Large-Scale Phosphoprotein Analysis in Medicago truncatula Roots Provides Insight into in Vivo Kinase Activity in Legumes

Nitrogen fixation in legumes requires the development of root organs called nodules and their infection by symbiotic rhizobia. Over the last decade, Medicago truncatula has emerged as a major model plant for the analysis of plant-microbe symbioses and for addressing questions pertaining to legume bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2010-01, Vol.152 (1), p.19-28
Hauptverfasser: Grimsrud, Paul A, den Os, Désirée, Wenger, Craig D, Swaney, Danielle L, Schwartz, Daniel, Sussman, Michael R, Ané, Jean-Michel, Coon, Joshua J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 1
container_start_page 19
container_title Plant physiology (Bethesda)
container_volume 152
creator Grimsrud, Paul A
den Os, Désirée
Wenger, Craig D
Swaney, Danielle L
Schwartz, Daniel
Sussman, Michael R
Ané, Jean-Michel
Coon, Joshua J
description Nitrogen fixation in legumes requires the development of root organs called nodules and their infection by symbiotic rhizobia. Over the last decade, Medicago truncatula has emerged as a major model plant for the analysis of plant-microbe symbioses and for addressing questions pertaining to legume biology. While the initiation of symbiosis and the development of nitrogen-fixing root nodules depend on the activation of a protein phosphorylation-mediated signal transduction cascade in response to symbiotic signals produced by the rhizobia, few sites of in vivo phosphorylation have previously been identified in M. truncatula. We have characterized sites of phosphorylation on proteins from M. truncatula roots, from both whole cell lysates and membrane-enriched fractions, using immobilized metal affinity chromatography and tandem mass spectrometry. Here, we report 3,457 unique phosphopeptides spanning 3,404 nonredundant sites of in vivo phosphorylation on 829 proteins in M. truncatula Jemalong A17 roots, identified using the complementary tandem mass spectrometry fragmentation methods electron transfer dissociation and collision-activated dissociation. With this being, to our knowledge, the first large-scale plant phosphoproteomic study to utilize electron transfer dissociation, analysis of the identified phosphorylation sites revealed phosphorylation motifs not previously observed in plants. Furthermore, several of the phosphorylation motifs, including LxKxxs and RxxSxxxs, have yet to be reported as kinase specificities for in vivo substrates in any species, to our knowledge. Multiple sites of phosphorylation were identified on several key proteins involved in initiating rhizobial symbiosis, including SICKLE, NUCLEOPORIN133, and INTERACTING PROTEIN OF DMI3. Finally, we used these data to create an open-access online database for M. truncatula phosphoproteomic data.
doi_str_mv 10.1104/pp.109.149625
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2799343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25680627</jstor_id><sourcerecordid>25680627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-184584974d560f0d0318a7b7fa4eb6bd4008315d0cfad8867384ae1210a006e63</originalsourceid><addsrcrecordid>eNpVks1v1DAQxSMEokvhyBHIBXHKMv5K7EulVUVLxSIqSrlas4mTdZWNg-2stP89XmXVwmme_H5-Y-k5y94SWBIC_PM4LgmoJeGqpOJZtiCC0YIKLp9nC4CkQUp1lr0K4QEACCP8ZXZGlKKMMrHIDmv0nSnuauxNfrt1Ydy60bto7JCvBuwPwYY86e-msTV2Lo9-GmqMU4_5T-diyG-929vGhPxmCLbbxkRHd7zy2-5d_s0OGEy-qqPd23g4nq9NN-1MeJ29aLEP5s1pnmf3V19-XX4t1j-uby5X66LmQsaCyDS4qngjSmihAUYkVpuqRW425abhAJIR0UDdYiNlWTHJ0RBKAAFKU7Lz7GLOHafNzjS1GaLHXo_e7tAftEOr_3cGu9Wd22taKcU4SwGfTgHe_ZlMiHpnQ236HgfjpqArxkpQUolEFjNZexeCN-3jFgL62JYexySVnttK_Pt_n_ZEn-pJwMcTgCE11HocahseOUq5oKKCxL2buYcQnX_yRSmhpFXyP8x-i05j51PG_R1NvwFIRUEIwf4Co5WxpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733609895</pqid></control><display><type>article</type><title>Large-Scale Phosphoprotein Analysis in Medicago truncatula Roots Provides Insight into in Vivo Kinase Activity in Legumes</title><source>MEDLINE</source><source>Oxford University Press Journals</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Grimsrud, Paul A ; den Os, Désirée ; Wenger, Craig D ; Swaney, Danielle L ; Schwartz, Daniel ; Sussman, Michael R ; Ané, Jean-Michel ; Coon, Joshua J</creator><creatorcontrib>Grimsrud, Paul A ; den Os, Désirée ; Wenger, Craig D ; Swaney, Danielle L ; Schwartz, Daniel ; Sussman, Michael R ; Ané, Jean-Michel ; Coon, Joshua J</creatorcontrib><description>Nitrogen fixation in legumes requires the development