Arc of synaptic memory
The immediate early gene Arc is emerging as a versatile, finely tuned system capable of coupling changes in neuronal activity patterns to synaptic plasticity, thereby optimizing information storage in the nervous system. Here, we attempt to overview the Arc system spanning from transcriptional regul...
Gespeichert in:
Veröffentlicht in: | Experimental brain research 2010-01, Vol.200 (2), p.125-140 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 140 |
---|---|
container_issue | 2 |
container_start_page | 125 |
container_title | Experimental brain research |
container_volume | 200 |
creator | Bramham, Clive R Alme, Maria N Bittins, Margarethe Kuipers, Sjoukje D Nair, Rajeevkumar R Pai, Balagopal Panja, Debabrata Schubert, Manja Soule, Jonathan Tiron, Adrian Wibrand, Karin |
description | The immediate early gene Arc is emerging as a versatile, finely tuned system capable of coupling changes in neuronal activity patterns to synaptic plasticity, thereby optimizing information storage in the nervous system. Here, we attempt to overview the Arc system spanning from transcriptional regulation of the Arc gene, to dendritic transport, metabolism, and translation of Arc mRNA, to post-translational modification, localization, and degradation of Arc protein. Within this framework we discuss the function of Arc in regulation of actin cytoskeletal dynamics underlying consolidation of long-term potentiation (LTP) and regulation of AMPA-type glutamate receptor endocytosis underlying long-term depression (LTD) and homeostatic plasticity. Behaviorally, Arc has a key role in consolidation of explicit and implicit forms of memory, with recent work implicating Arc in adaptation to stress as well as maladaptive plasticity connected to drug addiction. Arc holds considerable promise as a “master regulator” of protein synthesis-dependent forms of synaptic plasticity, but the mechanisms that modulate and switch Arc function are only beginning to be elucidated. |
doi_str_mv | 10.1007/s00221-009-1959-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2803749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A405808400</galeid><sourcerecordid>A405808400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c656t-7ab525f6591c707b190de1161f227604aca1cac4716a960350f3ef1e185c316b3</originalsourceid><addsrcrecordid>eNqFkt2L1DAUxYMo7rj6Kviig4LiQ9d7kyZpXoRh8WNhQXDd55DJJJ0ubTMmrTj_vRk6uFsRJQ8hub9zCCeHkGcIZwgg3yUASrEAUAUqrgp6jyywZLRABHGfLACwLMoK1Ql5lNLN4cgkPCQnqISCqpQL8nQV7TL4Zdr3Zjc0dtm5LsT9Y_LAmza5J8f9lFx__PDt_HNx-eXTxfnqsrCCi6GQZs0p94IrtBLkGhVsHKJAT6kUUBpr0BpbShRGCWAcPHMeHVbcMhRrdkreT767cd25jXX9EE2rd7HpTNzrYBo9n_TNVtfhh6YVMFmqbPDmaBDD99GlQXdNsq5tTe_CmLQsuagUFfL_JGOCUg48ky__IG_CGPucg6bIkYoSWYZeTVBtWqeb3of8Pnuw1KsSeJXjBcjU2V-ovDaua2zonW_y_UzwdibIzOB-DrUZU9IXV1_n7Os77NaZdtim0I5DE_o0B3ECbQwpRed_B4ygD03SU5N0bpI-NEnTrHl-92duFcfqZIBOQMqjvnbxNqV_ub6YRN4EberYJH19RQEZoKQSs-0vsNjWCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215126413</pqid></control><display><type>article</type><title>Arc of synaptic memory</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Bramham, Clive R ; Alme, Maria N ; Bittins, Margarethe ; Kuipers, Sjoukje D ; Nair, Rajeevkumar R ; Pai, Balagopal ; Panja, Debabrata ; Schubert, Manja ; Soule, Jonathan ; Tiron, Adrian ; Wibrand, Karin</creator><creatorcontrib>Bramham, Clive R ; Alme, Maria N ; Bittins, Margarethe ; Kuipers, Sjoukje D ; Nair, Rajeevkumar R ; Pai, Balagopal ; Panja, Debabrata ; Schubert, Manja ; Soule, Jonathan ; Tiron, Adrian ; Wibrand, Karin</creatorcontrib><description>The immediate early gene Arc is emerging as a versatile, finely tuned system capable of coupling changes in neuronal activity patterns to synaptic plasticity, thereby optimizing information storage in the nervous system. Here, we attempt to overview the Arc system spanning from transcriptional regulation of the Arc gene, to dendritic transport, metabolism, and translation