Transmembrane Segment II of NhaA Na+/H+ Antiporter Lines the Cation Passage, and Asp65 Is Critical for pH Activation of the Antiporter
The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 5.5–8.5), many questions related to the active state of NhaA have remained elusive. O...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2010-01, Vol.285 (3), p.2211-2220 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2220 |
---|---|
container_issue | 3 |
container_start_page | 2211 |
container_title | The Journal of biological chemistry |
container_volume | 285 |
creator | Herz, Katia Rimon, Abraham Olkhova, Elena Kozachkov, Lena Padan, Etana |
description | The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 5.5–8.5), many questions related to the active state of NhaA have remained elusive. Our experimental results at physiological pH and computational analyses reveal that amino acid residues in transmembrane segment II contribute to the cation pathway of NhaA and its pH regulation: 1) transmembrane segment II is a highly conserved helix and the conserved amino acid residues are located on one side of the helix facing either the cytoplasmic or periplasmic funnels of NhaA structure. 2) Cys replacements of the conserved residues and measuring their antiporter activity in everted membrane vesicles showed that D65C, L67C, E78C, and E82C increased the apparent Km to Na+ and Li+ and changed the pH response of the antiporter. 3) Introduced Cys replacements, L60C, N64C, F71C, F72C, and E78C, were significantly alkylated by [14C]N-ethylmaleimide implying the presence of water-filled cavities in NhaA. 4) Several Cys replacements were modified by MTSES and/or MTSET, membrane impermeant, negatively and positively charged reagents, respectively, that could reach Cys replacements from the periplasm only via water-filled funnel(s). Remarkably, the reactivity of D65C to MTSES increased with increasing pH and chemical modification by MTSES but not by MTSET, decreased the apparent Km of the antiporter at pH 7.5 (10-fold) but not at pH 8.5, implying the importance of Asp65 negative charge for pH activation of the antiporter. |
doi_str_mv | 10.1074/jbc.M109.047134 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2804377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819649276</els_id><sourcerecordid>733618017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4044-c092caacf018eb18cfd6815239b50da408d1e5df1e80df87623f3f4747447073</originalsourceid><addsrcrecordid>eNp1kU-P0zAQxSMEYsvCmRtYXDjsth3_SZNckKoKtpXKgrRF4mY5zjjxqom7dlrEF-Bz4ygVCwfswxz8mzfP85LkNYUZhUzM70s9-0yhmIHIKBdPkgmFnE95Sr8_TSYAjE4LluYXyYsQ7iEeUdDnyQUtCsYZE5Pk186rLrTYlrEiucO6xa4nmw1xhtw2aklu1dV8fUWWXW8PzvfoydZ2GEjfIFmp3rqOfFUhqBqvieoqsgyHRUo2gay87a1We2KcJ4c1WerensaGqD20P2q-TJ4ZtQ_46lwvk92nj7vVerr9crNZLbdTLUCIqYaCaaW0AZpjSXNtqkVOU8aLMoVKCcgrimllKOZQmTxbMG64EVm8IoOMXyYfRtnDsWyx0vGrXu3lwdtW-Z_SKSv_felsI2t3kiwHwbNB4P1ZwLuHI4ZetjZo3O_j8twxyIzzBc2BDuR8JLV3IXg0f6ZQkEN2MmYnh-zkmF3sePO3uUf-HFYE3o1AY-vmh_UoS-t0g220l0ouGaM0Qm9HyCgnVe1tkN_uGFAeTTEOwCNRjATGRZ8sehm0xU5jFSV1Lytn_-vxNx1ovKY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733618017</pqid></control><display><type>article</type><title>Transmembrane Segment II of NhaA Na+/H+ Antiporter Lines the Cation Passage, and Asp65 Is Critical for pH Activation of the Antiporter</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Herz, Katia ; Rimon, Abraham ; Olkhova, Elena ; Kozachkov, Lena ; Padan, Etana</creator><creatorcontrib>Herz, Katia ; Rimon, Abraham ; Olkhova, Elena ; Kozachkov, Lena ; Padan, Etana</creatorcontrib><description>The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 5.5–8.5), many questions related to the active state of NhaA have remained elusive. Our experimental results at physiological pH and computational analyses reveal that amino acid residues in transmembrane segment II contribute to the cation pathway of NhaA and its pH regulation: 1) transmembrane segment II is a highly conserved helix and the conserved amino acid residues are located on one side of the helix facing either the cytoplasmic or periplasmic funnels of NhaA structure. 