Cytoskeletal Changes Underlie Estrogen's Acute Effects on Synaptic Transmission and Plasticity
Estrogen, in addition to its genomic effects in brain, causes rapid and reversible changes to synaptic operations. We report here that these acute actions are due to selective activation of an actin-signaling cascade normally used in the production of long-term potentiation (LTP). Estrogen, or a sel...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2009-10, Vol.29 (41), p.12982-12993 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12993 |
---|---|
container_issue | 41 |
container_start_page | 12982 |
container_title | The Journal of neuroscience |
container_volume | 29 |
creator | Kramar, Eniko A Chen, Lulu Y Brandon, Nicholas J Rex, Christopher S Liu, Feng Gall, Christine M Lynch, Gary |
description | Estrogen, in addition to its genomic effects in brain, causes rapid and reversible changes to synaptic operations. We report here that these acute actions are due to selective activation of an actin-signaling cascade normally used in the production of long-term potentiation (LTP). Estrogen, or a selective agonist of the steroid's beta-receptor, caused a modest increase in fast glutamatergic transmission and a pronounced facilitation of LTP in adult hippocampal slices; both effects were completely eliminated by latrunculin, a toxin that prevents actin filament assembly. Estrogen also increased spine concentrations of filamentous actin and strongly enhanced its polymerization in association with LTP. A search for the origins of these effects showed that estrogen activates the small GTPase RhoA and phosphorylates (inactivates) the actin severing protein cofilin, a downstream target of RhoA. Moreover, an antagonist of RhoA kinase (ROCK) blocked estrogen's synaptic effects. Estrogen thus emerges as a positive modulator of a RhoA>ROCK>LIM kinase>cofilin pathway that regulates the subsynaptic cytoskeleton. It does not, however, strongly affect a second LTP-related pathway, involving the GTPases Rac and Cdc42 and their effector p21-activated kinase, which may explain why its acute effects are reversible. Finally, ovariectomy depressed RhoA activity, spine cytoskeletal plasticity, and LTP, whereas brief infusions of estrogen rescued plasticity, suggesting that the deficits in plasticity arise from acute, as well as genomic, consequences of hormone loss. |
doi_str_mv | 10.1523/JNEUROSCI.3059-09.2009 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2806054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19828812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-d25147f9fc01205fcbb7ed7635315eea712deff82df334edb57212e9734e679f3</originalsourceid><addsrcrecordid>eNpVkN9r2zAQx8VYWdN2_0Lx2_bi7CRblvUyCCZrO0JbmuR1QrFPiTZHDpK6kP--Cind-nTcfX8cfAi5pjCmnBXfft5Pl08P8-ZuXACXOcgxA5AfyCipMmcl0I9kBExAXpWiPCcXIfwGAAFUfCLnVNasrikbkV_NIQ7hD_YYdZ81G-3WGLKl69D3FrNpiH5Yo_sSskn7HNPBGGxjyAaXzQ9O76Jts4XXLmxtCDZdteuyx16HJNh4uCJnRvcBP7_OS7L8MV00t_ns4eaumczylldlzDvGaSmMNC1QBty0q5XATlQFLyhH1IKyDo2pWWeKosRuxQWjDKVISyWkKS7J91Pv7nm1xa5FF73u1c7brfYHNWir3ivObtR6-KtYDRXwMhVUp4LWDyF4NG9ZCupIXL0RV0fiCqQ6Ek_B6_8__4u9Ik6GryfDxq43e-tRha3u-2Snar_fM6lKqihL9uIFcmOOUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cytoskeletal Changes Underlie Estrogen's Acute Effects on Synaptic Transmission and Plasticity</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kramar, Eniko A ; Chen, Lulu Y ; Brandon, Nicholas J ; Rex, Christopher S ; Liu, Feng ; Gall, Christine M ; Lynch, Gary</creator><creatorcontrib>Kramar, Eniko A ; Chen, Lulu Y ; Brandon, Nicholas J ; Rex, Christopher S ; Liu, Feng ; Gall, Christine M ; Lynch, Gary</creatorcontrib><description>Estrogen, in addition to its genomic effects in brain, causes rapid and reversible changes to synaptic operations. We report here that these acute actions are due to selective activation of an actin-signaling cascade normally used in the production of long-term potentiation (LTP). Estrogen, or a selective agonist of the steroid's beta-receptor, caused a modest increase in fast glutamatergic transmission and a pronounced facilitation of LTP in adult hippocampal slices; both effects were completely eliminated by latrunculin, a toxin that prevents actin filament assembly. Estrogen also increased spine concentrations of filamentous actin and strongly enhanced its polymerization in association with LTP. A search for the origins of these effects showed that estrogen activates the small GTPase RhoA and phosphorylates (inactivates) the actin severing protein cofilin, a downstream target of RhoA. Moreover, an antagonist of RhoA kinase (ROCK) blocked estrogen's synaptic effects. Estrogen thus emerges as a positive modulator of a RhoA>ROCK>LIM kinase>cofilin pathway that regulates the subsynaptic cytoskeleton. It does not, however, strongly affect a second LTP-related pathway, involving the GTPases Rac and Cdc42 and their effector p21-activated kinase, which may explain why its acute effects are reversible. Finally, ovariectomy depressed RhoA activity, spine cytoskeletal plasticity, and LTP, whereas brief infusions of estrogen rescued plasticity, suggesting that the deficits in plasticity arise from acute, as well as genomic, consequences of hormone loss.