Determination of extracellular bicarbonate and carbon dioxide concentrations in brain slices using carbonate and pH-selective microelectrodes
The extracellular pH of the brain is subject to shifts during neural activity. To understand these pH changes, it is necessary to measure [H +], [HCO 3 −], [CO 3 2−] and [CO 2]. In principle, this can be accomplished using CO 3 2− and pH-sensitive microelectrodes; however, interference from HCO 3 −...
Gespeichert in:
Veröffentlicht in: | Journal of neuroscience methods 1994-08, Vol.53 (2), p.129-136 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 136 |
---|---|
container_issue | 2 |
container_start_page | 129 |
container_title | Journal of neuroscience methods |
container_volume | 53 |
creator | Chesler, M. Chen, J.C.T. Kraig, R.P. |
description | The extracellular pH of the brain is subject to shifts during neural activity. To understand these pH changes, it is necessary to measure [H
+], [HCO
3
−], [CO
3
2−] and [CO
2]. In principle, this can be accomplished using CO
3
2− and pH-sensitive microelectrodes; however, interference from HCO
3
− and Cl
−, and physiological changes in [HCO
3
−], complicate measurements with CO
3
2− electrodes. Calibration requires knowledge of slope response, interference constants and corrections for [HCO
3
−] shifts. We show that when [HCO
3
−] is altered at constant [CO
2] in the absence of Cl
−, the HCO
3 interference cancels and the Nikolsky equation reduces to the Nernst equation for CO
3
−. Measurement of CO
3
− slope response by this method yielded a value of 28.5 ± 0.72 mV per decade change in [CO
3
2−]. In Cl
−-containing solutions, interference coefficients for HCO
3
− and Cl
− were determined by altering [HCO
3] at constant [CO
2], changing [CO
2] at constant [HCO
3], then solving the simultaneous Nikolsky equations for each transition. The mean interference constants corresponded to selectivity ratios of 245:1 and 1150:1 for CO
3
2− over HCO
3
− and Cl
− respectively. To correct for possible changes in [HCO
3
2−], the equilibrium relation between CO
3
2 and HCO
3
− was substituted into the Nikolsky equation to yield an equation in [CO
3
2−] and [H
+]. By simultaneously measuring shifts in [H
+] with a pH microelectrode, this equation is readily solved for [CO
3
2−]. These methods were tested by measuring [HCO
3
−] and [CO
2] in experimental solutions, and in the extracellular fluid of rat hippocampal slices. |
doi_str_mv | 10.1016/0165-0270(94)90169-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2807131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0165027094901694</els_id><sourcerecordid>76938868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-9693139e58ad8ea003706d2fcaa6cdb925589dd67cb1573852b1437783e76df23</originalsourceid><addsrcrecordid>eNp9UcuKFDEUDaKMbesfKGQhoovSJJXKYzMg42OEATcK7kIquTVGqpI2qWrGj_CfTU03rbNxkRsu55z7Ogg9peQ1JVS8qa9rCJPkpeavdM10w--hDVWSNUKqb_fR5kR5iB6V8oMQwjURZ-hMKtYK2m3Q73cwQ55CtHNIEacBw82crYNxXEabcR-czX2qMGAbPT5k2Id0Ezxgl6KDWAWruuAQcZ9tjWUMDgpeSojX-G6F3WVTYAQ3hz3gKbicbrOcPJTH6MFgxwJPjv8Wff3w_svFZXP1-eOni7dXjeNKzo0WuqWthk5Zr8AS0koiPBuctcL5XrOuU9p7IV1PO9mqjvWUt1KqFqTwA2u36PxQd7f0E_jDCqPZ5TDZ_MskG8xdJIbv5jrtDVNE0tp7i14cC-T0c4EymymU9Wg2QlqKkXVCpYSqRH4g1j1LyTCcmlBiVhvN6pFZPTKam1sbDa-yZ_8OeBIdfav48yNui7PjkG10oZxonPGuVeLvnlCPuQ-QTXEBqmU-5Hpz41P4_xx_AH8OvbI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76938868</pqid></control><display><type>article</type><title>Determination of extracellular bicarbonate and carbon dioxide concentrations in brain slices using carbonate and pH-selective microelectrodes</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Chesler, M. ; Chen, J.C.T. ; Kraig, R.P.</creator><creatorcontrib>Chesler, M. ; Chen, J.C.T. ; Kraig, R.P.</creatorcontrib><description>The extracellular pH of the brain is subject to shifts during neural activity. To understand these pH changes, it is necessary to measure [H
