A bayesian approach to protein inference problem in shotgun proteomics

The protein inference problem represents a major challenge in shotgun proteomics. In this article, we describe a novel Bayesian approach to address this challenge by incorporating the predicted peptide detectabilities as the prior probabilities of peptide identification. We propose a rigorious proba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational biology 2009-08, Vol.16 (8), p.1183-1193
Hauptverfasser: Li, Yong Fuga, Arnold, Randy J, Li, Yixue, Radivojac, Predrag, Sheng, Quanhu, Tang, Haixu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1193
container_issue 8
container_start_page 1183
container_title Journal of computational biology
container_volume 16
creator Li, Yong Fuga
Arnold, Randy J
Li, Yixue
Radivojac, Predrag
Sheng, Quanhu
Tang, Haixu
description The protein inference problem represents a major challenge in shotgun proteomics. In this article, we describe a novel Bayesian approach to address this challenge by incorporating the predicted peptide detectabilities as the prior probabilities of peptide identification. We propose a rigorious probabilistic model for protein inference and provide practical algoritmic solutions to this problem. We used a complex synthetic protein mixture to test our method and obtained promising results.
doi_str_mv 10.1089/cmb.2009.0018
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2799497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A206867040</galeid><sourcerecordid>A206867040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-81c8a01eae2e07085fbf93359420267078a7ab527cb13fababbecebb5826815d3</originalsourceid><addsrcrecordid>eNqFksuLFDEQxsOiuA897lUahL31WEk6r4swLO4qLHjRc0gy1TOR7mTs9Aj735tmBtcFYckhReVXj3x8hFxTWFHQ5mMY_YoBmBUA1WfkggqhWi2lfFVjkLIVTKlzclnKz0pwCeoNOadGdkIYfkHu1o13j1iiS43b76fswq6Zc1OjGWNqYupxwhRwyfgBx5ppyi7P20M6QnmMobwlr3s3FHx3uq_Ij7vP32-_tA_f7r_erh_aIGg3t5oG7YCiQ4agQIve94ZzYToGTCpQ2inn68bBU94777zHgN4LzaSmYsOvyKdj3_3Bj7gJmObJDXY_xdFNjza7aJ-_pLiz2_zbMmVMZ1RtcHNqMOVfByyzHWMJOAwuYT4UK5Uw0HF4EeSdrlhV9CWQgeYglKzghyO4dQPaKmyuG4YFtmsGUtf_d8vc1X-oejZYhc4J-1jzzwraY0GYcikT9n_VoGAXi9hqEbtYxC4Wqfz7fyV8ok-e4H8AJ-225A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20830576</pqid></control><display><type>article</type><title>A bayesian approach to protein inference problem in shotgun proteomics</title><source>Mary Ann Liebert Online Subscription</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Li, Yong Fuga ; Arnold, Randy J ; Li, Yixue ; Radivojac, Predrag ; Sheng, Quanhu ; Tang, Haixu</creator><creatorcontrib>Li, Yong Fuga ; Arnold, Randy J ; Li, Yixue ; Radivojac, Predrag ; Sheng, Quanhu ; Tang, Haixu</creatorcontrib><description>The protein inference problem represents a major challenge in shotgun proteomics. In this article, we describe a novel Bayesian approach to address this challenge by incorporating the predicted peptide detectabilities as the prior probabilities of peptide identification. We propose a rigorious probabilistic model for protein inference and provide practical algoritmic solutions to this problem. We used a complex synthetic protein mixture to test our method and obtained promising results.</description><identifier>ISSN: 1066-5277</identifier><identifier>EISSN: 1557-8666</identifier><identifier>DOI: 10.1089/cmb.2009.0018</identifier><identifier>PMID: 19645593</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Algorithms ; Bayesian statistical decision theory ; Computational biology ; Databases, Protein ; Models, Statistical ; Proteomics ; Proteomics - methods ; Sequence Analysis, Protein - methods</subject><ispartof>Journal of computational biology, 2009-08, Vol.16 (8), p.1183-1193</ispartof><rights>COPYRIGHT 2009 Mary Ann Liebert, Inc.</rights><rights>Copyright 2009, Mary Ann Liebert, Inc. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-81c8a01eae2e07085fbf93359420267078a7ab527cb13fababbecebb5826815d3</citedby><cites>FETCH-LOGICAL-c514t-81c8a01eae2e07085fbf93359420267078a7ab527cb13fababbecebb5826815d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3029,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19645593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yong Fuga</creatorcontrib><creatorcontrib>Arnold, Randy J</creatorcontrib><creatorcontrib>Li, Yixue</creatorcontrib><creatorcontrib>Radivojac, Predrag</creatorcontrib><creatorcontrib>Sheng, Quanhu</creatorcontrib><creatorcontrib>Tang, Haixu</creatorcontrib><title>A bayesian approach to protein inference problem in shotgun proteomics</title><title>Journal of computational biology</title><addtitle>J Comput Biol</addtitle><description>The protein inference problem represents a major challenge in shotgun proteomics. In this article, we describe a novel Bayesian approach to address this challenge by incorporating the predicted peptide detectabilities as the prior probabilities of peptide identification. We propose a rigorious probabilistic model for protein inference and provide practical algoritmic solutions to this problem. We used a complex synthetic protein mixture to test our method and obtained promising results.