of root organs called nodules and their infection by symbiotic rhizobia. Over the last decade, Medicago truncatula has emerged as a major model plant for the analysis of plant-microbe symbioses and for addressing questions pertaining to legume biology. While the initiation of symbiosis and the development of nitrogen-fixing root nodules depend on the activation of a protein phosphorylation-mediated signal transduction cascade in response to symbiotic signals produced by the rhizobia, few sites of in vivo phosphorylation have previously been identified in M. truncatula. We have characterized sites of phosphorylation on proteins from M. truncatula roots, from both whole cell lysates and membrane-enriched fractions, using immobilized metal affinity chromatography and tandem mass spectrometry. Here, we report 3,457 unique phosphopeptides spanning 3,404 nonredundant sites of in vivo phosphorylation on 829 proteins in M. truncatula Jemalong A17 roots, identified using the complementary tandem mass spectrometry fragmentation methods electron transfer dissociation and collision-activated dissociation. With this being, to our knowledge, the first large-scale plant phosphoproteomic study to utilize electron transfer dissociation, analysis of the identified phosphorylation sites revealed phosphorylation motifs not previously observed in plants. Furthermore, several of the phosphorylation motifs, including LxKxxs and RxxSxxxs, have yet to be reported as kinase specificities for in vivo substrates in any species, to our knowledge. Multiple sites of phosphorylation were identified on several key proteins involved in initiating rhizobial symbiosis, including SICKLE, NUCLEOPORIN133, and INTERACTING PROTEIN OF DMI3. Finally, we used these data to create an open-access online database for M. truncatula phosphoproteomic data.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.109.149625</identifier><identifier>PMID: 19923235</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Amino Acid Motifs ; Binding Sites ; Biological and medical sciences ; Breakthrough Technologies ; Datasets ; Electron transfer ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling ; Gene Expression Regulation, Plant - physiology ; Legumes ; Mass spectroscopy ; Medicago truncatula - genetics ; Medicago truncatula - metabolism ; Molecular Sequence Data ; Phosphoproteins ; Phosphoproteins - genetics ; Phosphoproteins - metabolism ; Phosphorylation ; Phosphotransferases - chemistry ; Phosphotransferases - genetics ; Phosphotransferases - metabolism ; Plant physiology and development ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant roots ; Plants ; Proteomics ; Species Specificity</subject><ispartof>Plant physiology (Bethesda), 2010-01, Vol.152 (1), p.19-28</ispartof><rights>2010 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010, American Society of Plant Biologists 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-184584974d560f0d0318a7b7fa4eb6bd4008315d0cfad8867384ae1210a006e63</citedby><cites>FETCH-LOGICAL-c458t-184584974d560f0d0318a7b7fa4eb6bd4008315d0cfad8867384ae1210a006e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25680627$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25680627$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22452570$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19923235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grimsrud, Paul A</creatorcontrib><creatorcontrib>den Os, Désirée</creatorcontrib><creatorcontrib>Wenger, Craig D</creatorcontrib><creatorcontrib>Swaney, Danielle L</creatorcontrib><creatorcontrib>Schwartz, Daniel</creatorcontrib><creatorcontrib>Sussman, Michael R</creatorcontrib><creatorcontrib>Ané, Jean-Michel</creatorcontrib><creatorcontrib>Coon, Joshua J</creatorcontrib><title>Large-Scale Phosphoprotein Analysis in Medicago truncatula Roots Provides Insight into in Vivo Kinase Activity in Legumes</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Nitrogen fixation in legumes requires the development of root organs called nodules and their infection by symbiotic rhizobia. Over the last decade, Medicago truncatula has emerged as a major model plant for the analysis of plant-microbe symbioses and for addressing questions pertaining to legume biology. While the initiation of symbiosis and the development of nitrogen-fixing root nodules depend on the activation of a protein phosphorylation-mediated signal transduction cascade in response to symbiotic signals produced by the rhizobia, few