Transmembrane Segment II of NhaA Na+/H+ Antiporter Lines the Cation Passage, and Asp65 Is Critical for pH Activation of the Antiporter

The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 5.5–8.5), many questions related to the active state of NhaA have remained elusive. O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2010-01, Vol.285 (3), p.2211-2220
Hauptverfasser: Herz, Katia, Rimon, Abraham, Olkhova, Elena, Kozachkov, Lena, Padan, Etana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2220
container_issue 3
container_start_page 2211
container_title The Journal of biological chemistry
container_volume 285
creator Herz, Katia
Rimon, Abraham
Olkhova, Elena
Kozachkov, Lena
Padan, Etana
description The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 5.5–8.5), many questions related to the active state of NhaA have remained elusive. Our experimental results at physiological pH and computational analyses reveal that amino acid residues in transmembrane segment II contribute to the cation pathway of NhaA and its pH regulation: 1) transmembrane segment II is a highly conserved helix and the conserved amino acid residues are located on one side of the helix facing either the cytoplasmic or periplasmic funnels of NhaA structure. 2) Cys replacements of the conserved residues and measuring their antiporter activity in everted membrane vesicles showed that D65C, L67C, E78C, and E82C increased the apparent Km to Na+ and Li+ and changed the pH response of the antiporter. 3) Introduced Cys replacements, L60C, N64C, F71C, F72C, and E78C, were significantly alkylated by [14C]N-ethylmaleimide implying the presence of water-filled cavities in NhaA. 4) Several Cys replacements were modified by MTSES and/or MTSET, membrane impermeant, negatively and positively charged reagents, respectively, that could reach Cys replacements from the periplasm only via water-filled funnel(s). Remarkably, the reactivity of D65C to MTSES increased with increasing pH and chemical modification by MTSES but not by MTSET, decreased the apparent Km of the antiporter at pH 7.5 (10-fold) but not at pH 8.5, implying the importance of Asp65 negative charge for pH activation of the antiporter.
doi_str_mv 10.1074/jbc.M109.047134
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2804377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819649276</els_id><sourcerecordid>733618017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4044-c092caacf018eb18cfd6815239b50da408d1e5df1e80df87623f3f4747447073</originalsourceid><addsrcrecordid>eNp1kU-P0zAQxSMEYsvCmRtYXDjsth3_SZNckKoKtpXKgrRF4mY5zjjxqom7dlrEF-Bz4ygVCwfswxz8mzfP85LkNYUZhUzM70s9-0yhmIHIKBdPkgmFnE95Sr8_TSYAjE4LluYXyYsQ7iEeUdDnyQUtCsYZE5Pk186rLrTYlrEiucO6xa4nmw1xhtw2aklu1dV8fUWWXW8PzvfoydZ2GEjfIFmp3rqOfFUhqBqvieoqsgyHRUo2gay87a1We2KcJ4c1WerensaGqD20P2q-TJ4ZtQ_46lwvk92nj7vVerr9crNZLbdTLUCIqYaCaaW0AZpjSXNtqkVOU8aLMoVKCcgrimllKOZQmTxbMG64EVm8IoOMXyYfRtnDsWyx0vGrXu3lwdtW-Z_SKSv_felsI2t3kiwHwbNB4P1ZwLuHI4ZetjZo3O_j8twxyIzzBc2BDuR8JLV3IXg0f6ZQkEN2MmYnh-zkmF3sePO3uUf-HFYE3o1AY-vmh_UoS-t0g220l0ouGaM0Qm9HyCgnVe1tkN_uGFAeTTEOwCNRjATGRZ8sehm0xU5jFSV1Lytn_-vxNx1ovKY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733618017</pqid></control><display><type>article</type><title>Transmembrane Segment II of NhaA Na+/H+ Antiporter Lines the Cation Passage, and Asp65 Is Critical for pH Activation of the Antiporter</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Herz, Katia ; Rimon, Abraham ; Olkhova, Elena ; Kozachkov, Lena ; Padan, Etana</creator><creatorcontrib>Herz, Katia ; Rimon, Abraham ; Olkhova, Elena ; Kozachkov, Lena ; Padan, Etana</creatorcontrib><description>The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 5.5–8.5), many questions related to the active state of NhaA have remained elusive. Our experimental results at physiological pH and computational analyses reveal that amino acid residues in transmembrane segment II contribute to the cation pathway of NhaA and its pH regulation: 1) transmembrane segment II is a highly conserved helix and the conserved amino acid residues are located on one side of the helix facing either the cytoplasmic or periplasmic funnels of NhaA structure. 