</description><subject>Algorithms</subject><subject>Bayesian statistical decision theory</subject><subject>Computational biology</subject><subject>Databases, Protein</subject><subject>Models, Statistical</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Sequence Analysis, Protein - methods</subject><issn>1066-5277</issn><issn>1557-8666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFksuLFDEQxsOiuA897lUahL31WEk6r4swLO4qLHjRc0gy1TOR7mTs9Aj735tmBtcFYckhReVXj3x8hFxTWFHQ5mMY_YoBmBUA1WfkggqhWi2lfFVjkLIVTKlzclnKz0pwCeoNOadGdkIYfkHu1o13j1iiS43b76fswq6Zc1OjGWNqYupxwhRwyfgBx5ppyi7P20M6QnmMobwlr3s3FHx3uq_Ij7vP32-_tA_f7r_erh_aIGg3t5oG7YCiQ4agQIve94ZzYToGTCpQ2inn68bBU94777zHgN4LzaSmYsOvyKdj3_3Bj7gJmObJDXY_xdFNjza7aJ-_pLiz2_zbMmVMZ1RtcHNqMOVfByyzHWMJOAwuYT4UK5Uw0HF4EeSdrlhV9CWQgeYglKzghyO4dQPaKmyuG4YFtmsGUtf_d8vc1X-oejZYhc4J-1jzzwraY0GYcikT9n_VoGAXi9hqEbtYxC4Wqfz7fyV8ok-e4H8AJ-225A</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Li, Yong Fuga</creator><creator>Arnold, Randy J</creator><creator>Li, Yixue</creator><creator>Radivojac, Predrag</creator><creator>Sheng, Quanhu</creator><creator>Tang, Haixu</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200908</creationdate><title>A bayesian approach to protein inference problem in shotgun proteomics</title><author>Li, Yong Fuga ; Arnold, Randy J ; Li, Yixue ; Radivojac, Predrag ; Sheng, Quanhu ; Tang, Haixu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-81c8a01eae2e07085fbf93359420267078a7ab527cb13fababbecebb5826815d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Bayesian statistical decision theory</topic><topic>Computational biology</topic><topic>Databases, Protein</topic><topic>Models, Statistical</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Sequence Analysis, Protein - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yong Fuga</creatorcontrib><creatorcontrib>Arnold, Randy J</creatorcontrib><creatorcontrib>Li, Yixue</creatorcontrib><creatorcontrib>Radivojac, Predrag</creatorcontrib><creatorcontrib>Sheng, Quanhu</creatorcontrib><creatorcontrib>Tang, Haixu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yong Fuga</au><au>Arnold, Randy J</au><au>Li, Yixue</au><au>Radivojac, Predrag</au><au>Sheng, Quanhu</au><au>Tang, Haixu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bayesian approach to protein inference problem in shotgun proteomics</atitle><jtitle>Journal of computational biology</jtitle><addtitle>J Comput Biol</addtitle><date>2009-08</date><risdate>2009</risdate><volume>16</volume><issue>8</issue><spage>1183</spage><epage>1193</epage><pages>1183-1193</pages><issn>1066-5277</issn><eissn>1557-8666</eissn><abstract>The protein inference problem represents a major challenge in shotgun proteomics. In this article, we describe a novel Bayesian approach to address this challenge by incorporating the predicted peptide detectabilities as the prior probabilities of peptide identification. We propose a rigorious probabilistic model for protein inference and provide practical algoritmic solutions to this problem. We used a complex synthetic protein mixture to test our method and obtained promising results.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>19645593</pmid><doi>10.1089/cmb.2009.0018</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1066-5277
ispartof Journal of computational biology, 2009-08, Vol.16 (8), p.1183-1193
issn 1066-5277
1557-8666
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2799497
source Mary Ann Liebert Online Subscription; MEDLINE; Alma/SFX Local Collection
subjects Algorithms
Bayesian statistical decision theory
Computational biology
Databases, Protein
Models, Statistical
Proteomics
Proteomics - methods
Sequence Analysis, Protein - methods
title A bayesian approach to protein inference problem in shotgun proteomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bayesian%20approach%20to%20protein%20inference%20problem%20in%20shotgun%20proteomics&rft.jtitle=Journal%20of%20computational%20biology&rft.au=Li,%20Yong%20Fuga&rft.date=2009-08&rft.volume=16&rft.issue=8&rft.spage=1183&rft.epage=1193&rft.pages=1183-1193&rft.issn=1066-5277&rft.eissn=1557-8666&rft_id=info:doi/10.1089/cmb.2009.0018&rft_dat=%3Cgale_pubme%3EA206867040%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20830576&rft_id=info:pmid/19645593&rft_galeid=A206867040&rfr_iscdi=true