of Arc mRNA, to post-translational modification, localization, and degradation of Arc protein. Within this framework we discuss the function of Arc in regulation of actin cytoskeletal dynamics underlying consolidation of long-term potentiation (LTP) and regulation of AMPA-type glutamate receptor endocytosis underlying long-term depression (LTD) and homeostatic plasticity. Behaviorally, Arc has a key role in consolidation of explicit and implicit forms of memory, with recent work implicating Arc in adaptation to stress as well as maladaptive plasticity connected to drug addiction. Arc holds considerable promise as a “master regulator” of protein synthesis-dependent forms of synaptic plasticity, but the mechanisms that modulate and switch Arc function are only beginning to be elucidated.</description><identifier>ISSN: 0014-4819</identifier><identifier>EISSN: 1432-1106</identifier><identifier>DOI: 10.1007/s00221-009-1959-2</identifier><identifier>PMID: 19690847</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Addictions ; Alzheimer's disease ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Brain-derived neurotrophic factor ; Cytoskeletal Proteins - metabolism ; drug abuse ; Gene expression ; Genetic aspects ; Humans ; Information storage ; Kinases ; LTP/LTD ; Memory ; Memory - physiology ; Models, Neurological ; Nerve Tissue Proteins - metabolism ; Nervous system ; Neurogenesis ; Neurology ; Neuronal Plasticity - physiology ; Neurons ; Neurons - physiology ; Neuroplasticity ; Neurosciences ; Physiological aspects ; Post-translational modification ; Protein synthesis ; Proteins ; Review ; RNA decay ; Stress ; Synapses - physiology ; Synaptic plasticity</subject><ispartof>Experimental brain research, 2010-01, Vol.200 (2), p.125-140</ispartof><rights>The Author(s) 2009</rights><rights>COPYRIGHT 2010 Springer</rights><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c656t-7ab525f6591c707b190de1161f227604aca1cac4716a960350f3ef1e185c316b3</citedby><cites>FETCH-LOGICAL-c656t-7ab525f6591c707b190de1161f227604aca1cac4716a960350f3ef1e185c316b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00221-009-1959-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00221-009-1959-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19690847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bramham, Clive R</creatorcontrib><creatorcontrib>Alme, Maria N</creatorcontrib><creatorcontrib>Bittins, Margarethe</creatorcontrib><creatorcontrib>Kuipers, Sjoukje D</creatorcontrib><creatorcontrib>Nair, Rajeevkumar R</creatorcontrib><creatorcontrib>Pai, Balagopal</creatorcontrib><creatorcontrib>Panja, Debabrata</creatorcontrib><creatorcontrib>Schubert, Manja</creatorcontrib><creatorcontrib>Soule, Jonathan</creatorcontrib><creatorcontrib>Tiron, Adrian</creatorcontrib><creatorcontrib>Wibrand, Karin</creatorcontrib><title>Arc of synaptic memory</title><title>Experimental brain research</title><addtitle>Exp Brain Res</addtitle><addtitle>Exp Brain Res</addtitle><description>The immediate early gene Arc is emerging as a versatile, finely tuned system capable of coupling changes in neuronal activity patterns to synaptic plasticity, thereby optimizing information storage in the nervous system. Here, we attempt to overview the Arc system spanning from transcriptional regulation of the Arc gene, to dendritic transport, metabolism, and translation of Arc mRNA, to post-translational modification, localization, and degradation of Arc protein. Within this framework we discuss the function of Arc in regulation of actin cytoskeletal dynamics underlying consolidation of long-term potentiation (LTP) and regulation of AMPA-type glutamate receptor endocytosis underlying long-term depression (LTD) and homeostatic plasticity. Behaviorally, Arc has a key role in consolidation of explicit and implicit forms of memory, with recent work implicating Arc in adaptation to stress as well as maladaptive plasticity connected to drug addiction. Arc holds considerable promise as a “master regulator” of protein synthesis-dependent forms of synaptic plasticity, but the mechanisms that modulate and switch Arc function are only beginning to be elucidated.