Exploiting Binding-Induced Changes in Probe Flexibility for the Optimization of Electrochemical Biosensors
Electrochemical sensors employing redox-tagged, electrode-bound oligonucleotides have emerged as a promising new platform for the reagentless detection of molecular analytes. Signal generation in these sensors is linked to specific, binding-induced changes in the efficiency with which an attached re...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2010-01, Vol.82 (1), p.73-76 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | 1 |
container_start_page | 73 |
container_title | Analytical chemistry (Washington) |
container_volume | 82 |
creator | White, Ryan J Plaxco, Kevin W |
description | Electrochemical sensors employing redox-tagged, electrode-bound oligonucleotides have emerged as a promising new platform for the reagentless detection of molecular analytes. Signal generation in these sensors is linked to specific, binding-induced changes in the efficiency with which an attached redox tag approaches and exchanges electrons with the interrogating electrode. We present here a straightforward means of optimizing the signal gain of these sensors that exploits this mechanism. Specifically, using square-wave voltammetry, which is exquisitely sensitive to electrode reaction rates, we can tune the frequency of the voltammetric measurements to preferentially enhance the signal associated with either the unbound or target-bound conformations of the probe. This allows us to control not only the magnitude of the signal gain associated with target binding but also the sign of the signal change, generating “signal-on” or “signal-off” sensors. This optimization parameter appears to be quite general: we show here that tuning the square-wave frequency can significantly enhance the gain of the sensors directed against specific oligonucleotide sequences, small molecules, proteins, and protein−small molecule interactions. |
doi_str_mv | 10.1021/ac902595f |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2802819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1933906781</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527t-888638300debd70d24184c97abb9b1c348a58b7110d4e9cfa9ecca51226a16983</originalsourceid><addsrcrecordid>eNplkUFv1DAQhS0EokvLgT-ALCSEOATGjhM7l0qw2kKlSuVQzpbjOLteOfZiO6jl12PUZRfa0zvMpzdv5iH0isAHApR8VLoD2nTN-AQtSEOhaoWgT9ECAOqKcoAT9CKlLQAhQNrn6ISWCbCGL9B2dbtzwWbr1_iz9UPR6tIPszYDXm6UX5uErcffYugNvnDm1vbW2XyHxxBx3hh8vct2sr9UtsHjMOKVMzrHoDdmslq5YhqS8SnEdIaejcol83Kvp-j7xepm-bW6uv5yufx0VamG8lwJIdpa1ACD6QcOA2VEMN1x1fddT3TNhGpEz8spAzOdHlVntFYNobRVpO1EfYrO7313cz-ZQRufo3JyF-2k4p0Mysr_J95u5Dr8lFQAFaQrBu_2BjH8mE3KcrJJG-eUN2FOktc1F11LoZBvHpDbMEdfrpOUcCEYZ7RA7-8hHUNK0YyHKATkn_7kob_Cvv43-4H8W1gB3u4Blcp7x6i8tunI0bplwNiRUzodQz1e-BsRMK-Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217884742</pqid></control><display><type>article</type><title>Exploiting Binding-Induced Changes in Probe Flexibility for the Optimization of Electrochemical Biosensors</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>White, Ryan J ; Plaxco, Kevin W</creator><creatorcontrib>White, Ryan J ; Plaxco, Kevin W</creatorcontrib><description>Electrochemical sensors employing redox-tagged, electrode-bound oligonucleotides have emerged as a promising new platform for the reagentless detection of molecular analytes. Signal generation in these sensors is linked to specific, binding-induced changes in the efficiency with which an attached redox tag approaches and exchanges electrons with the interrogating electrode. We present here a straightforward means of optimizing the signal gain of these sensors that exploits this mechanism. Specifically, using square-wave voltammetry, which is exquisitely sensitive to electrode reaction rates, we can tune the frequency of the voltammetric measurements to preferentially enhance the signal associated with either the unbound or target-bound conformations of the probe. This allows us to control not only the magnitude of the signal gain associated with target binding but also the sign of the signal change, generating “signal-on” or “signal-off” sensors. This optimization parameter appears to be quite general: we show here that tuning the square-wave frequency can significantly enhance the gain of the sensors directed against specific oligonucleotide sequences, small molecules, proteins, and protein−small molecule interactions.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac902595f</identifier><identifier>PMID: 20000457</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Biological and medical sciences ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensors ; Biotechnology ; Chemistry ; Chemistry Techniques, Analytical - methods ; Electrocatalysis ; Electrochemical methods ; Electrochemical Techniques - instrumentation ; Electrodes ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General, instrumentation ; Methods. Procedures. Technologies ; Molecular chemistry ; Protein Binding ; Proteins ; Various methods and equipments ; Volumetric analysis</subject><ispartof>Analytical chemistry (Washington), 2010-01, Vol.82 (1), p.73-76</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Jan 1, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a527t-888638300debd70d24184c97abb9b1c348a58b7110d4e9cfa9ecca51226a16983</citedby><cites>FETCH-LOGICAL-a527t-888638300debd70d24184c97abb9b1c348a58b7110d4e9cfa9ecca51226a16983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac902595f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac902595f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22364044$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20000457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>White, Ryan J</creatorcontrib><creatorcontrib>Plaxco, Kevin W</creatorcontrib><title>Exploiting Binding-Induced Changes in Probe Flexibility for the Optimization of Electrochemical Biosensors</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Electrochemical sensors employing redox-tagged, electrode-bound oligonucleotides have emerged as a promising new platform for the reagentless detection of molecular analytes. Signal generation in these sensors is linked to specific, binding-induced changes in the efficiency with which an attached redox tag approaches and exchanges electrons with the interrogating electrode. We present here a straightforward means of optimizing the signal gain of these sensors that exploits this mechanism. Specifically, using square-wave voltammetry, which is exquisitely sensitive to electrode reaction rates, we can tune the frequency of the voltammetric measurements to preferentially enhance the signal associated with either the unbound or target-bound conformations of the probe. This allows us to control not only the magnitude of the signal gain associated with target binding but also the sign of the signal change, generating “signal-on” or “signal-off” sensors. This optimization parameter appears to be quite general: we show here that tuning the square-wave frequency can significantly enhance the gain of the sensors directed against specific oligonucleotide sequences, small molecules, proteins, and protein−small molecule interactions.