2) Cys replacements of the conserved residues and measuring their antiporter activity in everted membrane vesicles showed that D65C, L67C, E78C, and E82C increased the apparent Km to Na+ and Li+ and changed the pH response of the antiporter. 3) Introduced Cys replacements, L60C, N64C, F71C, F72C, and E78C, were significantly alkylated by [14C]N-ethylmaleimide implying the presence of water-filled cavities in NhaA. 4) Several Cys replacements were modified by MTSES and/or MTSET, membrane impermeant, negatively and positively charged reagents, respectively, that could reach Cys replacements from the periplasm only via water-filled funnel(s). Remarkably, the reactivity of D65C to MTSES increased with increasing pH and chemical modification by MTSES but not by MTSET, decreased the apparent Km of the antiporter at pH 7.5 (10-fold) but not at pH 8.5, implying the importance of Asp65 negative charge for pH activation of the antiporter.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.047134</identifier><identifier>PMID: 19923224</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aspartic Acid - metabolism ; Cations - metabolism ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; Computer Simulation ; Conserved Sequence ; Crystal Structure-based Functional Study ; Crystallography, X-Ray ; Cysteine ; Escherichia coli - cytology ; Escherichia coli - genetics ; Escherichia coli - growth & development ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Gene Expression Regulation, Bacterial ; Hydrogen-Ion Concentration ; Ion Transport ; Lithium - metabolism ; Membrane ; Membrane Transport, Structure, Function, and Biogenesis ; Mesylates - pharmacology ; Models, Molecular ; Mutation ; Na+/H+ Antiporter ; NhaA ; NhaA pH-activation ; Periplasm - metabolism ; Phenotype ; Protein Conformation ; Sodium-Hydrogen Exchangers - chemistry ; Sodium-Hydrogen Exchangers - genetics ; Sodium-Hydrogen Exchangers - metabolism ; Transport Protein</subject><ispartof>The Journal of biological chemistry, 2010-01, Vol.285 (3), p.2211-2220</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4044-c092caacf018eb18cfd6815239b50da408d1e5df1e80df87623f3f4747447073</citedby><cites>FETCH-LOGICAL-c4044-c092caacf018eb18cfd6815239b50da408d1e5df1e80df87623f3f4747447073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804377/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804377/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19923224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herz, Katia</creatorcontrib><creatorcontrib>Rimon, Abraham</creatorcontrib><creatorcontrib>Olkhova, Elena</creatorcontrib><creatorcontrib>Kozachkov, Lena</creatorcontrib><creatorcontrib>Padan, Etana</creatorcontrib><title>Transmembrane Segment II of NhaA Na+/H+ Antiporter Lines the Cation Passage, and Asp65 Is Critical for pH Activation of the Antiporter</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 5.5–8.5), many questions related to the active state of NhaA have remained elusive. Our experimental results at physiological pH and computational analyses reveal that amino acid residues in transmembrane segment II contribute to the cation pathway of NhaA and its pH regulation: 1) transmembrane segment II is a highly conserved helix and the conserved amino acid residues are located on one side of the helix facing either the cytoplasmic or periplasmic funnels of NhaA structure. 2) Cys replacements of the conserved residues and measuring their antiporter activity in everted membrane vesicles showed that D65C, L67C, E78C, and E82C increased the apparent Km to Na+ and Li+ and changed the pH response of the antiporter. 