Direct Rod Input to Cone BCs and Direct Cone Input to Rod BCs Challenge the Traditional View of Mammalian BC Circuitry

Bipolar cells are the central neurons of the retina that transmit visual signals from rod and cone photoreceptors to third-order neurons in the inner retina and the brain. A dogma set forth by early anatomical studies is that bipolar cells in mammalian retinas receive segregated rod/cone synaptic in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-01, Vol.107 (1), p.395-400
Hauptverfasser: Pang, Ji-Jie, Gao, Fan, Lem, Janis, Bramblett, Debra E., Paul, David L., Wu, Samuel M., Dowling, John E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 400
container_issue 1
container_start_page 395
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Pang, Ji-Jie
Gao, Fan
Lem, Janis
Bramblett, Debra E.
Paul, David L.
Wu, Samuel M.
Dowling, John E.
description Bipolar cells are the central neurons of the retina that transmit visual signals from rod and cone photoreceptors to third-order neurons in the inner retina and the brain. A dogma set forth by early anatomical studies is that bipolar cells in mammalian retinas receive segregated rod/cone synaptic inputs (either from rods or from cones), and here, we present evidence that challenges this traditional view. By analyzing light-evoked cation currents from morphologically identified depolarizing bipolar cells (DBCs) in the wild-type and three pathway-specific knockout mice (rod transducin knockout $[Tr\alpha ^{ - / - } ]$ , connexin36 knockout $[Cx36^{ - / - } ]$ , and transcription factor beta4 knockout $[Bhlhb4^{ - / - } ]$ ), we show that a subpopulation of rod DBCs $(DBC_{r2} s)$ receives substantial input directly from cones and a subpopulation of cone $DBCs(DBC_{c1} s)$ receives substantial input directly from rods. These results provide evidence of the existence of functional $rod - DBC_c $ and $cone - DBC_R $ synaptic pathways in the mouse retina as well as the previously proposed rod hyperpolarizing bipolar-cells pathway. This is grounds for revising the mammalian rod/cone bipolar cell dogma.
doi_str_mv 10.1073/pnas.0907178107
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2806755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40536285</jstor_id><sourcerecordid>40536285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-ab7aa99bc07e1b29387e6c75e1ad8b0ceca9c0e5741284a0c742247d4b29c0243</originalsourceid><addsrcrecordid>eNpd0ctv1DAQB2ALgehSOHMCWVw4pR0_EtsXJAivSkVIqHC1HMfb9SqJt7ZT1P8ehy67wMnS-Jvx44fQcwJnBAQ7300mnYECQYQshQdoRUCRquEKHqIVABWV5JSfoCcpbQFA1RIeoxMKQGQj-QrdvvfR2Yy_hR5fTLs54xxwGyaH37UJm6nHe_C7dhALX0C7McPgpmuH88bhq2h6n32YzIB_ePcThzX-YsbRDN5MxePWRzv7HO-eokdrMyT3bL-eou8fP1y1n6vLr58u2reXleUNy5XphDFKdRaEIx1VTArXWFE7YnrZgXXWKAuuFpxQyQ1YwSnloufFWqCcnaI393N3cze63ropRzPoXfSjiXc6GK__3Zn8Rl-HW00lNKKuy4DX-wEx3MwuZT36ZN0wmMmFOWnBWMNUOb7IV__JbZhj-YqkKRBOm1qpgs7vkY0hpejWh6sQ0EuieklUHxMtHS__fsHB_4mwgBd7sHQexwlNNFP1cX-bcogHwKFmDZU1-wVenq90</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201426599</pqid></control><display><type>article</type><title>Direct Rod Input to Cone BCs and Direct Cone Input to Rod BCs Challenge the Traditional View of Mammalian BC Circuitry</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Pang, Ji-Jie ; Gao, Fan ; Lem, Janis ; Bramblett, Debra E. ; Paul, David L. ; Wu, Samuel M. ; Dowling, John E.</creator><creatorcontrib>Pang, Ji-Jie ; Gao, Fan ; Lem, Janis ; Bramblett, Debra E. ; Paul, David L. ; Wu, Samuel M. ; Dowling, John E.