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.3059-09.2009</identifier><identifier>PMID: 19828812</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Actins - metabolism ; Age Factors ; Analysis of Variance ; Animals ; Animals, Newborn ; Biophysics ; Bridged Bicyclo Compounds, Heterocyclic - pharmacology ; Cytoskeleton - metabolism ; Dendritic Spines - drug effects ; Dendritic Spines - physiology ; Dose-Response Relationship, Drug ; Electric Stimulation - methods ; Estradiol - analogs & derivatives ; Estradiol - pharmacology ; Estrogen Antagonists - pharmacology ; Estrogens - metabolism ; Excitatory Amino Acid Antagonists - pharmacology ; Excitatory Postsynaptic Potentials - drug effects ; Excitatory Postsynaptic Potentials - physiology ; Female ; GABA Antagonists - pharmacology ; Ginsenosides - pharmacology ; Hippocampus - cytology ; In Vitro Techniques ; Long-Term Potentiation - drug effects ; Male ; Microscopy, Confocal ; Neural Pathways - physiology ; Neuronal Plasticity - drug effects ; Neuronal Plasticity - physiology ; Neurons - cytology ; Neurons - drug effects ; Neurons - physiology ; Ovariectomy - methods ; Oxazoles - pharmacology ; Patch-Clamp Techniques - methods ; Phenols - pharmacology ; Picrotoxin - pharmacology ; Rats ; Rats, Long-Evans ; Rats, Sprague-Dawley ; Sapogenins - pharmacology ; Signal Transduction - drug effects ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology ; Thiazolidines - pharmacology</subject><ispartof>The Journal of neuroscience, 2009-10, Vol.29 (41), p.12982-12993</ispartof><rights>Copyright © 2009 Society for Neuroscience 0270-6474/09/2912982-12$15.00/0 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-d25147f9fc01205fcbb7ed7635315eea712deff82df334edb57212e9734e679f3</citedby><cites>FETCH-LOGICAL-c564t-d25147f9fc01205fcbb7ed7635315eea712deff82df334edb57212e9734e679f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806054/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806054/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19828812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kramar, Eniko A</creatorcontrib><creatorcontrib>Chen, Lulu Y</creatorcontrib><creatorcontrib>Brandon, Nicholas J</creatorcontrib><creatorcontrib>Rex, Christopher S</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Gall, Christine M</creatorcontrib><creatorcontrib>Lynch, Gary</creatorcontrib><title>Cytoskeletal Changes Underlie Estrogen's Acute Effects on Synaptic Transmission and Plasticity</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Estrogen, in addition to its genomic effects in brain, causes rapid and reversible changes to synaptic operations. We report here that these acute actions are due to selective activation of an actin-signaling cascade normally used in the production of long-term potentiation (LTP). Estrogen, or a selective agonist of the steroid's beta-receptor, caused a modest increase in fast glutamatergic transmission and a pronounced facilitation of LTP in adult hippocampal slices; both effects were completely eliminated by latrunculin, a toxin that prevents actin filament assembly. Estrogen also increased spine concentrations of filamentous actin and strongly enhanced its polymerization in association with LTP. A search for the origins of these effects showed that estrogen activates the small GTPase RhoA and phosphorylates (inactivates) the actin severing protein cofilin, a downstream target of RhoA. Moreover, an antagonist of RhoA kinase (ROCK) blocked estrogen's synaptic effects. Estrogen thus emerges as a positive modulator of a RhoA>ROCK>LIM kinase>cofilin pathway that regulates the subsynaptic cytoskeleton. It does not, however, strongly affect a second LTP-related pathway, involving the GTPases Rac and Cdc42 and their effector p21-activated kinase, which may explain why its acute effects are reversible. Finally, ovariectomy depressed RhoA activity, spine cytoskeletal plasticity, and LTP, whereas brief infusions of estrogen rescued plasticity, suggesting that the deficits in plasticity arise from acute, as well as genomic, consequences of hormone loss.