Exploiting Binding-Induced Changes in Probe Flexibility for the Optimization of Electrochemical Biosensors

Electrochemical sensors employing redox-tagged, electrode-bound oligonucleotides have emerged as a promising new platform for the reagentless detection of molecular analytes. Signal generation in these sensors is linked to specific, binding-induced changes in the efficiency with which an attached re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2010-01, Vol.82 (1), p.73-76
Hauptverfasser: White, Ryan J, Plaxco, Kevin W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 1
container_start_page 73
container_title Analytical chemistry (Washington)
container_volume 82
creator White, Ryan J
Plaxco, Kevin W
description Electrochemical sensors employing redox-tagged, electrode-bound oligonucleotides have emerged as a promising new platform for the reagentless detection of molecular analytes. Signal generation in these sensors is linked to specific, binding-induced changes in the efficiency with which an attached redox tag approaches and exchanges electrons with the interrogating electrode. We present here a straightforward means of optimizing the signal gain of these sensors that exploits this mechanism. Specifically, using square-wave voltammetry, which is exquisitely sensitive to electrode reaction rates, we can tune the frequency of the voltammetric measurements to preferentially enhance the signal associated with either the unbound or target-bound conformations of the probe. This allows us to control not only the magnitude of the signal gain associated with target binding but also the sign of the signal change, generating “signal-on” or “signal-off” sensors. This optimization parameter appears to be quite general: we show here that tuning the square-wave frequency can significantly enhance the gain of the sensors directed against specific oligonucleotide sequences, small molecules, proteins, and protein−small molecule interactions.
doi_str_mv 10.1021/ac902595f
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2802819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1933906781</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527t-888638300debd70d24184c97abb9b1c348a58b7110d4e9cfa9ecca51226a16983</originalsourceid><addsrcrecordid>eNplkUFv1DAQhS0EokvLgT-ALCSEOATGjhM7l0qw2kKlSuVQzpbjOLteOfZiO6jl12PUZRfa0zvMpzdv5iH0isAHApR8VLoD2nTN-AQtSEOhaoWgT9ECAOqKcoAT9CKlLQAhQNrn6ISWCbCGL9B2dbtzwWbr1_iz9UPR6tIPszYDXm6UX5uErcffYugNvnDm1vbW2XyHxxBx3hh8vct2sr9UtsHjMOKVMzrHoDdmslq5YhqS8SnEdIaejcol83Kvp-j7xepm-bW6uv5yufx0VamG8lwJIdpa1ACD6QcOA2VEMN1x1fddT3TNhGpEz8spAzOdHlVntFYNobRVpO1EfYrO7313cz-ZQRufo3JyF-2k4p0Mysr_J95u5Dr8lFQAFaQrBu_2BjH8mE3KcrJJG-eUN2FOktc1F11LoZBvHpDbMEdfrpOUcCEYZ7RA7-8hHUNK0YyHKATkn_7kob_Cvv43-4H8W1gB3u4Blcp7x6i8tunI0bplwNiRUzodQz1e-BsRMK-Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217884742</pqid></control><display><type>article</type><title>Exploiting Binding-Induced Changes in Probe Flexibility for the Optimization of Electrochemical Biosensors</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>White, Ryan J ; Plaxco, Kevin W</creator><creatorcontrib>White, Ryan J ; Plaxco, Kevin W</creatorcontrib><description>Electrochemical sensors employing redox-tagged, electrode-bound oligonucleotides have emerged as a promising new platform for the reagentless detection of molecular analytes. Signal generation in these sensors is linked to specific, binding-induced changes in the efficiency with which an attached redox tag approaches and exchanges electrons with the interrogating electrode. We present here a straightforward means of optimizing the signal gain of these sensors that exploits this mechanism. Specifically, using square-wave voltammetry, which is exquisitely sensitive to electrode reaction rates, we can tune the frequency of the voltammetric measurements to preferentially enhance the signal associated with either the unbound or target-bound conformations of the probe. This allows us to control not only the magnitude of the signal gain associated with target binding but also the sign of the signal change, generating “signal-on” or “signal-off” sensors. This optimization parameter appears to be quite general: we show here that tuning the square-wave frequency can significantly enhance the gain of the sensors directed against specific oligonucleotide sequences, small molecules, proteins, and protein−small molecule interactions.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac902595f</identifier><identifier>PMID: 20000457</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Biological and medical sciences ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensors ; Biotechnology ; Chemistry ; Chemistry Techniques, Analytical - methods ; Electrocatalysis ; Electrochemical methods ; Electrochemical Techniques - instrumentation ; Electrodes ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General, instrumentation ; Methods. Procedures. Technologies ; Molecular chemistry ; Protein Binding ; Proteins ; Various methods and equipments ; Volumetric analysis</subject><ispartof>Analytical chemistry (Washington), 2010-01, Vol.82 (1), p.73-76</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Jan 1, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a527t-888638300debd70d24184c97abb9b1c348a58b7110d4e9cfa9ecca51226a16983</citedby><cites>FETCH-LOGICAL-a527t-888638300debd70d24184c97abb9b1c348a58b7110d4e9cfa9ecca51226a16983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac902595f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac902595f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22364044$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20000457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>White, Ryan J</creatorcontrib><creatorcontrib>Plaxco, Kevin W</creatorcontrib><title>Exploiting Binding-Induced Changes in Probe Flexibility for the Optimization of Electrochemical Biosensors</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Electrochemical sensors employing redox-tagged, electrode-bound oligonucleotides have emerged as a promising new platform for the reagentless detection of molecular analytes. Signal generation in these sensors is linked to specific, binding-induced changes in the efficiency with which an attached redox tag approaches and exchanges electrons with the interrogating electrode. We present here a straightforward means of optimizing the signal gain of these sensors that exploits this mechanism. Specifically, using square-wave voltammetry, which is exquisitely sensitive to electrode reaction rates, we can tune the frequency of the voltammetric measurements to preferentially enhance the signal associated with either the unbound or target-bound conformations of the probe. This allows us to control not only the magnitude of the signal gain associated with target binding but also the sign of the signal change, generating “signal-on” or “signal-off” sensors. This optimization parameter appears to be quite general: we show here that tuning the square-wave frequency can significantly enhance the gain of the sensors directed against specific oligonucleotide sequences, small molecules, proteins, and protein−small molecule interactions.