Cytoskeletal Changes Underlie Estrogen's Acute Effects on Synaptic Transmission and Plasticity

Estrogen, in addition to its genomic effects in brain, causes rapid and reversible changes to synaptic operations. We report here that these acute actions are due to selective activation of an actin-signaling cascade normally used in the production of long-term potentiation (LTP). Estrogen, or a sel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2009-10, Vol.29 (41), p.12982-12993
Hauptverfasser: Kramar, Eniko A, Chen, Lulu Y, Brandon, Nicholas J, Rex, Christopher S, Liu, Feng, Gall, Christine M, Lynch, Gary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12993
container_issue 41
container_start_page 12982
container_title The Journal of neuroscience
container_volume 29
creator Kramar, Eniko A
Chen, Lulu Y
Brandon, Nicholas J
Rex, Christopher S
Liu, Feng
Gall, Christine M
Lynch, Gary
description Estrogen, in addition to its genomic effects in brain, causes rapid and reversible changes to synaptic operations. We report here that these acute actions are due to selective activation of an actin-signaling cascade normally used in the production of long-term potentiation (LTP). Estrogen, or a selective agonist of the steroid's beta-receptor, caused a modest increase in fast glutamatergic transmission and a pronounced facilitation of LTP in adult hippocampal slices; both effects were completely eliminated by latrunculin, a toxin that prevents actin filament assembly. Estrogen also increased spine concentrations of filamentous actin and strongly enhanced its polymerization in association with LTP. A search for the origins of these effects showed that estrogen activates the small GTPase RhoA and phosphorylates (inactivates) the actin severing protein cofilin, a downstream target of RhoA. Moreover, an antagonist of RhoA kinase (ROCK) blocked estrogen's synaptic effects. Estrogen thus emerges as a positive modulator of a RhoA>ROCK>LIM kinase>cofilin pathway that regulates the subsynaptic cytoskeleton. It does not, however, strongly affect a second LTP-related pathway, involving the GTPases Rac and Cdc42 and their effector p21-activated kinase, which may explain why its acute effects are reversible. Finally, ovariectomy depressed RhoA activity, spine cytoskeletal plasticity, and LTP, whereas brief infusions of estrogen rescued plasticity, suggesting that the deficits in plasticity arise from acute, as well as genomic, consequences of hormone loss.
doi_str_mv 10.1523/JNEUROSCI.3059-09.2009
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2806054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19828812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-d25147f9fc01205fcbb7ed7635315eea712deff82df334edb57212e9734e679f3</originalsourceid><addsrcrecordid>eNpVkN9r2zAQx8VYWdN2_0Lx2_bi7CRblvUyCCZrO0JbmuR1QrFPiTZHDpK6kP--Cind-nTcfX8cfAi5pjCmnBXfft5Pl08P8-ZuXACXOcgxA5AfyCipMmcl0I9kBExAXpWiPCcXIfwGAAFUfCLnVNasrikbkV_NIQ7hD_YYdZ81G-3WGLKl69D3FrNpiH5Yo_sSskn7HNPBGGxjyAaXzQ9O76Jts4XXLmxtCDZdteuyx16HJNh4uCJnRvcBP7_OS7L8MV00t_ns4eaumczylldlzDvGaSmMNC1QBty0q5XATlQFLyhH1IKyDo2pWWeKosRuxQWjDKVISyWkKS7J91Pv7nm1xa5FF73u1c7brfYHNWir3ivObtR6-KtYDRXwMhVUp4LWDyF4NG9ZCupIXL0RV0fiCqQ6Ek_B6_8__4u9Ik6GryfDxq43e-tRha3u-2Snar_fM6lKqihL9uIFcmOOUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cytoskeletal Changes Underlie Estrogen's Acute Effects on Synaptic Transmission and Plasticity</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kramar, Eniko A ; Chen, Lulu Y ; Brandon, Nicholas J ; Rex, Christopher S ; Liu, Feng ; Gall, Christine M ; Lynch, Gary</creator><creatorcontrib>Kramar, Eniko A ; Chen, Lulu Y ; Brandon, Nicholas J ; Rex, Christopher S ; Liu, Feng ; Gall, Christine M ; Lynch, Gary</creatorcontrib><description>Estrogen, in addition to its genomic effects in brain, causes rapid and reversible changes to synaptic operations. We report here that these acute actions are due to selective activation of an actin-signaling cascade normally used in the production of long-term potentiation (LTP). Estrogen, or a selective agonist of the steroid's beta-receptor, caused a modest increase in fast glutamatergic transmission and a pronounced facilitation of LTP in adult hippocampal slices; both effects were completely eliminated by latrunculin, a toxin that prevents actin filament assembly. Estrogen also increased spine concentrations of filamentous actin and strongly enhanced its polymerization in association with LTP. A search for the origins of these effects showed that estrogen activates the small GTPase RhoA and phosphorylates (inactivates) the actin severing