</creatorcontrib><description>Bipolar cells are the central neurons of the retina that transmit visual signals from rod and cone photoreceptors to third-order neurons in the inner retina and the brain. A dogma set forth by early anatomical studies is that bipolar cells in mammalian retinas receive segregated rod/cone synaptic inputs (either from rods or from cones), and here, we present evidence that challenges this traditional view. By analyzing light-evoked cation currents from morphologically identified depolarizing bipolar cells (DBCs) in the wild-type and three pathway-specific knockout mice (rod transducin knockout $[Tr\alpha ^{ - / - } ]$ , connexin36 knockout $[Cx36^{ - / - } ]$ , and transcription factor beta4 knockout $[Bhlhb4^{ - / - } ]$ ), we show that a subpopulation of rod DBCs $(DBC_{r2} s)$ receives substantial input directly from cones and a subpopulation of cone $DBCs(DBC_{c1} s)$ receives substantial input directly from rods. These results provide evidence of the existence of functional $rod - DBC_c $ and $cone - DBC_R $ synaptic pathways in the mouse retina as well as the previously proposed rod hyperpolarizing bipolar-cells pathway. This is grounds for revising the mammalian rod/cone bipolar cell dogma.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0907178107</identifier><identifier>PMID: 20018684</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amacrine cells ; Animals ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Biological Sciences ; Cell Shape ; Cells ; Connexins - genetics ; Connexins - metabolism ; Electric current ; Electrical polarity ; Gap Junction delta-2 Protein ; Mammals ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neurons ; Patch-Clamp Techniques ; Photic Stimulation ; Photoreceptors ; Retina ; Retinal Bipolar Cells - cytology ; Retinal Bipolar Cells - physiology ; Retinal Cone Photoreceptor Cells - cytology ; Retinal Cone Photoreceptor Cells - physiology ; Retinal Rod Photoreceptor Cells - cytology ; Retinal Rod Photoreceptor Cells - physiology ; Rodents ; Synapses ; Synaptic Transmission - physiology ; Transducin - genetics ; Transducin - metabolism ; Visual Pathways - anatomy &amp; histology ; Visual Pathways - physiology ; Waveforms</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-01, Vol.107 (1), p.395-400</ispartof><rights>Copyright National Academy of Sciences Jan 5, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-ab7aa99bc07e1b29387e6c75e1ad8b0ceca9c0e5741284a0c742247d4b29c0243</citedby><cites>FETCH-LOGICAL-c463t-ab7aa99bc07e1b29387e6c75e1ad8b0ceca9c0e5741284a0c742247d4b29c0243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/1.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40536285$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40536285$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20018684$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pang, Ji-Jie</creatorcontrib><creatorcontrib>Gao, Fan</creatorcontrib><creatorcontrib>Lem, Janis</creatorcontrib><creatorcontrib>Bramblett, Debra E.</creatorcontrib><creatorcontrib>Paul, David L.</creatorcontrib><creatorcontrib>Wu, Samuel M.</creatorcontrib><creatorcontrib>Dowling, John E.</creatorcontrib><title>Direct Rod Input to Cone BCs and Direct Cone Input to Rod BCs Challenge the Traditional View of Mammalian BC Circuitry</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Bipolar cells are the central neurons of the retina that transmit visual signals from rod and cone photoreceptors to third-order neurons in the inner retina and the brain. A dogma set forth by early anatomical studies is that bipolar cells in mammalian retinas receive segregated rod/cone synaptic inputs (either from rods or from cones), and here, we present evidence that challenges this traditional view. By analyzing light-evoked cation currents from morphologically identified depolarizing bipolar cells (DBCs) in the wild-type and three pathway-specific knockout mice (rod transducin knockout $[Tr\alpha ^{ - / - } ]$ , connexin36 knockout $[Cx36^{ - / - } ]$ , and transcription factor beta4 knockout $[Bhlhb4^{ - / - } ]$ ), we show that a subpopulation of rod DBCs $(DBC_{r2} s)$ receives substantial input directly from cones and a subpopulation of cone $DBCs(DBC_{c1} s)$ receives substantial input directly from rods. These results provide evidence of the existence of functional $rod - DBC_c $ and $cone - DBC_R $ synaptic pathways in the mouse retina as well as the previously proposed rod hyperpolarizing bipolar-cells pathway. This is grounds for revising the mammalian rod/cone bipolar cell dogma.