Generation of Novel AAV Variants by Directed Evolution for Improved CFTR Delivery to Human Ciliated Airway Epithelium

Recombinant adeno-associated virus (AAV) vectors expressing the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been used to deliver CFTR to the airway epithelium of cystic fibrosis (CF) patients. However, no significant CFTR function has been demonstrated likely due to low tran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy 2009-12, Vol.17 (12), p.2067-2077
Hauptverfasser: Li, Wuping, Zhang, Liqun, Johnson, Jarrod S, Zhijian, Wu, Grieger, Joshua C, Ping-Jie, Xiao, Drouin, Lauren M, Agbandje-McKenna, Mavis, Pickles, Raymond J, Samulski, R Jude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2077
container_issue 12
container_start_page 2067
container_title Molecular therapy
container_volume 17
creator Li, Wuping
Zhang, Liqun
Johnson, Jarrod S
Zhijian, Wu
Grieger, Joshua C
Ping-Jie, Xiao
Drouin, Lauren M
Agbandje-McKenna, Mavis
Pickles, Raymond J
Samulski, R Jude
description Recombinant adeno-associated virus (AAV) vectors expressing the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been used to deliver CFTR to the airway epithelium of cystic fibrosis (CF) patients. However, no significant CFTR function has been demonstrated likely due to low transduction efficiencies of the AAV vectors. To improve AAV transduction efficiency for human airway epithelium (HAE), we generated a chimeric AAV library and performed directed evolution of AAV on an in vitro model of human ciliated airway epithelium. Two independent and novel AAV variants were identified that contained capsid components from AAV-1, AAV-6, and/or AAV-9. The transduction efficiencies of the two novel AAV variants for human ciliated airway epithelium were three times higher than that for AAV-6. The novel variants were then used to deliver CFTR to ciliated airway epithelium from CF patients. Here we show that our novel AAV variants, but not the parental, AAV provide sufficient CFTR delivery to correct the chloride ion transport defect to ~25% levels measured in non-CF cells. These results suggest that directed evolution of AAV on relevant in vitro models will enable further improvements in CFTR gene transfer efficiency and the development of an efficacious and safe gene transfer vector for CF lung disease.
doi_str_mv 10.1038/mt.2009.155
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2801879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S152500161630822X</els_id><sourcerecordid>733903360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-637289f3f011e585dacc36e1760d69ec384bb581c023f37832de4fe43806eb403</originalsourceid><addsrcrecordid>eNpt0c1r2zAYBnAzNtau3Wn3TdDDDiOZZFm2dBmENP2AskHpehWy_HpVsaVMkl3y30-uQ_bBThLo50ev_GTZO4KXBFP-uY_LHGOxJIy9yI4Jy9kC47x4ediT8ih7E8Jj2hEmytfZERElpgkdZ8MlWPAqGmeRa9FXN0KHVqt7dK-8UTYGVO_QufGgIzRoM7pueLat8-i63_rkG7S-uLtF59CZEfwORYeuhl5ZtDadUdNnK-Of1A5ttiY-JDX0p9mrVnUB3u7Xk-z7xeZufbW4-XZ5vV7dLDQrirgoaZVz0dI2DQ6Ms0ZpTUsgVYmbUoCmvKhrxonGOW1pxWneQNFCQTkuoS4wPcm-zLnboe6h0WCjV53cetMrv5NOGfn3iTUP8ocbZc4x4ZVIAR_3Ad79HCBE2ZugoeuUBTcEWVEqMKXldNXZP_LRDd6m10lSiZwJgqtJfZqV9i4ED-1hFoLl1Kbso5zalKnNpN__Of5vu68vgQ8zsCoOHg6gj1PGHMFmAek3jwa8DNqA1dA8dyobZ_579S-hgrcs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792591070</pqid></control><display><type>article</type><title>Generation of Novel AAV Variants by Directed Evolution for Improved CFTR Delivery to Human Ciliated Airway Epithelium</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central UK/Ireland</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Li, Wuping ; Zhang, Liqun ; Johnson, Jarrod S ; Zhijian, Wu ; Grieger, Joshua C ; Ping-Jie, Xiao ; Drouin, Lauren M ; Agbandje-McKenna, Mavis ; Pickles, Raymond J ; Samulski, R Jude</creator><creatorcontrib>Li, Wuping ; Zhang, Liqun ; Johnson, Jarrod S ; Zhijian, Wu ; Grieger, Joshua C ; Ping-Jie, Xiao ; Drouin, Lauren M ; Agbandje-McKenna, Mavis ; Pickles, Raymond J ; Samulski, R Jude</creatorcontrib><description>Recombinant adeno-associated virus (AAV) vectors expressing the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been