</description><subject>Analytical chemistry</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry Techniques, Analytical - methods</subject><subject>Electrocatalysis</subject><subject>Electrochemical methods</subject><subject>Electrochemical Techniques - instrumentation</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General, instrumentation</subject><subject>Methods. Procedures. Technologies</subject><subject>Molecular chemistry</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Various methods and equipments</subject><subject>Volumetric analysis</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkUFv1DAQhS0EokvLgT-ALCSEOATGjhM7l0qw2kKlSuVQzpbjOLteOfZiO6jl12PUZRfa0zvMpzdv5iH0isAHApR8VLoD2nTN-AQtSEOhaoWgT9ECAOqKcoAT9CKlLQAhQNrn6ISWCbCGL9B2dbtzwWbr1_iz9UPR6tIPszYDXm6UX5uErcffYugNvnDm1vbW2XyHxxBx3hh8vct2sr9UtsHjMOKVMzrHoDdmslq5YhqS8SnEdIaejcol83Kvp-j7xepm-bW6uv5yufx0VamG8lwJIdpa1ACD6QcOA2VEMN1x1fddT3TNhGpEz8spAzOdHlVntFYNobRVpO1EfYrO7313cz-ZQRufo3JyF-2k4p0Mysr_J95u5Dr8lFQAFaQrBu_2BjH8mE3KcrJJG-eUN2FOktc1F11LoZBvHpDbMEdfrpOUcCEYZ7RA7-8hHUNK0YyHKATkn_7kob_Cvv43-4H8W1gB3u4Blcp7x6i8tunI0bplwNiRUzodQz1e-BsRMK-Y</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>White, Ryan J</creator><creator>Plaxco, Kevin W</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100101</creationdate><title>Exploiting Binding-Induced Changes in Probe Flexibility for the Optimization of Electrochemical Biosensors</title><author>White, Ryan J ; Plaxco, Kevin W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527t-888638300debd70d24184c97abb9b1c348a58b7110d4e9cfa9ecca51226a16983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical chemistry</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry Techniques, Analytical - methods</topic><topic>Electrocatalysis</topic><topic>Electrochemical methods</topic><topic>Electrochemical Techniques - instrumentation</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General, instrumentation</topic><topic>Methods. Procedures. Technologies</topic><topic>Molecular chemistry</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Various methods and equipments</topic><topic>Volumetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Ryan J</creatorcontrib><creatorcontrib>Plaxco, Kevin W</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Ryan J</au><au>Plaxco, Kevin W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting Binding-Induced Changes in Probe Flexibility for the Optimization of Electrochemical Biosensors</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>82</volume><issue>1</issue><spage>73</spage><epage>76</epage><pages>73-76</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Electrochemical sensors employing redox-tagged, electrode-bound oligonucleotides have emerged as a promising new platform for the reagentless detection of molecular analytes. Signal generation in these sensors is linked to specific, binding-induced changes in the efficiency with which an attached redox tag approaches and exchanges electrons with the interrogating electrode. We present here a straightforward means of optimizing the signal gain of these sensors that exploits this mechanism. Specifically, using square-wave voltammetry, which is exquisitely sensitive to electrode reaction rates, we can tune the frequency of the voltammetric measurements to preferentially enhance the signal associated with either the unbound or target-bound conformations of the probe. This allows us to control not only the magnitude of the signal gain associated with target binding but also the sign of the signal change, generating “signal-on” or “signal-off” sensors. This optimization parameter appears to be quite general: we show here that tuning the square-wave frequency can significantly enhance the gain of the sensors directed against specific oligonucleotide sequences, small molecules, proteins, and protein−small molecule interactions.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20000457</pmid><doi>10.1021/ac902595f</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2010-01, Vol.82 (1), p.73-76
issn 0003-2700
1520-6882
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2802819
source MEDLINE; American Chemical Society Journals
subjects Analytical chemistry
Biological and medical sciences
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Biosensors
Biotechnology
Chemistry
Chemistry Techniques, Analytical - methods
Electrocatalysis
Electrochemical methods
Electrochemical Techniques - instrumentation
Electrodes
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General, instrumentation
Methods. Procedures. Technologies
Molecular chemistry
Protein Binding
Proteins
Various methods and equipments
Volumetric analysis
title Exploiting Binding-Induced Changes in Probe Flexibility for the Optimization of Electrochemical Biosensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20Binding-Induced%20Changes%20in%20Probe%20Flexibility%20for%20the%20Optimization%20of%20Electrochemical%20Biosensors&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=White,%20Ryan%20J&rft.date=2010-01-01&rft.volume=82&rft.issue=1&rft.spage=73&rft.epage=76&rft.pages=73-76&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac902595f&rft_dat=%3Cproquest_pubme%3E1933906781%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217884742&rft_id=info:pmid/20000457&rfr_iscdi=true