+], [HCO
3
−], [CO
3
2−] and [CO
2]. In principle, this can be accomplished using CO
3
2− and pH-sensitive microelectrodes; however, interference from HCO
3
− and Cl
−, and physiological changes in [HCO
3
−], complicate measurements with CO
3
2− electrodes. Calibration requires knowledge of slope response, interference constants and corrections for [HCO
3
−] shifts. We show that when [HCO
3
−] is altered at constant [CO
2] in the absence of Cl
−, the HCO
3 interference cancels and the Nikolsky equation reduces to the Nernst equation for CO
3
−. Measurement of CO
3
− slope response by this method yielded a value of 28.5 ± 0.72 mV per decade change in [CO
3
2−]. In Cl
−-containing solutions, interference coefficients for HCO
3
− and Cl
− were determined by altering [HCO
3] at constant [CO
2], changing [CO
2] at constant [HCO
3], then solving the simultaneous Nikolsky equations for each transition. The mean interference constants corresponded to selectivity ratios of 245:1 and 1150:1 for CO
3
2− over HCO
3
− and Cl
− respectively. To correct for possible changes in [HCO
3
2−], the equilibrium relation between CO
3
2 and HCO
3
− was substituted into the Nikolsky equation to yield an equation in [CO
3
2−] and [H
+]. By simultaneously measuring shifts in [H
+] with a pH microelectrode, this equation is readily solved for [CO
3
2−]. These methods were tested by measuring [HCO
3
−] and [CO
2] in experimental solutions, and in the extracellular fluid of rat hippocampal slices.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/0165-0270(94)90169-4</identifier><identifier>PMID: 7823615</identifier><identifier>CODEN: JNMEDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Animals ; Bicarbonates - analysis ; Biological and medical sciences ; Brain Chemistry - physiology ; Carbon Dioxide - analysis ; Carbonic acid ; Chlorides - chemistry ; Extracellular pH ; Extracellular space ; Extracellular Space - chemistry ; Fundamental and applied biological sciences. Psychology ; General aspects. Models. Methods ; Hippocampal slice ; Hippocampus - chemistry ; Hydrogen-Ion Concentration ; In Vitro Techniques ; Ion-Selective Electrodes ; Ion-selective microelectrode ; Microelectrodes ; pH Regulation ; Rats ; Vertebrates: nervous system and sense organs</subject><ispartof>Journal of neuroscience methods, 1994-08, Vol.53 (2), p.129-136</ispartof><rights>1994 Elsevier Science B.V. All rights reserved</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-9693139e58ad8ea003706d2fcaa6cdb925589dd67cb1573852b1437783e76df23</citedby><cites>FETCH-LOGICAL-c487t-9693139e58ad8ea003706d2fcaa6cdb925589dd67cb1573852b1437783e76df23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0165-0270(94)90169-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4245386$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7823615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chesler, M.</creatorcontrib><creatorcontrib>Chen, J.C.T.</creatorcontrib><creatorcontrib>Kraig, R.P.</creatorcontrib><title>Determination of extracellular bicarbonate and carbon dioxide concentrations in brain slices using carbonate and pH-selective microelectrodes</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>The extracellular pH of the brain is subject to shifts during neural activity. To understand these pH changes, it is necessary to measure [H
+], [HCO
3
−], [CO
3
2−] and [CO
2]. In principle, this can be accomplished using CO
3
2− and pH-sensitive microelectrodes; however, interference from HCO
3
− and Cl
−, and physiological changes in [HCO
3
−], complicate measurements with CO
3
2− electrodes. Calibration requires knowledge of slope response, interference constants and corrections for [HCO
3
−] shifts. We show that when [HCO
3
−] is altered at constant [CO
2] in the absence of Cl
−, the HCO