3) Introduced Cys replacements, L60C, N64C, F71C, F72C, and E78C, were significantly alkylated by [14C]N-ethylmaleimide implying the presence of water-filled cavities in NhaA. 4) Several Cys replacements were modified by MTSES and/or MTSET, membrane impermeant, negatively and positively charged reagents, respectively, that could reach Cys replacements from the periplasm only via water-filled funnel(s). Remarkably, the reactivity of D65C to MTSES increased with increasing pH and chemical modification by MTSES but not by MTSET, decreased the apparent Km of the antiporter at pH 7.5 (10-fold) but not at pH 8.5, implying the importance of Asp65 negative charge for pH activation of the antiporter.</description><subject>Aspartic Acid - metabolism</subject><subject>Cations - metabolism</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>Computer Simulation</subject><subject>Conserved Sequence</subject><subject>Crystal Structure-based Functional Study</subject><subject>Crystallography, X-Ray</subject><subject>Cysteine</subject><subject>Escherichia coli - cytology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth & development</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ion Transport</subject><subject>Lithium - metabolism</subject><subject>Membrane</subject><subject>Membrane Transport, Structure, Function, and Biogenesis</subject><subject>Mesylates - pharmacology</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Na+/H+ Antiporter</subject><subject>NhaA</subject><subject>NhaA pH-activation</subject><subject>Periplasm - metabolism</subject><subject>Phenotype</subject><subject>Protein Conformation</subject><subject>Sodium-Hydrogen Exchangers - chemistry</subject><subject>Sodium-Hydrogen Exchangers - genetics</subject><subject>Sodium-Hydrogen Exchangers - metabolism</subject><subject>Transport Protein</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU-P0zAQxSMEYsvCmRtYXDjsth3_SZNckKoKtpXKgrRF4mY5zjjxqom7dlrEF-Bz4ygVCwfswxz8mzfP85LkNYUZhUzM70s9-0yhmIHIKBdPkgmFnE95Sr8_TSYAjE4LluYXyYsQ7iEeUdDnyQUtCsYZE5Pk186rLrTYlrEiucO6xa4nmw1xhtw2aklu1dV8fUWWXW8PzvfoydZ2GEjfIFmp3rqOfFUhqBqvieoqsgyHRUo2gay87a1We2KcJ4c1WerensaGqD20P2q-TJ4ZtQ_46lwvk92nj7vVerr9crNZLbdTLUCIqYaCaaW0AZpjSXNtqkVOU8aLMoVKCcgrimllKOZQmTxbMG64EVm8IoOMXyYfRtnDsWyx0vGrXu3lwdtW-Z_SKSv_felsI2t3kiwHwbNB4P1ZwLuHI4ZetjZo3O_j8twxyIzzBc2BDuR8JLV3IXg0f6ZQkEN2MmYnh-zkmF3sePO3uUf-HFYE3o1AY-vmh_UoS-t0g220l0ouGaM0Qm9HyCgnVe1tkN_uGFAeTTEOwCNRjATGRZ8sehm0xU5jFSV1Lytn_-vxNx1ovKY</recordid><startdate>20100115</startdate><enddate>20100115</enddate><creator>Herz, Katia</creator><creator>Rimon, Abraham</creator><creator>Olkhova, Elena</creator><creator>Kozachkov, Lena</creator><creator>Padan, Etana</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100115</creationdate><title>Transmembrane Segment II of NhaA Na+/H+ Antiporter Lines the Cation Passage, and Asp65 Is Critical for pH Activation of the Antiporter</title><author>Herz, Katia ; Rimon, Abraham ; Olkhova, Elena ; Kozachkov, Lena ; Padan, Etana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4044-c092caacf018eb18cfd6815239b50da408d1e5df1e80df87623f3f4747447073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aspartic Acid - metabolism</topic><topic>Cations - metabolism</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>Computer Simulation</topic><topic>Conserved Sequence</topic><topic>Crystal Structure-based Functional Study</topic><topic>Crystallography, X-Ray</topic><topic>Cysteine</topic><topic>Escherichia coli - cytology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth & development</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ion Transport</topic><topic>Lithium - metabolism</topic><topic>Membrane</topic><topic>Membrane Transport, Structure, Function, and Biogenesis</topic><topic>Mesylates - pharmacology</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Na+/H+ Antiporter</topic><topic>NhaA</topic><topic>NhaA pH-activation</topic><topic>Periplasm - metabolism</topic><topic>Phenotype</topic><topic>Protein Conformation</topic><topic>Sodium-Hydrogen Exchangers - chemistry</topic><topic>Sodium-Hydrogen Exchangers - genetics</topic><topic>Sodium-Hydrogen Exchangers - metabolism</topic><topic>Transport Protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herz, Katia</creatorcontrib><creatorcontrib>Rimon, Abraham</creatorcontrib><creatorcontrib>Olkhova, Elena</creatorcontrib><creatorcontrib>Kozachkov, Lena</creatorcontrib><creatorcontrib>Padan, Etana</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herz, Katia</au><au>Rimon, Abraham</au><au>Olkhova, Elena</au><au>Kozachkov, Lena</au><au>Padan, Etana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transmembrane Segment II of NhaA Na+/H+ Antiporter Lines the Cation Passage, and Asp65 Is Critical for pH Activation of the Antiporter</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-01-15</date><risdate>2010</risdate><volume>285</volume><issue>3</issue><spage>2211</spage><epage>2220</epage><pages>2211-2220</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 5.5–8.5), many questions related to the active state of NhaA have remained elusive. Our experimental results at physiological pH and computational analyses reveal that amino acid residues in transmembrane segment II contribute to the cation pathway of NhaA and its pH regulation: 1) transmembrane segment II is a highly conserved helix and the conserved amino acid residues are located on one side of the helix facing either the cytoplasmic or periplasmic funnels of NhaA structure. 2) Cys replacements of the conserved residues and measuring their antiporter activity in everted membrane vesicles showed that D65C, L67C, E78C, and E82C increased the apparent Km to Na+ and Li+ and changed the pH response of the antiporter. 3) Introduced Cys replacements, L60C, N64C, F71C, F72C, and E78C, were significantly alkylated by [14C]N-ethylmaleimide implying the presence of water-filled cavities in NhaA. 4) Several Cys replacements were modified by MTSES and/or MTSET, membrane impermeant, negatively and positively charged reagents, respectively, that could reach Cys replacements from the periplasm only via water-filled funnel(s). Remarkably, the reactivity of D65C to MTSES increased with increasing pH and chemical modification by MTSES but not by MTSET, decreased the apparent Km of the antiporter at pH 7.5 (10-fold) but not at pH 8.5, implying the importance of Asp65 negative charge for pH activation of the antiporter.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19923224</pmid><doi>10.1074/jbc.M109.047134</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2010-01, Vol.285 (3), p.2211-2220 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2804377 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Aspartic Acid - metabolism Cations - metabolism Cell Membrane - drug effects Cell Membrane - metabolism Computer Simulation Conserved Sequence Crystal Structure-based Functional Study Crystallography, X-Ray Cysteine Escherichia coli - cytology Escherichia coli - genetics Escherichia coli - growth & development Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Gene Expression Regulation, Bacterial Hydrogen-Ion Concentration Ion Transport Lithium - metabolism Membrane Membrane Transport, Structure, Function, and Biogenesis Mesylates - pharmacology Models, Molecular Mutation Na+/H+ Antiporter NhaA NhaA pH-activation Periplasm - metabolism Phenotype Protein Conformation Sodium-Hydrogen Exchangers - chemistry Sodium-Hydrogen Exchangers - genetics Sodium-Hydrogen Exchangers - metabolism Transport Protein |
title | Transmembrane Segment II of NhaA Na+/H+ Antiporter Lines the Cation Passage, and Asp65 Is Critical for pH Activation of the Antiporter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transmembrane%20Segment%20II%20of%20NhaA%20Na+/H+%20Antiporter%20Lines%20the%20Cation%20Passage,%20and%20Asp65%20Is%20Critical%20for%20pH%20Activation%20of%20the%20Antiporter&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Herz,%20Katia&rft.date=2010-01-15&rft.volume=285&rft.issue=3&rft.spage=2211&rft.epage=2220&rft.pages=2211-2220&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.047134&rft_dat=%3Cproquest_pubme%3E733618017%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733618017&rft_id=info:pmid/19923224&rft_els_id=S0021925819649276&rfr_iscdi=true |