used to deliver CFTR to the airway epithelium of cystic fibrosis (CF) patients. However, no significant CFTR function has been demonstrated likely due to low transduction efficiencies of the AAV vectors. To improve AAV transduction efficiency for human airway epithelium (HAE), we generated a chimeric AAV library and performed directed evolution of AAV on an in vitro model of human ciliated airway epithelium. Two independent and novel AAV variants were identified that contained capsid components from AAV-1, AAV-6, and/or AAV-9. The transduction efficiencies of the two novel AAV variants for human ciliated airway epithelium were three times higher than that for AAV-6. The novel variants were then used to deliver CFTR to ciliated airway epithelium from CF patients. Here we show that our novel AAV variants, but not the parental, AAV provide sufficient CFTR delivery to correct the chloride ion transport defect to ~25% levels measured in non-CF cells. These results suggest that directed evolution of AAV on relevant in vitro models will enable further improvements in CFTR gene transfer efficiency and the development of an efficacious and safe gene transfer vector for CF lung disease.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1038/mt.2009.155</identifier><identifier>PMID: 19603002</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacterial infections ; Blotting, Western ; Cells, Cultured ; Chlorides - metabolism ; Cilia - metabolism ; Cystic Fibrosis - genetics ; Cystic Fibrosis - therapy ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - metabolism ; Dependovirus - genetics ; Efficiency ; Epithelium - metabolism ; Gene expression ; Genetic engineering ; Genetic Therapy ; Genetic Vectors - therapeutic use ; HeLa Cells ; Humans ; Infections ; Lung diseases ; Original ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Respiratory System - cytology ; Respiratory System - metabolism ; Transduction, Genetic ; Transfection</subject><ispartof>Molecular therapy, 2009-12, Vol.17 (12), p.2067-2077</ispartof><rights>2009 The American Society of Gene &amp; Cell Therapy</rights><rights>Copyright Nature Publishing Group Dec 2009</rights><rights>Copyright 2009, The American Society of Gene &amp; Cell Therapy 2009 The American Society of Gene &amp; Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c544t-637289f3f011e585dacc36e1760d69ec384bb581c023f37832de4fe43806eb403</citedby><cites>FETCH-LOGICAL-c544t-637289f3f011e585dacc36e1760d69ec384bb581c023f37832de4fe43806eb403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2801879/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1792591070?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19603002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Wuping</creatorcontrib><creatorcontrib>Zhang, Liqun</creatorcontrib><creatorcontrib>Johnson, Jarrod S</creatorcontrib><creatorcontrib>Zhijian, Wu</creatorcontrib><creatorcontrib>Grieger, Joshua C</creatorcontrib><creatorcontrib>Ping-Jie, Xiao</creatorcontrib><creatorcontrib>Drouin, Lauren M</creatorcontrib><creatorcontrib>Agbandje-McKenna, Mavis</creatorcontrib><creatorcontrib>Pickles, Raymond J</creatorcontrib><creatorcontrib>Samulski, R Jude</creatorcontrib><title>Generation of Novel AAV Variants by Directed Evolution for Improved CFTR Delivery to Human Ciliated Airway Epithelium</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Recombinant adeno-associated virus (AAV) vectors expressing the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been used to deliver CFTR to the airway epithelium of cystic fibrosis (CF) patients. However, no significant CFTR function has been demonstrated likely due to low transduction efficiencies of the AAV vectors. To improve AAV transduction efficiency for human airway epithelium (HAE), we generated a chimeric AAV library and performed directed evolution of AAV on an in vitro model of human ciliated airway epithelium. Two independent and novel AAV variants were identified that contained capsid components from AAV-1, AAV-6, and/or AAV-9. The transduction efficiencies of the