sites of in vivo phosphorylation have previously been identified in M. truncatula. We have characterized sites of phosphorylation on proteins from M. truncatula roots, from both whole cell lysates and membrane-enriched fractions, using immobilized metal affinity chromatography and tandem mass spectrometry. Here, we report 3,457 unique phosphopeptides spanning 3,404 nonredundant sites of in vivo phosphorylation on 829 proteins in M. truncatula Jemalong A17 roots, identified using the complementary tandem mass spectrometry fragmentation methods electron transfer dissociation and collision-activated dissociation. With this being, to our knowledge, the first large-scale plant phosphoproteomic study to utilize electron transfer dissociation, analysis of the identified phosphorylation sites revealed phosphorylation motifs not previously observed in plants. Furthermore, several of the phosphorylation motifs, including LxKxxs and RxxSxxxs, have yet to be reported as kinase specificities for in vivo substrates in any species, to our knowledge. Multiple sites of phosphorylation were identified on several key proteins involved in initiating rhizobial symbiosis, including SICKLE, NUCLEOPORIN133, and INTERACTING PROTEIN OF DMI3. Finally, we used these data to create an open-access online database for M. truncatula phosphoproteomic data.</description><subject>Amino Acid Motifs</subject><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>Breakthrough Technologies</subject><subject>Datasets</subject><subject>Electron transfer</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Legumes</subject><subject>Mass spectroscopy</subject><subject>Medicago truncatula - genetics</subject><subject>Medicago truncatula - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Phosphoproteins</subject><subject>Phosphoproteins - genetics</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphorylation</subject><subject>Phosphotransferases - chemistry</subject><subject>Phosphotransferases - genetics</subject><subject>Phosphotransferases - metabolism</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant roots</subject><subject>Plants</subject><subject>Proteomics</subject><subject>Species Specificity</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVks1v1DAQxSMEokvhyBHIBXHKMv5K7EulVUVLxSIqSrlas4mTdZWNg-2stP89XmXVwmme_H5-Y-k5y94SWBIC_PM4LgmoJeGqpOJZtiCC0YIKLp9nC4CkQUp1lr0K4QEACCP8ZXZGlKKMMrHIDmv0nSnuauxNfrt1Ydy60bto7JCvBuwPwYY86e-msTV2Lo9-GmqMU4_5T-diyG-929vGhPxmCLbbxkRHd7zy2-5d_s0OGEy-qqPd23g4nq9NN-1MeJ29aLEP5s1pnmf3V19-XX4t1j-uby5X66LmQsaCyDS4qngjSmihAUYkVpuqRW425abhAJIR0UDdYiNlWTHJ0RBKAAFKU7Lz7GLOHafNzjS1GaLHXo_e7tAftEOr_3cGu9Wd22taKcU4SwGfTgHe_ZlMiHpnQ236HgfjpqArxkpQUolEFjNZexeCN-3jFgL62JYexySVnttK_Pt_n_ZEn-pJwMcTgCE11HocahseOUq5oKKCxL2buYcQnX_yRSmhpFXyP8x-i05j51PG_R1NvwFIRUEIwf4Co5WxpA</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Grimsrud, Paul A</creator><creator>den Os, Désirée</creator><creator>Wenger, Craig D</creator><creator>Swaney, Danielle L</creator><creator>Schwartz, Daniel</creator><creator>Sussman, Michael R</creator><creator>Ané, Jean-Michel</creator><creator>Coon, Joshua J</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100101</creationdate><title>Large-Scale Phosphoprotein Analysis in Medicago truncatula Roots Provides Insight into in Vivo Kinase Activity in Legumes</title><author>Grimsrud, Paul A ; den Os, Désirée ; Wenger, Craig D ; Swaney, Danielle L ; Schwartz, Daniel ; Sussman, Michael R ; Ané, Jean-Michel ; Coon, Joshua J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-184584974d560f0d0318a7b7fa4eb6bd4008315d0cfad8867384ae1210a006e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino Acid Motifs</topic><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>Breakthrough Technologies</topic><topic>Datasets</topic><topic>Electron transfer</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Legumes</topic><topic>Mass spectroscopy</topic><topic>Medicago truncatula - genetics</topic><topic>Medicago truncatula - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Phosphoproteins</topic><topic>Phosphoproteins - genetics</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphorylation</topic><topic>Phosphotransferases - chemistry</topic><topic>Phosphotransferases - genetics</topic><topic>Phosphotransferases - metabolism</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant roots</topic><topic>Plants</topic><topic>Proteomics</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimsrud, Paul A</creatorcontrib><creatorcontrib>den