3 interference cancels and the Nikolsky equation reduces to the Nernst equation for CO
3
−. Measurement of CO
3
− slope response by this method yielded a value of 28.5 ± 0.72 mV per decade change in [CO
3
2−]. In Cl
−-containing solutions, interference coefficients for HCO
3
− and Cl
− were determined by altering [HCO
3] at constant [CO
2], changing [CO
2] at constant [HCO
3], then solving the simultaneous Nikolsky equations for each transition. The mean interference constants corresponded to selectivity ratios of 245:1 and 1150:1 for CO
3
2− over HCO
3
− and Cl
− respectively. To correct for possible changes in [HCO
3
2−], the equilibrium relation between CO
3
2 and HCO
3
− was substituted into the Nikolsky equation to yield an equation in [CO
3
2−] and [H
+]. By simultaneously measuring shifts in [H
+] with a pH microelectrode, this equation is readily solved for [CO
3
2−]. These methods were tested by measuring [HCO
3
−] and [CO
2] in experimental solutions, and in the extracellular fluid of rat hippocampal slices.</description><subject>Animals</subject><subject>Bicarbonates - analysis</subject><subject>Biological and medical sciences</subject><subject>Brain Chemistry - physiology</subject><subject>Carbon Dioxide - analysis</subject><subject>Carbonic acid</subject><subject>Chlorides - chemistry</subject><subject>Extracellular pH</subject><subject>Extracellular space</subject><subject>Extracellular Space - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Models. Methods</subject><subject>Hippocampal slice</subject><subject>Hippocampus - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>In Vitro Techniques</subject><subject>Ion-Selective Electrodes</subject><subject>Ion-selective microelectrode</subject><subject>Microelectrodes</subject><subject>pH Regulation</subject><subject>Rats</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcuKFDEUDaKMbesfKGQhoovSJJXKYzMg42OEATcK7kIquTVGqpI2qWrGj_CfTU03rbNxkRsu55z7Ogg9peQ1JVS8qa9rCJPkpeavdM10w--hDVWSNUKqb_fR5kR5iB6V8oMQwjURZ-hMKtYK2m3Q73cwQ55CtHNIEacBw82crYNxXEabcR-czX2qMGAbPT5k2Id0Ezxgl6KDWAWruuAQcZ9tjWUMDgpeSojX-G6F3WVTYAQ3hz3gKbicbrOcPJTH6MFgxwJPjv8Wff3w_svFZXP1-eOni7dXjeNKzo0WuqWthk5Zr8AS0koiPBuctcL5XrOuU9p7IV1PO9mqjvWUt1KqFqTwA2u36PxQd7f0E_jDCqPZ5TDZ_MskG8xdJIbv5jrtDVNE0tp7i14cC-T0c4EymymU9Wg2QlqKkXVCpYSqRH4g1j1LyTCcmlBiVhvN6pFZPTKam1sbDa-yZ_8OeBIdfav48yNui7PjkG10oZxonPGuVeLvnlCPuQ-QTXEBqmU-5Hpz41P4_xx_AH8OvbI</recordid><startdate>19940801</startdate><enddate>19940801</enddate><creator>Chesler, M.</creator><creator>Chen, J.C.T.</creator><creator>Kraig, R.P.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19940801</creationdate><title>Determination of extracellular bicarbonate and carbon dioxide concentrations in brain slices using carbonate and pH-selective microelectrodes</title><author>Chesler, M. ; Chen, J.C.T. ; Kraig, R.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-9693139e58ad8ea003706d2fcaa6cdb925589dd67cb1573852b1437783e76df23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Animals</topic><topic>Bicarbonates - analysis</topic><topic>Biological and medical sciences</topic><topic>Brain Chemistry - physiology</topic><topic>Carbon Dioxide - analysis</topic><topic>Carbonic acid</topic><topic>Chlorides - chemistry</topic><topic>Extracellular pH</topic><topic>Extracellular space</topic><topic>Extracellular Space - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Models. Methods</topic><topic>Hippocampal slice</topic><topic>Hippocampus - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>In Vitro Techniques</topic><topic>Ion-Selective Electrodes</topic><topic>Ion-selective microelectrode</topic><topic>Microelectrodes</topic><topic>pH Regulation</topic><topic>Rats</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chesler, M.</creatorcontrib><creatorcontrib>Chen, J.C.T.</creatorcontrib><creatorcontrib>Kraig, R.P.