two novel AAV variants for human ciliated airway epithelium were three times higher than that for AAV-6. The novel variants were then used to deliver CFTR to ciliated airway epithelium from CF patients. Here we show that our novel AAV variants, but not the parental, AAV provide sufficient CFTR delivery to correct the chloride ion transport defect to ~25% levels measured in non-CF cells. These results suggest that directed evolution of AAV on relevant in vitro models will enable further improvements in CFTR gene transfer efficiency and the development of an efficacious and safe gene transfer vector for CF lung disease.</description><subject>Bacterial infections</subject><subject>Blotting, Western</subject><subject>Cells, Cultured</subject><subject>Chlorides - metabolism</subject><subject>Cilia - metabolism</subject><subject>Cystic Fibrosis - genetics</subject><subject>Cystic Fibrosis - therapy</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</subject><subject>Dependovirus - genetics</subject><subject>Efficiency</subject><subject>Epithelium - metabolism</subject><subject>Gene expression</subject><subject>Genetic engineering</subject><subject>Genetic Therapy</subject><subject>Genetic Vectors - therapeutic use</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Infections</subject><subject>Lung diseases</subject><subject>Original</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Respiratory System - cytology</subject><subject>Respiratory System - metabolism</subject><subject>Transduction, Genetic</subject><subject>Transfection</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpt0c1r2zAYBnAzNtau3Wn3TdDDDiOZZFm2dBmENP2AskHpehWy_HpVsaVMkl3y30-uQ_bBThLo50ev_GTZO4KXBFP-uY_LHGOxJIy9yI4Jy9kC47x4ediT8ih7E8Jj2hEmytfZERElpgkdZ8MlWPAqGmeRa9FXN0KHVqt7dK-8UTYGVO_QufGgIzRoM7pueLat8-i63_rkG7S-uLtF59CZEfwORYeuhl5ZtDadUdNnK-Of1A5ttiY-JDX0p9mrVnUB3u7Xk-z7xeZufbW4-XZ5vV7dLDQrirgoaZVz0dI2DQ6Ms0ZpTUsgVYmbUoCmvKhrxonGOW1pxWneQNFCQTkuoS4wPcm-zLnboe6h0WCjV53cetMrv5NOGfn3iTUP8ocbZc4x4ZVIAR_3Ad79HCBE2ZugoeuUBTcEWVEqMKXldNXZP_LRDd6m10lSiZwJgqtJfZqV9i4ED-1hFoLl1Kbso5zalKnNpN__Of5vu68vgQ8zsCoOHg6gj1PGHMFmAek3jwa8DNqA1dA8dyobZ_579S-hgrcs</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Li, Wuping</creator><creator>Zhang, Liqun</creator><creator>Johnson, Jarrod S</creator><creator>Zhijian, Wu</creator><creator>Grieger, Joshua C</creator><creator>Ping-Jie, Xiao</creator><creator>Drouin, Lauren M</creator><creator>Agbandje-McKenna, Mavis</creator><creator>Pickles, Raymond J</creator><creator>Samulski, R Jude</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Nature Publishing Group</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091201</creationdate><title>Generation of Novel AAV Variants by Directed Evolution for Improved CFTR Delivery to Human Ciliated Airway Epithelium</title><author>Li, Wuping ; Zhang, Liqun ; Johnson, Jarrod S ; Zhijian, Wu ; Grieger, Joshua C ; Ping-Jie, Xiao ; Drouin, Lauren M ; Agbandje-McKenna, Mavis ; Pickles, Raymond J ; Samulski, R Jude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-637289f3f011e585dacc36e1760d69ec384bb581c023f37832de4fe43806eb403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bacterial infections</topic><topic>Blotting, Western</topic><topic>Cells, Cultured</topic><topic>Chlorides - metabolism</topic><topic>Cilia - metabolism</topic><topic>Cystic Fibrosis - genetics</topic><topic>Cystic Fibrosis - therapy</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</topic><topic>Dependovirus - genetics</topic><topic>Efficiency</topic><topic>Epithelium - metabolism</topic><topic>Gene expression</topic><topic>Genetic engineering</topic><topic>Genetic Therapy</topic><topic>Genetic Vectors - therapeutic use</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Infections</topic><topic>Lung diseases</topic><topic>Original</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Respiratory System - cytology</topic><topic>Respiratory System - metabolism</topic><topic>Transduction, Genetic</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wuping</creatorcontrib><creatorcontrib>Zhang, Liqun</creatorcontrib><creatorcontrib>Johnson, Jarrod