</description><subject>Amacrine cells</subject><subject>Animals</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Biological Sciences</subject><subject>Cell Shape</subject><subject>Cells</subject><subject>Connexins - genetics</subject><subject>Connexins - metabolism</subject><subject>Electric current</subject><subject>Electrical polarity</subject><subject>Gap Junction delta-2 Protein</subject><subject>Mammals</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neurons</subject><subject>Patch-Clamp Techniques</subject><subject>Photic Stimulation</subject><subject>Photoreceptors</subject><subject>Retina</subject><subject>Retinal Bipolar Cells - cytology</subject><subject>Retinal Bipolar Cells - physiology</subject><subject>Retinal Cone Photoreceptor Cells - cytology</subject><subject>Retinal Cone Photoreceptor Cells - physiology</subject><subject>Retinal Rod Photoreceptor Cells - cytology</subject><subject>Retinal Rod Photoreceptor Cells - physiology</subject><subject>Rodents</subject><subject>Synapses</subject><subject>Synaptic Transmission - physiology</subject><subject>Transducin - genetics</subject><subject>Transducin - metabolism</subject><subject>Visual Pathways - anatomy &amp; histology</subject><subject>Visual Pathways - physiology</subject><subject>Waveforms</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0ctv1DAQB2ALgehSOHMCWVw4pR0_EtsXJAivSkVIqHC1HMfb9SqJt7ZT1P8ehy67wMnS-Jvx44fQcwJnBAQ7300mnYECQYQshQdoRUCRquEKHqIVABWV5JSfoCcpbQFA1RIeoxMKQGQj-QrdvvfR2Yy_hR5fTLs54xxwGyaH37UJm6nHe_C7dhALX0C7McPgpmuH88bhq2h6n32YzIB_ePcThzX-YsbRDN5MxePWRzv7HO-eokdrMyT3bL-eou8fP1y1n6vLr58u2reXleUNy5XphDFKdRaEIx1VTArXWFE7YnrZgXXWKAuuFpxQyQ1YwSnloufFWqCcnaI393N3cze63ropRzPoXfSjiXc6GK__3Zn8Rl-HW00lNKKuy4DX-wEx3MwuZT36ZN0wmMmFOWnBWMNUOb7IV__JbZhj-YqkKRBOm1qpgs7vkY0hpejWh6sQ0EuieklUHxMtHS__fsHB_4mwgBd7sHQexwlNNFP1cX-bcogHwKFmDZU1-wVenq90</recordid><startdate>20100105</startdate><enddate>20100105</enddate><creator>Pang, Ji-Jie</creator><creator>Gao, Fan</creator><creator>Lem, Janis</creator><creator>Bramblett, Debra E.</creator><creator>Paul, David L.</creator><creator>Wu, Samuel M.</creator><creator>Dowling, John E.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100105</creationdate><title>Direct Rod Input to Cone BCs and Direct Cone Input to Rod BCs Challenge the Traditional View of Mammalian BC Circuitry</title><author>Pang, Ji-Jie ; Gao, Fan ; Lem, Janis ; Bramblett, Debra E. ; Paul, David L. ; Wu, Samuel M. ; Dowling, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-ab7aa99bc07e1b29387e6c75e1ad8b0ceca9c0e5741284a0c742247d4b29c0243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amacrine cells</topic><topic>Animals</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Biological Sciences</topic><topic>Cell Shape</topic><topic>Cells</topic><topic>Connexins - genetics</topic><topic>Connexins - metabolism</topic><topic>Electric current</topic><topic>Electrical polarity</topic><topic>Gap Junction delta-2 Protein</topic><topic>Mammals</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neurons</topic><topic>Patch-Clamp Techniques</topic><topic>Photic Stimulation</topic><topic>Photoreceptors</topic><topic>Retina</topic><topic>Retinal Bipolar Cells - cytology</topic><topic>Retinal Bipolar Cells - physiology</topic><topic>Retinal Cone Photoreceptor Cells - cytology</topic><topic>Retinal Cone Photoreceptor Cells - physiology</topic><topic>Retinal Rod Photoreceptor Cells - cytology</topic><topic>Retinal Rod Photoreceptor Cells - physiology</topic><topic>Rodents</topic><topic>Synapses</topic><topic>Synaptic Transmission - physiology</topic><topic>Transducin - genetics</topic><topic>Transducin - metabolism</topic><topic>Visual Pathways - anatomy &amp; histology</topic><topic>Visual Pathways - physiology</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Ji-Jie</creatorcontrib><creatorcontrib>Gao, Fan</creatorcontrib><creatorcontrib>Lem, Janis</creatorcontrib><creatorcontrib>Bramblett, Debra E.