</description><subject>Actins - metabolism</subject><subject>Age Factors</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biophysics</subject><subject>Bridged Bicyclo Compounds, Heterocyclic - pharmacology</subject><subject>Cytoskeleton - metabolism</subject><subject>Dendritic Spines - drug effects</subject><subject>Dendritic Spines - physiology</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electric Stimulation - methods</subject><subject>Estradiol - analogs & derivatives</subject><subject>Estradiol - pharmacology</subject><subject>Estrogen Antagonists - pharmacology</subject><subject>Estrogens - metabolism</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Female</subject><subject>GABA Antagonists - pharmacology</subject><subject>Ginsenosides - pharmacology</subject><subject>Hippocampus - cytology</subject><subject>In Vitro Techniques</subject><subject>Long-Term Potentiation - drug effects</subject><subject>Male</subject><subject>Microscopy, Confocal</subject><subject>Neural Pathways - physiology</subject><subject>Neuronal Plasticity - drug effects</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Ovariectomy - methods</subject><subject>Oxazoles - pharmacology</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Phenols - pharmacology</subject><subject>Picrotoxin - pharmacology</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Rats, Sprague-Dawley</subject><subject>Sapogenins - pharmacology</subject><subject>Signal Transduction - drug effects</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><subject>Thiazolidines - pharmacology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkN9r2zAQx8VYWdN2_0Lx2_bi7CRblvUyCCZrO0JbmuR1QrFPiTZHDpK6kP--Cind-nTcfX8cfAi5pjCmnBXfft5Pl08P8-ZuXACXOcgxA5AfyCipMmcl0I9kBExAXpWiPCcXIfwGAAFUfCLnVNasrikbkV_NIQ7hD_YYdZ81G-3WGLKl69D3FrNpiH5Yo_sSskn7HNPBGGxjyAaXzQ9O76Jts4XXLmxtCDZdteuyx16HJNh4uCJnRvcBP7_OS7L8MV00t_ns4eaumczylldlzDvGaSmMNC1QBty0q5XATlQFLyhH1IKyDo2pWWeKosRuxQWjDKVISyWkKS7J91Pv7nm1xa5FF73u1c7brfYHNWir3ivObtR6-KtYDRXwMhVUp4LWDyF4NG9ZCupIXL0RV0fiCqQ6Ek_B6_8__4u9Ik6GryfDxq43e-tRha3u-2Snar_fM6lKqihL9uIFcmOOUw</recordid><startdate>20091014</startdate><enddate>20091014</enddate><creator>Kramar, Eniko A</creator><creator>Chen, Lulu Y</creator><creator>Brandon, Nicholas J</creator><creator>Rex, Christopher S</creator><creator>Liu, Feng</creator><creator>Gall, Christine M</creator><creator>Lynch, Gary</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20091014</creationdate><title>Cytoskeletal Changes Underlie Estrogen's Acute Effects on Synaptic Transmission and Plasticity</title><author>Kramar, Eniko A ; Chen, Lulu Y ; Brandon, Nicholas J ; Rex, Christopher S ; Liu, Feng ; Gall, Christine M ; Lynch, Gary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-d25147f9fc01205fcbb7ed7635315eea712deff82df334edb57212e9734e679f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Actins - metabolism</topic><topic>Age Factors</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biophysics</topic><topic>Bridged Bicyclo Compounds, Heterocyclic - pharmacology</topic><topic>Cytoskeleton - metabolism</topic><topic>Dendritic Spines - drug effects</topic><topic>Dendritic Spines - physiology</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electric Stimulation - methods</topic><topic>Estradiol - analogs & derivatives</topic><topic>Estradiol - pharmacology</topic><topic>Estrogen Antagonists - pharmacology</topic><topic>Estrogens - metabolism</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Female</topic><topic>GABA Antagonists - pharmacology</topic><topic>Ginsenosides - pharmacology</topic><topic>Hippocampus - cytology</topic><topic>In Vitro Techniques</topic><topic>Long-Term Potentiation - drug effects</topic><topic>Male</topic><topic>Microscopy, Confocal</topic><topic>Neural Pathways - physiology</topic><topic>Neuronal Plasticity - drug effects</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Ovariectomy - methods</topic><topic>Oxazoles - pharmacology</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Phenols - pharmacology</topic><topic>Picrotoxin - pharmacology</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Rats, Sprague-Dawley</topic><topic>Sapogenins - pharmacology</topic><topic>Signal Transduction - drug effects</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><topic>Thiazolidines - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kramar, Eniko