</description><subject>Addictions</subject><subject>Alzheimer's disease</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain-derived neurotrophic factor</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>drug abuse</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Humans</subject><subject>Information storage</subject><subject>Kinases</subject><subject>LTP/LTD</subject><subject>Memory</subject><subject>Memory - physiology</subject><subject>Models, Neurological</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Nervous system</subject><subject>Neurogenesis</subject><subject>Neurology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neuroplasticity</subject><subject>Neurosciences</subject><subject>Physiological aspects</subject><subject>Post-translational modification</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Review</subject><subject>RNA decay</subject><subject>Stress</subject><subject>Synapses - physiology</subject><subject>Synaptic plasticity</subject><issn>0014-4819</issn><issn>1432-1106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkt2L1DAUxYMo7rj6Kviig4LiQ9d7kyZpXoRh8WNhQXDd55DJJJ0ubTMmrTj_vRk6uFsRJQ8hub9zCCeHkGcIZwgg3yUASrEAUAUqrgp6jyywZLRABHGfLACwLMoK1Ql5lNLN4cgkPCQnqISCqpQL8nQV7TL4Zdr3Zjc0dtm5LsT9Y_LAmza5J8f9lFx__PDt_HNx-eXTxfnqsrCCi6GQZs0p94IrtBLkGhVsHKJAT6kUUBpr0BpbShRGCWAcPHMeHVbcMhRrdkreT767cd25jXX9EE2rd7HpTNzrYBo9n_TNVtfhh6YVMFmqbPDmaBDD99GlQXdNsq5tTe_CmLQsuagUFfL_JGOCUg48ky__IG_CGPucg6bIkYoSWYZeTVBtWqeb3of8Pnuw1KsSeJXjBcjU2V-ovDaua2zonW_y_UzwdibIzOB-DrUZU9IXV1_n7Os77NaZdtim0I5DE_o0B3ECbQwpRed_B4ygD03SU5N0bpI-NEnTrHl-92duFcfqZIBOQMqjvnbxNqV_ub6YRN4EberYJH19RQEZoKQSs-0vsNjWCg</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Bramham, Clive R</creator><creator>Alme, Maria N</creator><creator>Bittins, Margarethe</creator><creator>Kuipers, Sjoukje D</creator><creator>Nair, Rajeevkumar R</creator><creator>Pai, Balagopal</creator><creator>Panja, Debabrata</creator><creator>Schubert, Manja</creator><creator>Soule, Jonathan</creator><creator>Tiron, Adrian</creator><creator>Wibrand, Karin</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>0-V</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88J</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2R</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100101</creationdate><title>Arc of synaptic memory</title><author>Bramham, Clive R ; Alme, Maria N ; Bittins, Margarethe ; Kuipers, Sjoukje D ; Nair, Rajeevkumar R ; Pai, Balagopal ; Panja, Debabrata ; Schubert, Manja ; Soule, Jonathan ; Tiron, Adrian ; Wibrand, Karin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c656t-7ab525f6591c707b190de1161f227604aca1cac4716a960350f3ef1e185c316b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Addictions</topic><topic>Alzheimer's disease</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain-derived neurotrophic factor</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>drug abuse</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Humans</topic><topic>Information storage</topic><topic>Kinases</topic><topic>LTP/LTD</topic><topic>Memory</topic><topic>Memory - physiology</topic><topic>Models, Neurological</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Nervous system</topic><topic>Neurogenesis</topic><topic>Neurology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neuroplasticity</topic><topic>Neurosciences</topic><topic>Physiological aspects</topic><topic>Post-translational modification</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Review</topic><topic>RNA decay</topic><topic>Stress</topic><topic>Synapses - physiology</topic><topic>Synaptic plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bramham, Clive