</creatorcontrib><creatorcontrib>Paul, David L.</creatorcontrib><creatorcontrib>Wu, Samuel M.</creatorcontrib><creatorcontrib>Dowling, John E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Ji-Jie</au><au>Gao, Fan</au><au>Lem, Janis</au><au>Bramblett, Debra E.</au><au>Paul, David L.</au><au>Wu, Samuel M.</au><au>Dowling, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Rod Input to Cone BCs and Direct Cone Input to Rod BCs Challenge the Traditional View of Mammalian BC Circuitry</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-01-05</date><risdate>2010</risdate><volume>107</volume><issue>1</issue><spage>395</spage><epage>400</epage><pages>395-400</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Bipolar cells are the central neurons of the retina that transmit visual signals from rod and cone photoreceptors to third-order neurons in the inner retina and the brain. A dogma set forth by early anatomical studies is that bipolar cells in mammalian retinas receive segregated rod/cone synaptic inputs (either from rods or from cones), and here, we present evidence that challenges this traditional view. By analyzing light-evoked cation currents from morphologically identified depolarizing bipolar cells (DBCs) in the wild-type and three pathway-specific knockout mice (rod transducin knockout $[Tr\alpha ^{ - / - } ]$ , connexin36 knockout $[Cx36^{ - / - } ]$ , and transcription factor beta4 knockout $[Bhlhb4^{ - / - } ]$ ), we show that a subpopulation of rod DBCs $(DBC_{r2} s)$ receives substantial input directly from cones and a subpopulation of cone $DBCs(DBC_{c1} s)$ receives substantial input directly from rods. These results provide evidence of the existence of functional $rod - DBC_c $ and $cone - DBC_R $ synaptic pathways in the mouse retina as well as the previously proposed rod hyperpolarizing bipolar-cells pathway. This is grounds for revising the mammalian rod/cone bipolar cell dogma.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20018684</pmid><doi>10.1073/pnas.0907178107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-01, Vol.107 (1), p.395-400
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2806755
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amacrine cells
Animals
Basic Helix-Loop-Helix Transcription Factors - genetics
Basic Helix-Loop-Helix Transcription Factors - metabolism
Biological Sciences
Cell Shape
Cells
Connexins - genetics
Connexins - metabolism
Electric current
Electrical polarity
Gap Junction delta-2 Protein
Mammals
Mice
Mice, Inbred C57BL
Mice, Knockout
Neurons
Patch-Clamp Techniques
Photic Stimulation
Photoreceptors
Retina
Retinal Bipolar Cells - cytology
Retinal Bipolar Cells - physiology
Retinal Cone Photoreceptor Cells - cytology
Retinal Cone Photoreceptor Cells - physiology
Retinal Rod Photoreceptor Cells - cytology
Retinal Rod Photoreceptor Cells - physiology
Rodents
Synapses
Synaptic Transmission - physiology
Transducin - genetics
Transducin - metabolism
Visual Pathways - anatomy & histology
Visual Pathways - physiology
Waveforms
title Direct Rod Input to Cone BCs and Direct Cone Input to Rod BCs Challenge the Traditional View of Mammalian BC Circuitry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Rod%20Input%20to%20Cone%20BCs%20and%20Direct%20Cone%20Input%20to%20Rod%20BCs%20Challenge%20the%20Traditional%20View%20of%20Mammalian%20BC%20Circuitry&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Pang,%20Ji-Jie&rft.date=2010-01-05&rft.volume=107&rft.issue=1&rft.spage=395&rft.epage=400&rft.pages=395-400&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0907178107&rft_dat=%3Cjstor_pubme%3E40536285%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201426599&rft_id=info:pmid/20018684&rft_jstor_id=40536285&rfr_iscdi=true