A</creatorcontrib><creatorcontrib>Chen, Lulu Y</creatorcontrib><creatorcontrib>Brandon, Nicholas J</creatorcontrib><creatorcontrib>Rex, Christopher S</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Gall, Christine M</creatorcontrib><creatorcontrib>Lynch, Gary</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kramar, Eniko A</au><au>Chen, Lulu Y</au><au>Brandon, Nicholas J</au><au>Rex, Christopher S</au><au>Liu, Feng</au><au>Gall, Christine M</au><au>Lynch, Gary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytoskeletal Changes Underlie Estrogen's Acute Effects on Synaptic Transmission and Plasticity</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2009-10-14</date><risdate>2009</risdate><volume>29</volume><issue>41</issue><spage>12982</spage><epage>12993</epage><pages>12982-12993</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Estrogen, in addition to its genomic effects in brain, causes rapid and reversible changes to synaptic operations. We report here that these acute actions are due to selective activation of an actin-signaling cascade normally used in the production of long-term potentiation (LTP). Estrogen, or a selective agonist of the steroid's beta-receptor, caused a modest increase in fast glutamatergic transmission and a pronounced facilitation of LTP in adult hippocampal slices; both effects were completely eliminated by latrunculin, a toxin that prevents actin filament assembly. Estrogen also increased spine concentrations of filamentous actin and strongly enhanced its polymerization in association with LTP. A search for the origins of these effects showed that estrogen activates the small GTPase RhoA and phosphorylates (inactivates) the actin severing protein cofilin, a downstream target of RhoA. Moreover, an antagonist of RhoA kinase (ROCK) blocked estrogen's synaptic effects. Estrogen thus emerges as a positive modulator of a RhoA>ROCK>LIM kinase>cofilin pathway that regulates the subsynaptic cytoskeleton. It does not, however, strongly affect a second LTP-related pathway, involving the GTPases Rac and Cdc42 and their effector p21-activated kinase, which may explain why its acute effects are reversible. Finally, ovariectomy depressed RhoA activity, spine cytoskeletal plasticity, and LTP, whereas brief infusions of estrogen rescued plasticity, suggesting that the deficits in plasticity arise from acute, as well as genomic, consequences of hormone loss.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>19828812</pmid><doi>10.1523/JNEUROSCI.3059-09.2009</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2009-10, Vol.29 (41), p.12982-12993 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2806054 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Actins - metabolism Age Factors Analysis of Variance Animals Animals, Newborn Biophysics Bridged Bicyclo Compounds, Heterocyclic - pharmacology Cytoskeleton - metabolism Dendritic Spines - drug effects Dendritic Spines - physiology Dose-Response Relationship, Drug Electric Stimulation - methods Estradiol - analogs & derivatives Estradiol - pharmacology Estrogen Antagonists - pharmacology Estrogens - metabolism Excitatory Amino Acid Antagonists - pharmacology Excitatory Postsynaptic Potentials - drug effects Excitatory Postsynaptic Potentials - physiology Female GABA Antagonists - pharmacology Ginsenosides - pharmacology Hippocampus - cytology In Vitro Techniques Long-Term Potentiation - drug effects Male Microscopy, Confocal Neural Pathways - physiology Neuronal Plasticity - drug effects Neuronal Plasticity - physiology Neurons - cytology Neurons - drug effects Neurons - physiology Ovariectomy - methods Oxazoles - pharmacology Patch-Clamp Techniques - methods Phenols - pharmacology Picrotoxin - pharmacology Rats Rats, Long-Evans Rats, Sprague-Dawley Sapogenins - pharmacology Signal Transduction - drug effects Synaptic Transmission - drug effects Synaptic Transmission - physiology Thiazolidines - pharmacology |
title | Cytoskeletal Changes Underlie Estrogen's Acute Effects on Synaptic Transmission and Plasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytoskeletal%20Changes%20Underlie%20Estrogen's%20Acute%20Effects%20on%20Synaptic%20Transmission%20and%20Plasticity&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Kramar,%20Eniko%20A&rft.date=2009-10-14&rft.volume=29&rft.issue=41&rft.spage=12982&rft.epage=12993&rft.pages=12982-12993&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.3059-09.2009&rft_dat=%3Cpubmed_cross%3E19828812%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19828812&rfr_iscdi=true |