6cdb925589dd67cb1573852b1437783e76df23</originalsourceid><addsrcrecordid>eNp9UcuKFDEUDaKMbesfKGQhoovSJJXKYzMg42OEATcK7kIquTVGqpI2qWrGj_CfTU03rbNxkRsu55z7Ogg9peQ1JVS8qa9rCJPkpeavdM10w--hDVWSNUKqb_fR5kR5iB6V8oMQwjURZ-hMKtYK2m3Q73cwQ55CtHNIEacBw82crYNxXEabcR-czX2qMGAbPT5k2Id0Ezxgl6KDWAWruuAQcZ9tjWUMDgpeSojX-G6F3WVTYAQ3hz3gKbicbrOcPJTH6MFgxwJPjv8Wff3w_svFZXP1-eOni7dXjeNKzo0WuqWthk5Zr8AS0koiPBuctcL5XrOuU9p7IV1PO9mqjvWUt1KqFqTwA2u36PxQd7f0E_jDCqPZ5TDZ_MskG8xdJIbv5jrtDVNE0tp7i14cC-T0c4EymymU9Wg2QlqKkXVCpYSqRH4g1j1LyTCcmlBiVhvN6pFZPTKam1sbDa-yZ_8OeBIdfav48yNui7PjkG10oZxonPGuVeLvnlCPuQ-QTXEBqmU-5Hpz41P4_xx_AH8OvbI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76938868</pqid></control><display><type>article</type><title>Determination of extracellular bicarbonate and carbon dioxide concentrations in brain slices using carbonate and pH-selective microelectrodes</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Chesler, M. ; Chen, J.C.T. ; Kraig, R.P.</creator><creatorcontrib>Chesler, M. ; Chen, J.C.T. ; Kraig, R.P.</creatorcontrib><description>The extracellular pH of the brain is subject to shifts during neural activity. To understand these pH changes, it is necessary to measure [H +], [HCO 3 −], [CO 3 2−] and [CO 2]. In principle, this can be accomplished using CO 3 2− and pH-sensitive microelectrodes; however, interference from HCO 3 − and Cl −, and physiological changes in [HCO 3 −], complicate measurements with CO 3 2− electrodes. Calibration requires knowledge of slope response, interference constants and corrections for [HCO 3 −] shifts. We show that when [HCO 3 −] is altered at constant [CO 2] in the absence of Cl −, the HCO 3 interference cancels and the Nikolsky equation reduces to the Nernst equation for CO 3 −. Measurement of CO 3 − slope response by this method yielded a value of 28.5 ± 0.72 mV per decade change in [CO 3 2−]. In Cl −-containing solutions, interference coefficients for HCO 3 − and Cl − were determined by altering [HCO 3] at constant [CO 2], changing [CO 2] at constant [HCO 3], then solving the simultaneous Nikolsky equations for each transition. The mean interference constants corresponded to selectivity ratios of 245:1 and 1150:1 for CO 3 2− over HCO 3 − and Cl − respectively. To correct for possible changes in [HCO 3 2−], the equilibrium relation between CO 3 2 and HCO 3 − was substituted into the Nikolsky equation to yield an equation in [CO 3 2−] and [H +]. By simultaneously measuring shifts in [H +] with a pH microelectrode, this equation is readily solved for [CO 3 2−]. These methods were tested by measuring [HCO 3 −] and [CO 2] in experimental solutions, and in the extracellular fluid of rat hippocampal slices.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/0165-0270(94)90169-4</identifier><identifier>PMID: 7823615</identifier><identifier>CODEN: JNMEDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Animals ; Bicarbonates - analysis ; Biological and medical sciences ; Brain Chemistry - physiology ; Carbon Dioxide - analysis ; Carbonic acid ; Chlorides - chemistry ; Extracellular pH ; Extracellular space ; Extracellular Space - chemistry ; Fundamental and applied biological sciences. Psychology ; General aspects. Models. Methods ; Hippocampal slice ; Hippocampus - chemistry ; Hydrogen-Ion Concentration ; In Vitro Techniques ; Ion-Selective Electrodes ; Ion-selective microelectrode ; Microelectrodes ; pH Regulation ; Rats ; Vertebrates: nervous system and sense organs</subject><ispartof>Journal of neuroscience methods, 1994-08, Vol.53 (2), p.129-136</ispartof><rights>1994 Elsevier Science B.V. All rights reserved</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-9693139e58ad8ea003706d2fcaa6cdb925589dd67cb1573852b1437783e76df23</citedby><cites>FETCH-LOGICAL-c487t-9693139e58ad8ea003706d2fcaa6cdb925589dd67cb1573852b1437783e76df23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0165-0270(94)90169-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4245386$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7823615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chesler, M.</creatorcontrib><creatorcontrib>Chen, J.C.T.</creatorcontrib><creatorcontrib>Kraig, R.P.