protein cofilin, a downstream target of RhoA. Moreover, an antagonist of RhoA kinase (ROCK) blocked estrogen's synaptic effects. Estrogen thus emerges as a positive modulator of a RhoA&gt;ROCK&gt;LIM kinase&gt;cofilin pathway that regulates the subsynaptic cytoskeleton. It does not, however, strongly affect a second LTP-related pathway, involving the GTPases Rac and Cdc42 and their effector p21-activated kinase, which may explain why its acute effects are reversible. Finally, ovariectomy depressed RhoA activity, spine cytoskeletal plasticity, and LTP, whereas brief infusions of estrogen rescued plasticity, suggesting that the deficits in plasticity arise from acute, as well as genomic, consequences of hormone loss.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.3059-09.2009</identifier><identifier>PMID: 19828812</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Actins - metabolism ; Age Factors ; Analysis of Variance ; Animals ; Animals, Newborn ; Biophysics ; Bridged Bicyclo Compounds, Heterocyclic - pharmacology ; Cytoskeleton - metabolism ; Dendritic Spines - drug effects ; Dendritic Spines - physiology ; Dose-Response Relationship, Drug ; Electric Stimulation - methods ; Estradiol - analogs &amp; derivatives ; Estradiol - pharmacology ; Estrogen Antagonists - pharmacology ; Estrogens - metabolism ; Excitatory Amino Acid Antagonists - pharmacology ; Excitatory Postsynaptic Potentials - drug effects ; Excitatory Postsynaptic Potentials - physiology ; Female ; GABA Antagonists - pharmacology ; Ginsenosides - pharmacology ; Hippocampus - cytology ; In Vitro Techniques ; Long-Term Potentiation - drug effects ; Male ; Microscopy, Confocal ; Neural Pathways - physiology ; Neuronal Plasticity - drug effects ; Neuronal Plasticity - physiology ; Neurons - cytology ; Neurons - drug effects ; Neurons - physiology ; Ovariectomy - methods ; Oxazoles - pharmacology ; Patch-Clamp Techniques - methods ; Phenols - pharmacology ; Picrotoxin - pharmacology ; Rats ; Rats, Long-Evans ; Rats, Sprague-Dawley ; Sapogenins - pharmacology ; Signal Transduction - drug effects ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology ; Thiazolidines - pharmacology</subject><ispartof>The Journal of neuroscience, 2009-10, Vol.29 (41), p.12982-12993</ispartof><rights>Copyright © 2009 Society for Neuroscience 0270-6474/09/2912982-12$15.00/0 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-d25147f9fc01205fcbb7ed7635315eea712deff82df334edb57212e9734e679f3</citedby><cites>FETCH-LOGICAL-c564t-d25147f9fc01205fcbb7ed7635315eea712deff82df334edb57212e9734e679f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806054/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806054/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19828812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kramar, Eniko A</creatorcontrib><creatorcontrib>Chen, Lulu Y</creatorcontrib><creatorcontrib>Brandon, Nicholas J</creatorcontrib><creatorcontrib>Rex, Christopher S</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Gall, Christine M</creatorcontrib><creatorcontrib>Lynch, Gary</creatorcontrib><title>Cytoskeletal Changes Underlie Estrogen's Acute Effects on Synaptic Transmission and Plasticity</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Estrogen, in addition to its genomic effects in brain, causes rapid and reversible changes to synaptic operations. We report here that these acute actions are due to selective activation of an actin-signaling cascade normally used in the production of long-term potentiation (LTP). Estrogen, or a selective agonist of the steroid's beta-receptor, caused a modest increase in fast glutamatergic transmission and a pronounced facilitation of LTP in adult hippocampal slices; both effects were completely eliminated by latrunculin, a toxin that prevents actin filament assembly. Estrogen also increased spine concentrations of filamentous actin and strongly enhanced its polymerization in association with LTP. A search for the origins of these effects showed that estrogen activates the small GTPase RhoA and phosphorylates (inactivates) the actin severing protein cofilin, a downstream target of RhoA. Moreover, an antagonist of RhoA kinase (ROCK) blocked estrogen's synaptic effects. Estrogen thus emerges as a positive modulator of a RhoA&gt;ROCK&gt;LIM kinase&gt;cofilin pathway that regulates the subsynaptic cytoskeleton. It does not, however, strongly affect a second LTP-related pathway, involving the GTPases Rac and Cdc42 and their effector p21-activated kinase, which may explain why its acute effects are reversible. Finally, ovariectomy depressed RhoA activity, spine cytoskeletal plasticity, and LTP, whereas brief infusions of estrogen rescued plasticity, suggesting that the deficits in plasticity arise from acute, as well as genomic, consequences of hormone loss.