</description><subject>Analytical chemistry</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry Techniques, Analytical - methods</subject><subject>Electrocatalysis</subject><subject>Electrochemical methods</subject><subject>Electrochemical Techniques - instrumentation</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General, instrumentation</subject><subject>Methods. Procedures. Technologies</subject><subject>Molecular chemistry</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Various methods and equipments</subject><subject>Volumetric analysis</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkUFv1DAQhS0EokvLgT-ALCSEOATGjhM7l0qw2kKlSuVQzpbjOLteOfZiO6jl12PUZRfa0zvMpzdv5iH0isAHApR8VLoD2nTN-AQtSEOhaoWgT9ECAOqKcoAT9CKlLQAhQNrn6ISWCbCGL9B2dbtzwWbr1_iz9UPR6tIPszYDXm6UX5uErcffYugNvnDm1vbW2XyHxxBx3hh8vct2sr9UtsHjMOKVMzrHoDdmslq5YhqS8SnEdIaejcol83Kvp-j7xepm-bW6uv5yufx0VamG8lwJIdpa1ACD6QcOA2VEMN1x1fddT3TNhGpEz8spAzOdHlVntFYNobRVpO1EfYrO7313cz-ZQRufo3JyF-2k4p0Mysr_J95u5Dr8lFQAFaQrBu_2BjH8mE3KcrJJG-eUN2FOktc1F11LoZBvHpDbMEdfrpOUcCEYZ7RA7-8hHUNK0YyHKATkn_7kob_Cvv43-4H8W1gB3u4Blcp7x6i8tunI0bplwNiRUzodQz1e-BsRMK-Y</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>White, Ryan J</creator><creator>Plaxco, Kevin W</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100101</creationdate><title>Exploiting Binding-Induced Changes in Probe Flexibility for the Optimization of Electrochemical Biosensors</title><author>White, Ryan J ; Plaxco, Kevin W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527t-888638300debd70d24184c97abb9b1c348a58b7110d4e9cfa9ecca51226a16983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical chemistry</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry Techniques, Analytical - methods</topic><topic>Electrocatalysis</topic><topic>Electrochemical methods</topic><topic>Electrochemical Techniques - instrumentation</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General, instrumentation</topic><topic>Methods. Procedures. Technologies</topic><topic>Molecular chemistry</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Various methods and equipments</topic><topic>Volumetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Ryan J</creatorcontrib><creatorcontrib>Plaxco, Kevin W</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Ryan J</au><au>Plaxco, Kevin W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting Binding-Induced Changes in Probe Flexibility for the Optimization of Electrochemical Biosensors</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>82</volume><issue>1</issue><spage>73</spage><epage>76</epage><pages>73-76</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Electrochemical sensors employing redox-tagged, electrode-bound oligonucleotides have emerged as a promising new platform for the reagentless detection of molecular analytes. Signal generation in these sensors is linked to specific, binding-induced changes in the efficiency with which an attached redox tag approaches and exchanges electrons with the interrogating electrode. We present here a straightforward means of optimizing the signal gain of these sensors that exploits this mechanism. Specifically, using square-wave voltammetry, which is exquisitely sensitive to electrode reaction rates, we can tune the frequency of the voltammetric measurements to preferentially enhance the signal associated with either the unbound or target-bound conformations of the probe. This allows us to control not only the magnitude of the signal gain associated with target binding but also the sign of the signal change, generating “signal-on” or “signal-off” sensors. This optimization parameter appears to be quite general: we show here that tuning the square-wave frequency can significantly enhance the gain of the sensors directed against specific oligonucleotide sequences, small molecules, proteins, and protein−small molecule interactions.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20000457</pmid><doi>10.1021/ac902595f</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2010-01, Vol.82 (1), p.73-76 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2802819 |
source | MEDLINE; American Chemical Society Journals |
subjects | Analytical chemistry Biological and medical sciences Biosensing Techniques - instrumentation Biosensing Techniques - methods Biosensors Biotechnology Chemistry Chemistry Techniques, Analytical - methods Electrocatalysis Electrochemical methods Electrochemical Techniques - instrumentation Electrodes Exact sciences and technology Fundamental and applied biological sciences. Psychology General, instrumentation Methods. Procedures. Technologies Molecular chemistry Protein Binding Proteins Various methods and equipments Volumetric analysis |
title | Exploiting Binding-Induced Changes in Probe Flexibility for the Optimization of Electrochemical Biosensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20Binding-Induced%20Changes%20in%20Probe%20Flexibility%20for%20the%20Optimization%20of%20Electrochemical%20Biosensors&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=White,%20Ryan%20J&rft.date=2010-01-01&rft.volume=82&rft.issue=1&rft.spage=73&rft.epage=76&rft.pages=73-76&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac902595f&rft_dat=%3Cproquest_pubme%3E1933906781%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217884742&rft_id=info:pmid/20000457&rfr_iscdi=true |