</creatorcontrib><title>Determination of extracellular bicarbonate and carbon dioxide concentrations in brain slices using carbonate and pH-selective microelectrodes</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>The extracellular pH of the brain is subject to shifts during neural activity. To understand these pH changes, it is necessary to measure [H +], [HCO 3 −], [CO 3 2−] and [CO 2]. In principle, this can be accomplished using CO 3 2− and pH-sensitive microelectrodes; however, interference from HCO 3 − and Cl −, and physiological changes in [HCO 3 −], complicate measurements with CO 3 2− electrodes. Calibration requires knowledge of slope response, interference constants and corrections for [HCO 3 −] shifts. We show that when [HCO 3 −] is altered at constant [CO 2] in the absence of Cl −, the HCO 3 interference cancels and the Nikolsky equation reduces to the Nernst equation for CO 3 −. Measurement of CO 3 − slope response by this method yielded a value of 28.5 ± 0.72 mV per decade change in [CO 3 2−]. In Cl −-containing solutions, interference coefficients for HCO 3 − and Cl − were determined by altering [HCO 3] at constant [CO 2], changing [CO 2] at constant [HCO 3], then solving the simultaneous Nikolsky equations for each transition. The mean interference constants corresponded to selectivity ratios of 245:1 and 1150:1 for CO 3 2− over HCO 3 − and Cl − respectively. To correct for possible changes in [HCO 3 2−], the equilibrium relation between CO 3 2 and HCO 3 − was substituted into the Nikolsky equation to yield an equation in [CO 3 2−] and [H +]. By simultaneously measuring shifts in [H +] with a pH microelectrode, this equation is readily solved for [CO 3 2−]. These methods were tested by measuring [HCO 3 −] and [CO 2] in experimental solutions, and in the extracellular fluid of rat hippocampal slices.</description><subject>Animals</subject><subject>Bicarbonates - analysis</subject><subject>Biological and medical sciences</subject><subject>Brain Chemistry - physiology</subject><subject>Carbon Dioxide - analysis</subject><subject>Carbonic acid</subject><subject>Chlorides - chemistry</subject><subject>Extracellular pH</subject><subject>Extracellular space</subject><subject>Extracellular Space - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Models. Methods</subject><subject>Hippocampal slice</subject><subject>Hippocampus - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>In Vitro Techniques</subject><subject>Ion-Selective Electrodes</subject><subject>Ion-selective microelectrode</subject><subject>Microelectrodes</subject><subject>pH Regulation</subject><subject>Rats</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcuKFDEUDaKMbesfKGQhoovSJJXKYzMg42OEATcK7kIquTVGqpI2qWrGj_CfTU03rbNxkRsu55z7Ogg9peQ1JVS8qa9rCJPkpeavdM10w--hDVWSNUKqb_fR5kR5iB6V8oMQwjURZ-hMKtYK2m3Q73cwQ55CtHNIEacBw82crYNxXEabcR-czX2qMGAbPT5k2Id0Ezxgl6KDWAWruuAQcZ9tjWUMDgpeSojX-G6F3WVTYAQ3hz3gKbicbrOcPJTH6MFgxwJPjv8Wff3w_svFZXP1-eOni7dXjeNKzo0WuqWthk5Zr8AS0koiPBuctcL5XrOuU9p7IV1PO9mqjvWUt1KqFqTwA2u36PxQd7f0E_jDCqPZ5TDZ_MskG8xdJIbv5jrtDVNE0tp7i14cC-T0c4EymymU9Wg2QlqKkXVCpYSqRH4g1j1LyTCcmlBiVhvN6pFZPTKam1sbDa-yZ_8OeBIdfav48yNui7PjkG10oZxonPGuVeLvnlCPuQ-QTXEBqmU-5Hpz41P4_xx_AH8OvbI</recordid><startdate>19940801</startdate><enddate>19940801</enddate><creator>Chesler, M.</creator><creator>Chen, J.C.T.</creator><creator>Kraig, R.P.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19940801</creationdate><title>Determination of extracellular bicarbonate and carbon dioxide concentrations in brain slices using carbonate and pH-selective microelectrodes</title><author>Chesler, M. ; Chen, J.C.T. ; Kraig, R.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-9693139e58ad8ea003706d2fcaa6cdb925589dd67cb1573852b1437783e76df23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Animals</topic><topic>Bicarbonates - analysis</topic><topic>Biological and medical sciences</topic><topic>Brain Chemistry - physiology</topic><topic>Carbon Dioxide - analysis</topic><topic>Carbonic acid</topic><topic>Chlorides - chemistry</topic><topic>Extracellular pH</topic><topic>Extracellular space</topic><topic>Extracellular Space - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Models. Methods</topic><topic>Hippocampal slice</topic><topic>Hippocampus - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>In Vitro Techniques</topic><topic>Ion-Selective Electrodes</topic><topic>Ion-selective microelectrode</topic><topic>Microelectrodes</topic><topic>pH Regulation</topic><topic>Rats</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chesler, M.