R</creatorcontrib><creatorcontrib>Alme, Maria N</creatorcontrib><creatorcontrib>Bittins, Margarethe</creatorcontrib><creatorcontrib>Kuipers, Sjoukje D</creatorcontrib><creatorcontrib>Nair, Rajeevkumar R</creatorcontrib><creatorcontrib>Pai, Balagopal</creatorcontrib><creatorcontrib>Panja, Debabrata</creatorcontrib><creatorcontrib>Schubert, Manja</creatorcontrib><creatorcontrib>Soule, Jonathan</creatorcontrib><creatorcontrib>Tiron, Adrian</creatorcontrib><creatorcontrib>Wibrand, Karin</creatorcontrib><collection>AGRIS</collection><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Social Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bramham, Clive R</au><au>Alme, Maria N</au><au>Bittins, Margarethe</au><au>Kuipers, Sjoukje D</au><au>Nair, Rajeevkumar R</au><au>Pai, Balagopal</au><au>Panja, Debabrata</au><au>Schubert, Manja</au><au>Soule, Jonathan</au><au>Tiron, Adrian</au><au>Wibrand, Karin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arc of synaptic memory</atitle><jtitle>Experimental brain research</jtitle><stitle>Exp Brain Res</stitle><addtitle>Exp Brain Res</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>200</volume><issue>2</issue><spage>125</spage><epage>140</epage><pages>125-140</pages><issn>0014-4819</issn><eissn>1432-1106</eissn><abstract>The immediate early gene Arc is emerging as a versatile, finely tuned system capable of coupling changes in neuronal activity patterns to synaptic plasticity, thereby optimizing information storage in the nervous system. Here, we attempt to overview the Arc system spanning from transcriptional regulation of the Arc gene, to dendritic transport, metabolism, and translation of Arc mRNA, to post-translational modification, localization, and degradation of Arc protein. Within this framework we discuss the function of Arc in regulation of actin cytoskeletal dynamics underlying consolidation of long-term potentiation (LTP) and regulation of AMPA-type glutamate receptor endocytosis underlying long-term depression (LTD) and homeostatic plasticity. Behaviorally, Arc has a key role in consolidation of explicit and implicit forms of memory, with recent work implicating Arc in adaptation to stress as well as maladaptive plasticity connected to drug addiction. Arc holds considerable promise as a “master regulator” of protein synthesis-dependent forms of synaptic plasticity, but the mechanisms that modulate and switch Arc function are only beginning to be elucidated.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>19690847</pmid><doi>10.1007/s00221-009-1959-2</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4819 |
ispartof | Experimental brain research, 2010-01, Vol.200 (2), p.125-140 |
issn | 0014-4819 1432-1106 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2803749 |
source | MEDLINE; SpringerLink Journals |
subjects | Addictions Alzheimer's disease Animals Biomedical and Life Sciences Biomedicine Brain-derived neurotrophic factor Cytoskeletal Proteins - metabolism drug abuse Gene expression Genetic aspects Humans Information storage Kinases LTP/LTD Memory Memory - physiology Models, Neurological Nerve Tissue Proteins - metabolism Nervous system Neurogenesis Neurology Neuronal Plasticity - physiology Neurons Neurons - physiology Neuroplasticity Neurosciences Physiological aspects Post-translational modification Protein synthesis Proteins Review RNA decay Stress Synapses - physiology Synaptic plasticity |
title | Arc of synaptic memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arc%20of%20synaptic%20memory&rft.jtitle=Experimental%20brain%20research&rft.au=Bramham,%20Clive%20R&rft.date=2010-01-01&rft.volume=200&rft.issue=2&rft.spage=125&rft.epage=140&rft.pages=125-140&rft.issn=0014-4819&rft.eissn=1432-1106&rft_id=info:doi/10.1007/s00221-009-1959-2&rft_dat=%3Cgale_pubme%3EA405808400%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215126413&rft_id=info:pmid/19690847&rft_galeid=A405808400&rfr_iscdi=true |