Os, Désirée</creatorcontrib><creatorcontrib>Wenger, Craig D</creatorcontrib><creatorcontrib>Swaney, Danielle L</creatorcontrib><creatorcontrib>Schwartz, Daniel</creatorcontrib><creatorcontrib>Sussman, Michael R</creatorcontrib><creatorcontrib>Ané, Jean-Michel</creatorcontrib><creatorcontrib>Coon, Joshua J</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimsrud, Paul A</au><au>den Os, Désirée</au><au>Wenger, Craig D</au><au>Swaney, Danielle L</au><au>Schwartz, Daniel</au><au>Sussman, Michael R</au><au>Ané, Jean-Michel</au><au>Coon, Joshua J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Scale Phosphoprotein Analysis in Medicago truncatula Roots Provides Insight into in Vivo Kinase Activity in Legumes</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>152</volume><issue>1</issue><spage>19</spage><epage>28</epage><pages>19-28</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Nitrogen fixation in legumes requires the development of root organs called nodules and their infection by symbiotic rhizobia. Over the last decade, Medicago truncatula has emerged as a major model plant for the analysis of plant-microbe symbioses and for addressing questions pertaining to legume biology. While the initiation of symbiosis and the development of nitrogen-fixing root nodules depend on the activation of a protein phosphorylation-mediated signal transduction cascade in response to symbiotic signals produced by the rhizobia, few sites of in vivo phosphorylation have previously been identified in M. truncatula. We have characterized sites of phosphorylation on proteins from M. truncatula roots, from both whole cell lysates and membrane-enriched fractions, using immobilized metal affinity chromatography and tandem mass spectrometry. Here, we report 3,457 unique phosphopeptides spanning 3,404 nonredundant sites of in vivo phosphorylation on 829 proteins in M. truncatula Jemalong A17 roots, identified using the complementary tandem mass spectrometry fragmentation methods electron transfer dissociation and collision-activated dissociation. With this being, to our knowledge, the first large-scale plant phosphoproteomic study to utilize electron transfer dissociation, analysis of the identified phosphorylation sites revealed phosphorylation motifs not previously observed in plants. Furthermore, several of the phosphorylation motifs, including LxKxxs and RxxSxxxs, have yet to be reported as kinase specificities for in vivo substrates in any species, to our knowledge. Multiple sites of phosphorylation were identified on several key proteins involved in initiating rhizobial symbiosis, including SICKLE, NUCLEOPORIN133, and INTERACTING PROTEIN OF DMI3. Finally, we used these data to create an open-access online database for M. truncatula phosphoproteomic data.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>19923235</pmid><doi>10.1104/pp.109.149625</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2010-01, Vol.152 (1), p.19-28
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2799343
source MEDLINE; Oxford University Press Journals; JSTOR; EZB Electronic Journals Library
subjects Amino Acid Motifs
Binding Sites
Biological and medical sciences
Breakthrough Technologies
Datasets
Electron transfer
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling
Gene Expression Regulation, Plant - physiology
Legumes
Mass spectroscopy
Medicago truncatula - genetics
Medicago truncatula - metabolism
Molecular Sequence Data
Phosphoproteins
Phosphoproteins - genetics
Phosphoproteins - metabolism
Phosphorylation
Phosphotransferases - chemistry
Phosphotransferases - genetics
Phosphotransferases - metabolism
Plant physiology and development
Plant Proteins - genetics
Plant Proteins - metabolism
Plant roots
Plants
Proteomics
Species Specificity
title Large-Scale Phosphoprotein Analysis in Medicago truncatula Roots Provides Insight into in Vivo Kinase Activity in Legumes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Scale%20Phosphoprotein%20Analysis%20in%20Medicago%20truncatula%20Roots%20Provides%20Insight%20into%20in%20Vivo%20Kinase%20Activity%20in%20Legumes&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Grimsrud,%20Paul%20A&rft.date=2010-01-01&rft.volume=152&rft.issue=1&rft.spage=19&rft.epage=28&rft.pages=19-28&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.109.149625&rft_dat=%3Cjstor_pubme%3E25680627%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733609895&rft_id=info:pmid/19923235&rft_jstor_id=25680627&rfr_iscdi=true