</creatorcontrib><creatorcontrib>Chen, J.C.T.</creatorcontrib><creatorcontrib>Kraig, R.P.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chesler, M.</au><au>Chen, J.C.T.</au><au>Kraig, R.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of extracellular bicarbonate and carbon dioxide concentrations in brain slices using carbonate and pH-selective microelectrodes</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>1994-08-01</date><risdate>1994</risdate><volume>53</volume><issue>2</issue><spage>129</spage><epage>136</epage><pages>129-136</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><coden>JNMEDT</coden><abstract>The extracellular pH of the brain is subject to shifts during neural activity. To understand these pH changes, it is necessary to measure [H +], [HCO 3 −], [CO 3 2−] and [CO 2]. In principle, this can be accomplished using CO 3 2− and pH-sensitive microelectrodes; however, interference from HCO 3 − and Cl −, and physiological changes in [HCO 3 −], complicate measurements with CO 3 2− electrodes. Calibration requires knowledge of slope response, interference constants and corrections for [HCO 3 −] shifts. We show that when [HCO 3 −] is altered at constant [CO 2] in the absence of Cl −, the HCO 3 interference cancels and the Nikolsky equation reduces to the Nernst equation for CO 3 −. Measurement of CO 3 − slope response by this method yielded a value of 28.5 ± 0.72 mV per decade change in [CO 3 2−]. In Cl −-containing solutions, interference coefficients for HCO 3 − and Cl − were determined by altering [HCO 3] at constant [CO 2], changing [CO 2] at constant [HCO 3], then solving the simultaneous Nikolsky equations for each transition. The mean interference constants corresponded to selectivity ratios of 245:1 and 1150:1 for CO 3 2− over HCO 3 − and Cl − respectively. To correct for possible changes in [HCO 3 2−], the equilibrium relation between CO 3 2 and HCO 3 − was substituted into the Nikolsky equation to yield an equation in [CO 3 2−] and [H +]. By simultaneously measuring shifts in [H +] with a pH microelectrode, this equation is readily solved for [CO 3 2−]. These methods were tested by measuring [HCO 3 −] and [CO 2] in experimental solutions, and in the extracellular fluid of rat hippocampal slices.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>7823615</pmid><doi>10.1016/0165-0270(94)90169-4</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-0270
ispartof Journal of neuroscience methods, 1994-08, Vol.53 (2), p.129-136
issn 0165-0270
1872-678X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2807131
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Bicarbonates - analysis
Biological and medical sciences
Brain Chemistry - physiology
Carbon Dioxide - analysis
Carbonic acid
Chlorides - chemistry
Extracellular pH
Extracellular space
Extracellular Space - chemistry
Fundamental and applied biological sciences. Psychology
General aspects. Models. Methods
Hippocampal slice
Hippocampus - chemistry
Hydrogen-Ion Concentration
In Vitro Techniques
Ion-Selective Electrodes
Ion-selective microelectrode
Microelectrodes
pH Regulation
Rats
Vertebrates: nervous system and sense organs
title Determination of extracellular bicarbonate and carbon dioxide concentrations in brain slices using carbonate and pH-selective microelectrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20extracellular%20bicarbonate%20and%20carbon%20dioxide%20concentrations%20in%20brain%20slices%20using%20carbonate%20and%20pH-selective%20microelectrodes&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Chesler,%20M.&rft.date=1994-08-01&rft.volume=53&rft.issue=2&rft.spage=129&rft.epage=136&rft.pages=129-136&rft.issn=0165-0270&rft.eissn=1872-678X&rft.coden=JNMEDT&rft_id=info:doi/10.1016/0165-0270(94)90169-4&rft_dat=%3Cproquest_pubme%3E76938868%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76938868&rft_id=info:pmid/7823615&rft_els_id=0165027094901694&rfr_iscdi=true