S</creatorcontrib><creatorcontrib>Zhijian, Wu</creatorcontrib><creatorcontrib>Grieger, Joshua C</creatorcontrib><creatorcontrib>Ping-Jie, Xiao</creatorcontrib><creatorcontrib>Drouin, Lauren M</creatorcontrib><creatorcontrib>Agbandje-McKenna, Mavis</creatorcontrib><creatorcontrib>Pickles, Raymond J</creatorcontrib><creatorcontrib>Samulski, R Jude</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wuping</au><au>Zhang, Liqun</au><au>Johnson, Jarrod S</au><au>Zhijian, Wu</au><au>Grieger, Joshua C</au><au>Ping-Jie, Xiao</au><au>Drouin, Lauren M</au><au>Agbandje-McKenna, Mavis</au><au>Pickles, Raymond J</au><au>Samulski, R Jude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of Novel AAV Variants by Directed Evolution for Improved CFTR Delivery to Human Ciliated Airway Epithelium</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>17</volume><issue>12</issue><spage>2067</spage><epage>2077</epage><pages>2067-2077</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Recombinant adeno-associated virus (AAV) vectors expressing the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been used to deliver CFTR to the airway epithelium of cystic fibrosis (CF) patients. However, no significant CFTR function has been demonstrated likely due to low transduction efficiencies of the AAV vectors. To improve AAV transduction efficiency for human airway epithelium (HAE), we generated a chimeric AAV library and performed directed evolution of AAV on an in vitro model of human ciliated airway epithelium. Two independent and novel AAV variants were identified that contained capsid components from AAV-1, AAV-6, and/or AAV-9. The transduction efficiencies of the two novel AAV variants for human ciliated airway epithelium were three times higher than that for AAV-6. The novel variants were then used to deliver CFTR to ciliated airway epithelium from CF patients. Here we show that our novel AAV variants, but not the parental, AAV provide sufficient CFTR delivery to correct the chloride ion transport defect to ~25% levels measured in non-CF cells. These results suggest that directed evolution of AAV on relevant in vitro models will enable further improvements in CFTR gene transfer efficiency and the development of an efficacious and safe gene transfer vector for CF lung disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19603002</pmid><doi>10.1038/mt.2009.155</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-0016
ispartof Molecular therapy, 2009-12, Vol.17 (12), p.2067-2077
issn 1525-0016
1525-0024
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2801879
source MEDLINE; EZB-FREE-00999 freely available EZB journals; ProQuest Central UK/Ireland; PubMed Central; Alma/SFX Local Collection
subjects Bacterial infections
Blotting, Western
Cells, Cultured
Chlorides - metabolism
Cilia - metabolism
Cystic Fibrosis - genetics
Cystic Fibrosis - therapy
Cystic Fibrosis Transmembrane Conductance Regulator - genetics
Cystic Fibrosis Transmembrane Conductance Regulator - metabolism
Dependovirus - genetics
Efficiency
Epithelium - metabolism
Gene expression
Genetic engineering
Genetic Therapy
Genetic Vectors - therapeutic use
HeLa Cells
Humans
Infections
Lung diseases
Original
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Respiratory System - cytology
Respiratory System - metabolism
Transduction, Genetic
Transfection
title Generation of Novel AAV Variants by Directed Evolution for Improved CFTR Delivery to Human Ciliated Airway Epithelium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20Novel%20AAV%20Variants%20by%20Directed%20Evolution%20for%20Improved%20CFTR%20Delivery%20to%20Human%20Ciliated%20Airway%20Epithelium&rft.jtitle=Molecular%20therapy&rft.au=Li,%20Wuping&rft.date=2009-12-01&rft.volume=17&rft.issue=12&rft.spage=2067&rft.epage=2077&rft.pages=2067-2077&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1038/mt.2009.155&rft_dat=%3Cproquest_pubme%3E733903360%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792591070&rft_id=info:pmid/19603002&rft_els_id=S152500161630822X&rfr_iscdi=true