2) Cys replacements of the conserved residues and measuring their antiporter activity in everted membrane vesicles showed that D65C, L67C, E78C, and E82C increased the apparent Km to Na+ and Li+ and changed the pH response of the antiporter. 3) Introduced Cys replacements, L60C, N64C, F71C, F72C, and E78C, were significantly alkylated by [14C]N-ethylmaleimide implying the presence of water-filled cavities in NhaA. 4) Several Cys replacements were modified by MTSES and/or MTSET, membrane impermeant, negatively and positively charged reagents, respectively, that could reach Cys replacements from the periplasm only via water-filled funnel(s). Remarkably, the reactivity of D65C to MTSES increased with increasing pH and chemical modification by MTSES but not by MTSET, decreased the apparent Km of the antiporter at pH 7.5 (10-fold) but not at pH 8.5, implying the importance of Asp65 negative charge for pH activation of the antiporter.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.047134</identifier><identifier>PMID: 19923224</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aspartic Acid - metabolism ; Cations - metabolism ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; Computer Simulation ; Conserved Sequence ; Crystal Structure-based Functional Study ; Crystallography, X-Ray ; Cysteine ; Escherichia coli - cytology ; Escherichia coli - genetics ; Escherichia coli - growth &amp; development ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Gene Expression Regulation, Bacterial ; Hydrogen-Ion Concentration ; Ion Transport ; Lithium - metabolism ; Membrane ; Membrane Transport, Structure, Function, and Biogenesis ; Mesylates - pharmacology ; Models, Molecular ; Mutation ; Na+/H+ Antiporter ; NhaA ; NhaA pH-activation ; Periplasm - metabolism ; Phenotype ; Protein Conformation ; Sodium-Hydrogen Exchangers - chemistry ; Sodium-Hydrogen Exchangers - genetics ; Sodium-Hydrogen Exchangers - metabolism ; Transport Protein</subject><ispartof>The Journal of biological chemistry, 2010-01, Vol.285 (3), p.2211-2220</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4044-c092caacf018eb18cfd6815239b50da408d1e5df1e80df87623f3f4747447073</citedby><cites>FETCH-LOGICAL-c4044-c092caacf018eb18cfd6815239b50da408d1e5df1e80df87623f3f4747447073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804377/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804377/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19923224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herz, Katia</creatorcontrib><creatorcontrib>Rimon, Abraham</creatorcontrib><creatorcontrib>Olkhova, Elena</creatorcontrib><creatorcontrib>Kozachkov, Lena</creatorcontrib><creatorcontrib>Padan, Etana</creatorcontrib><title>Transmembrane Segment II of NhaA Na+/H+ Antiporter Lines the Cation Passage, and Asp65 Is Critical for pH Activation of the Antiporter</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 5.5–8.5), many questions related to the active state of NhaA have remained elusive. Our experimental results at physiological pH and computational analyses reveal that amino acid residues in transmembrane segment II contribute to the cation pathway of NhaA and its pH regulation: 1) transmembrane segment II is a highly conserved helix and the conserved amino acid residues are located on one side of the helix facing either the cytoplasmic or periplasmic funnels of NhaA structure. 2) Cys replacements of the conserved residues and measuring their antiporter activity in everted membrane vesicles showed that D65C, L67C, E78C, and E82C increased the apparent Km to Na+ and Li+ and changed the pH response of the antiporter. 