</description><subject>Actins - metabolism</subject><subject>Age Factors</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biophysics</subject><subject>Bridged Bicyclo Compounds, Heterocyclic - pharmacology</subject><subject>Cytoskeleton - metabolism</subject><subject>Dendritic Spines - drug effects</subject><subject>Dendritic Spines - physiology</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electric Stimulation - methods</subject><subject>Estradiol - analogs &amp; derivatives</subject><subject>Estradiol - pharmacology</subject><subject>Estrogen Antagonists - pharmacology</subject><subject>Estrogens - metabolism</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Female</subject><subject>GABA Antagonists - pharmacology</subject><subject>Ginsenosides - pharmacology</subject><subject>Hippocampus - cytology</subject><subject>In Vitro Techniques</subject><subject>Long-Term Potentiation - drug effects</subject><subject>Male</subject><subject>Microscopy, Confocal</subject><subject>Neural Pathways - physiology</subject><subject>Neuronal Plasticity - drug effects</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Ovariectomy - methods</subject><subject>Oxazoles - pharmacology</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Phenols - pharmacology</subject><subject>Picrotoxin - pharmacology</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Rats, Sprague-Dawley</subject><subject>Sapogenins - pharmacology</subject><subject>Signal Transduction - drug effects</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><subject>Thiazolidines - pharmacology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkN9r2zAQx8VYWdN2_0Lx2_bi7CRblvUyCCZrO0JbmuR1QrFPiTZHDpK6kP--Cind-nTcfX8cfAi5pjCmnBXfft5Pl08P8-ZuXACXOcgxA5AfyCipMmcl0I9kBExAXpWiPCcXIfwGAAFUfCLnVNasrikbkV_NIQ7hD_YYdZ81G-3WGLKl69D3FrNpiH5Yo_sSskn7HNPBGGxjyAaXzQ9O76Jts4XXLmxtCDZdteuyx16HJNh4uCJnRvcBP7_OS7L8MV00t_ns4eaumczylldlzDvGaSmMNC1QBty0q5XATlQFLyhH1IKyDo2pWWeKosRuxQWjDKVISyWkKS7J91Pv7nm1xa5FF73u1c7brfYHNWir3ivObtR6-KtYDRXwMhVUp4LWDyF4NG9ZCupIXL0RV0fiCqQ6Ek_B6_8__4u9Ik6GryfDxq43e-tRha3u-2Snar_fM6lKqihL9uIFcmOOUw</recordid><startdate>20091014</startdate><enddate>20091014</enddate><creator>Kramar, Eniko A</creator><creator>Chen, Lulu Y</creator><creator>Brandon, Nicholas J</creator><creator>Rex, Christopher S</creator><creator>Liu, Feng</creator><creator>Gall, Christine M</creator><creator>Lynch, Gary</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20091014</creationdate><title>Cytoskeletal Changes Underlie Estrogen's Acute Effects on Synaptic Transmission and Plasticity</title><author>Kramar, Eniko A ; Chen, Lulu Y ; Brandon, Nicholas J ; Rex, Christopher S ; Liu, Feng ; Gall, Christine M ; Lynch, Gary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-d25147f9fc01205fcbb7ed7635315eea712deff82df334edb57212e9734e679f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Actins - metabolism</topic><topic>Age Factors</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biophysics</topic><topic>Bridged Bicyclo Compounds, Heterocyclic - pharmacology</topic><topic>Cytoskeleton - metabolism</topic><topic>Dendritic Spines - drug effects</topic><topic>Dendritic Spines - physiology</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electric Stimulation - methods</topic><topic>Estradiol - analogs &amp; derivatives</topic><topic>Estradiol - pharmacology</topic><topic>Estrogen Antagonists - pharmacology</topic><topic>Estrogens - metabolism</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Female</topic><topic>GABA Antagonists - pharmacology</topic><topic>Ginsenosides - pharmacology</topic><topic>Hippocampus - cytology</topic><topic>In Vitro Techniques</topic><topic>Long-Term Potentiation - drug effects</topic><topic>Male</topic><topic>Microscopy, Confocal</topic><topic>Neural Pathways - physiology</topic><topic>Neuronal Plasticity - drug effects</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Ovariectomy - methods</topic><topic>Oxazoles - pharmacology</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Phenols - pharmacology</topic><topic>Picrotoxin - pharmacology</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Rats, Sprague-Dawley</topic><topic>Sapogenins - pharmacology</topic><topic>Signal Transduction - drug effects</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><topic>Thiazolidines - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kramar, Eniko