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chesler, M.</au><au>Chen, J.C.T.</au><au>Kraig, R.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of extracellular bicarbonate and carbon dioxide concentrations in brain slices using carbonate and pH-selective microelectrodes</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>1994-08-01</date><risdate>1994</risdate><volume>53</volume><issue>2</issue><spage>129</spage><epage>136</epage><pages>129-136</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><coden>JNMEDT</coden><abstract>The extracellular pH of the brain is subject to shifts during neural activity. To understand these pH changes, it is necessary to measure [H
+], [HCO
3
−], [CO
3
2−] and [CO
2]. In principle, this can be accomplished using CO
3
2− and pH-sensitive microelectrodes; however, interference from HCO
3
− and Cl
−, and physiological changes in [HCO
3
−], complicate measurements with CO
3
2− electrodes. Calibration requires knowledge of slope response, interference constants and corrections for [HCO
3
−] shifts. We show that when [HCO
3
−] is altered at constant [CO
2] in the absence of Cl
−, the HCO
3 interference cancels and the Nikolsky equation reduces to the Nernst equation for CO
3
−. Measurement of CO
3
− slope response by this method yielded a value of 28.5 ± 0.72 mV per decade change in [CO
3
2−]. In Cl
−-containing solutions, interference coefficients for HCO
3
− and Cl
− were determined by altering [HCO
3] at constant [CO
2], changing [CO
2] at constant [HCO
3], then solving the simultaneous Nikolsky equations for each transition. The mean interference constants corresponded to selectivity ratios of 245:1 and 1150:1 for CO
3
2− over HCO
3
− and Cl
− respectively. To correct for possible changes in [HCO
3
2−], the equilibrium relation between CO
3
2 and HCO
3
− was substituted into the Nikolsky equation to yield an equation in [CO
3
2−] and [H
+]. By simultaneously measuring shifts in [H
+] with a pH microelectrode, this equation is readily solved for [CO
3
2−]. These methods were tested by measuring [HCO
3
−] and [CO
2] in experimental solutions, and in the extracellular fluid of rat hippocampal slices.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>7823615</pmid><doi>10.1016/0165-0270(94)90169-4</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0270 |
ispartof | Journal of neuroscience methods, 1994-08, Vol.53 (2), p.129-136 |
issn | 0165-0270 1872-678X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2807131 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Bicarbonates - analysis Biological and medical sciences Brain Chemistry - physiology Carbon Dioxide - analysis Carbonic acid Chlorides - chemistry Extracellular pH Extracellular space Extracellular Space - chemistry Fundamental and applied biological sciences. Psychology General aspects. Models. Methods Hippocampal slice Hippocampus - chemistry Hydrogen-Ion Concentration In Vitro Techniques Ion-Selective Electrodes Ion-selective microelectrode Microelectrodes pH Regulation Rats Vertebrates: nervous system and sense organs |
title | Determination of extracellular bicarbonate and carbon dioxide concentrations in brain slices using carbonate and pH-selective microelectrodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20extracellular%20bicarbonate%20and%20carbon%20dioxide%20concentrations%20in%20brain%20slices%20using%20carbonate%20and%20pH-selective%20microelectrodes&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Chesler,%20M.&rft.date=1994-08-01&rft.volume=53&rft.issue=2&rft.spage=129&rft.epage=136&rft.pages=129-136&rft.issn=0165-0270&rft.eissn=1872-678X&rft.coden=JNMEDT&rft_id=info:doi/10.1016/0165-0270(94)90169-4&rft_dat=%3Cproquest_pubme%3E76938868%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76938868&rft_id=info:pmid/7823615&rft_els_id=0165027094901694&rfr_iscdi=true |