3) Introduced Cys replacements, L60C, N64C, F71C, F72C, and E78C, were significantly alkylated by [14C]N-ethylmaleimide implying the presence of water-filled cavities in NhaA. 4) Several Cys replacements were modified by MTSES and/or MTSET, membrane impermeant, negatively and positively charged reagents, respectively, that could reach Cys replacements from the periplasm only via water-filled funnel(s). Remarkably, the reactivity of D65C to MTSES increased with increasing pH and chemical modification by MTSES but not by MTSET, decreased the apparent Km of the antiporter at pH 7.5 (10-fold) but not at pH 8.5, implying the importance of Asp65 negative charge for pH activation of the antiporter.</description><subject>Aspartic Acid - metabolism</subject><subject>Cations - metabolism</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>Computer Simulation</subject><subject>Conserved Sequence</subject><subject>Crystal Structure-based Functional Study</subject><subject>Crystallography, X-Ray</subject><subject>Cysteine</subject><subject>Escherichia coli - cytology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ion Transport</subject><subject>Lithium - metabolism</subject><subject>Membrane</subject><subject>Membrane Transport, Structure, Function, and Biogenesis</subject><subject>Mesylates - pharmacology</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Na+/H+ Antiporter</subject><subject>NhaA</subject><subject>NhaA pH-activation</subject><subject>Periplasm - metabolism</subject><subject>Phenotype</subject><subject>Protein Conformation</subject><subject>Sodium-Hydrogen Exchangers - chemistry</subject><subject>Sodium-Hydrogen Exchangers - genetics</subject><subject>Sodium-Hydrogen Exchangers - metabolism</subject><subject>Transport Protein</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU-P0zAQxSMEYsvCmRtYXDjsth3_SZNckKoKtpXKgrRF4mY5zjjxqom7dlrEF-Bz4ygVCwfswxz8mzfP85LkNYUZhUzM70s9-0yhmIHIKBdPkgmFnE95Sr8_TSYAjE4LluYXyYsQ7iEeUdDnyQUtCsYZE5Pk186rLrTYlrEiucO6xa4nmw1xhtw2aklu1dV8fUWWXW8PzvfoydZ2GEjfIFmp3rqOfFUhqBqvieoqsgyHRUo2gay87a1We2KcJ4c1WerensaGqD20P2q-TJ4ZtQ_46lwvk92nj7vVerr9crNZLbdTLUCIqYaCaaW0AZpjSXNtqkVOU8aLMoVKCcgrimllKOZQmTxbMG64EVm8IoOMXyYfRtnDsWyx0vGrXu3lwdtW-Z_SKSv_felsI2t3kiwHwbNB4P1ZwLuHI4ZetjZo3O_j8twxyIzzBc2BDuR8JLV3IXg0f6ZQkEN2MmYnh-zkmF3sePO3uUf-HFYE3o1AY-vmh_UoS-t0g220l0ouGaM0Qm9HyCgnVe1tkN_uGFAeTTEOwCNRjATGRZ8sehm0xU5jFSV1Lytn_-vxNx1ovKY</recordid><startdate>20100115</startdate><enddate>20100115</enddate><creator>Herz, Katia</creator><creator>Rimon, Abraham</creator><creator>Olkhova, Elena</creator><creator>Kozachkov, Lena</creator><creator>Padan, Etana</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100115</creationdate><title>Transmembrane Segment II of NhaA Na+/H+ Antiporter Lines the Cation Passage, and Asp65 Is Critical for pH Activation of the Antiporter</title><author>Herz, Katia ; Rimon, Abraham ; Olkhova, Elena ; Kozachkov, Lena ; Padan, Etana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4044-c092caacf018eb18cfd6815239b50da408d1e5df1e80df87623f3f4747447073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aspartic Acid - metabolism</topic><topic>Cations - metabolism</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>Computer Simulation</topic><topic>Conserved Sequence</topic><topic>Crystal Structure-based Functional Study</topic><topic>Crystallography, X-Ray</topic><topic>Cysteine</topic><topic>Escherichia coli - cytology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ion Transport</topic><topic>Lithium - metabolism</topic><topic>Membrane</topic><topic>Membrane Transport, Structure, Function, and Biogenesis</topic><topic>Mesylates - pharmacology</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Na+/H+ Antiporter</topic><topic>NhaA</topic><topic>NhaA pH-activation</topic><topic>Periplasm - metabolism</topic><topic>Phenotype</topic><topic>Protein Conformation</topic><topic>Sodium-Hydrogen Exchangers - chemistry</topic><topic>Sodium-Hydrogen Exchangers - genetics</topic><topic>Sodium-Hydrogen Exchangers - metabolism</topic><topic>Transport Protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herz, Katia</creatorcontrib><creatorcontrib>Rimon, Abraham</creatorcontrib><creatorcontrib>Olkhova, Elena</creatorcontrib><creatorcontrib>Kozachkov, Lena</creatorcontrib><creatorcontrib>Padan, Etana</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herz, Katia</au><au>Rimon, Abraham</au><au>Olkhova, Elena</au><au>Kozachkov, Lena</au><au>Padan, Etana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transmembrane Segment II of NhaA Na+/H+ Antiporter Lines the Cation Passage, and Asp65 Is Critical for pH Activation of the Antiporter</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-01-15</date><risdate>2010</risdate><volume>285</volume><issue>3</issue><spage>2211</spage><epage>2220</epage><pages>2211-2220</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 5.5–8.5), many questions related to the active state of NhaA have remained elusive. Our experimental results at physiological pH and computational analyses reveal that amino acid residues in transmembrane segment II contribute to the cation pathway of NhaA and its pH regulation: 1) transmembrane segment II is a highly conserved helix and the conserved amino acid residues are located on one side of the helix facing either the cytoplasmic or periplasmic funnels of NhaA structure. 2) Cys replacements of the conserved residues and measuring their antiporter activity in everted membrane vesicles showed that D65C, L67C, E78C, and E82C increased the apparent Km to Na+ and Li+ and changed the pH response of the antiporter. 3) Introduced Cys replacements, L60C, N64C, F71C, F72C, and E78C, were significantly alkylated by [14C]N-ethylmaleimide implying the presence of water-filled cavities in NhaA. 4) Several Cys replacements were modified by MTSES and/or MTSET, membrane impermeant, negatively and positively charged reagents, respectively, that could reach Cys replacements from the periplasm only via water-filled funnel(s). Remarkably, the reactivity of D65C to MTSES increased with increasing pH and chemical modification by MTSES but not by MTSET, decreased the apparent Km of the antiporter at pH 7.5 (10-fold) but not at pH 8.5, implying the importance of Asp65 negative charge for pH activation of the antiporter.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19923224</pmid><doi>10.1074/jbc.M109.047134</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2010-01, Vol.285 (3), p.2211-2220
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2804377
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Aspartic Acid - metabolism
Cations - metabolism
Cell Membrane - drug effects
Cell Membrane - metabolism
Computer Simulation
Conserved Sequence
Crystal Structure-based Functional Study
Crystallography, X-Ray
Cysteine
Escherichia coli - cytology
Escherichia coli - genetics
Escherichia coli - growth & development
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Gene Expression Regulation, Bacterial
Hydrogen-Ion Concentration
Ion Transport
Lithium - metabolism
Membrane
Membrane Transport, Structure, Function, and Biogenesis
Mesylates - pharmacology
Models, Molecular
Mutation
Na+/H+ Antiporter
NhaA
NhaA pH-activation
Periplasm - metabolism
Phenotype
Protein Conformation
Sodium-Hydrogen Exchangers - chemistry
Sodium-Hydrogen Exchangers - genetics
Sodium-Hydrogen Exchangers - metabolism
Transport Protein
title Transmembrane Segment II of NhaA Na+/H+ Antiporter Lines the Cation Passage, and Asp65 Is Critical for pH Activation of the Antiporter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transmembrane%20Segment%20II%20of%20NhaA%20Na+/H+%20Antiporter%20Lines%20the%20Cation%20Passage,%20and%20Asp65%20Is%20Critical%20for%20pH%20Activation%20of%20the%20Antiporter&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Herz,%20Katia&rft.date=2010-01-15&rft.volume=285&rft.issue=3&rft.spage=2211&rft.epage=2220&rft.pages=2211-2220&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.047134&rft_dat=%3Cproquest_pubme%3E733618017%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733618017&rft_id=info:pmid/19923224&rft_els_id=S0021925819649276&rfr_iscdi=true