A</creatorcontrib><creatorcontrib>Chen, Lulu Y</creatorcontrib><creatorcontrib>Brandon, Nicholas J</creatorcontrib><creatorcontrib>Rex, Christopher S</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Gall, Christine M</creatorcontrib><creatorcontrib>Lynch, Gary</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kramar, Eniko A</au><au>Chen, Lulu Y</au><au>Brandon, Nicholas J</au><au>Rex, Christopher S</au><au>Liu, Feng</au><au>Gall, Christine M</au><au>Lynch, Gary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytoskeletal Changes Underlie Estrogen's Acute Effects on Synaptic Transmission and Plasticity</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2009-10-14</date><risdate>2009</risdate><volume>29</volume><issue>41</issue><spage>12982</spage><epage>12993</epage><pages>12982-12993</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Estrogen, in addition to its genomic effects in brain, causes rapid and reversible changes to synaptic operations. We report here that these acute actions are due to selective activation of an actin-signaling cascade normally used in the production of long-term potentiation (LTP). Estrogen, or a selective agonist of the steroid's beta-receptor, caused a modest increase in fast glutamatergic transmission and a pronounced facilitation of LTP in adult hippocampal slices; both effects were completely eliminated by latrunculin, a toxin that prevents actin filament assembly. Estrogen also increased spine concentrations of filamentous actin and strongly enhanced its polymerization in association with LTP. A search for the origins of these effects showed that estrogen activates the small GTPase RhoA and phosphorylates (inactivates) the actin severing protein cofilin, a downstream target of RhoA. Moreover, an antagonist of RhoA kinase (ROCK) blocked estrogen's synaptic effects. Estrogen thus emerges as a positive modulator of a RhoA&gt;ROCK&gt;LIM kinase&gt;cofilin pathway that regulates the subsynaptic cytoskeleton. It does not, however, strongly affect a second LTP-related pathway, involving the GTPases Rac and Cdc42 and their effector p21-activated kinase, which may explain why its acute effects are reversible. Finally, ovariectomy depressed RhoA activity, spine cytoskeletal plasticity, and LTP, whereas brief infusions of estrogen rescued plasticity, suggesting that the deficits in plasticity arise from acute, as well as genomic, consequences of hormone loss.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>19828812</pmid><doi>10.1523/JNEUROSCI.3059-09.2009</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2009-10, Vol.29 (41), p.12982-12993
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2806054
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Actins - metabolism
Age Factors
Analysis of Variance
Animals
Animals, Newborn
Biophysics
Bridged Bicyclo Compounds, Heterocyclic - pharmacology
Cytoskeleton - metabolism
Dendritic Spines - drug effects
Dendritic Spines - physiology
Dose-Response Relationship, Drug
Electric Stimulation - methods
Estradiol - analogs & derivatives
Estradiol - pharmacology
Estrogen Antagonists - pharmacology
Estrogens - metabolism
Excitatory Amino Acid Antagonists - pharmacology
Excitatory Postsynaptic Potentials - drug effects
Excitatory Postsynaptic Potentials - physiology
Female
GABA Antagonists - pharmacology
Ginsenosides - pharmacology
Hippocampus - cytology
In Vitro Techniques
Long-Term Potentiation - drug effects
Male
Microscopy, Confocal
Neural Pathways - physiology
Neuronal Plasticity - drug effects
Neuronal Plasticity - physiology
Neurons - cytology
Neurons - drug effects
Neurons - physiology
Ovariectomy - methods
Oxazoles - pharmacology
Patch-Clamp Techniques - methods
Phenols - pharmacology
Picrotoxin - pharmacology
Rats
Rats, Long-Evans
Rats, Sprague-Dawley
Sapogenins - pharmacology
Signal Transduction - drug effects
Synaptic Transmission - drug effects
Synaptic Transmission - physiology
Thiazolidines - pharmacology
title Cytoskeletal Changes Underlie Estrogen's Acute Effects on Synaptic Transmission and Plasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytoskeletal%20Changes%20Underlie%20Estrogen's%20Acute%20Effects%20on%20Synaptic%20Transmission%20and%20Plasticity&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Kramar,%20Eniko%20A&rft.date=2009-10-14&rft.volume=29&rft.issue=41&rft.spage=12982&rft.epage=12993&rft.pages=12982-12993&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.3059-09.2009&rft_dat=%3Cpubmed_cross%3E19828812%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19828812&rfr_iscdi=true