Large-Scale Phosphoprotein Analysis in Medicago truncatula Roots Provides Insight into in Vivo Kinase Activity in Legumes
Nitrogen fixation in legumes requires the development of root organs called nodules and their infection by symbiotic rhizobia. Over the last decade, Medicago truncatula has emerged as a major model plant for the analysis of plant-microbe symbioses and for addressing questions pertaining to legume bi...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2010-01, Vol.152 (1), p.19-28 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 1 |
container_start_page | 19 |
container_title | Plant physiology (Bethesda) |
container_volume | 152 |
creator | Grimsrud, Paul A den Os, Désirée Wenger, Craig D Swaney, Danielle L Schwartz, Daniel Sussman, Michael R Ané, Jean-Michel Coon, Joshua J |
description | Nitrogen fixation in legumes requires the development of root organs called nodules and their infection by symbiotic rhizobia. Over the last decade, Medicago truncatula has emerged as a major model plant for the analysis of plant-microbe symbioses and for addressing questions pertaining to legume biology. While the initiation of symbiosis and the development of nitrogen-fixing root nodules depend on the activation of a protein phosphorylation-mediated signal transduction cascade in response to symbiotic signals produced by the rhizobia, few sites of in vivo phosphorylation have previously been identified in M. truncatula. We have characterized sites of phosphorylation on proteins from M. truncatula roots, from both whole cell lysates and membrane-enriched fractions, using immobilized metal affinity chromatography and tandem mass spectrometry. Here, we report 3,457 unique phosphopeptides spanning 3,404 nonredundant sites of in vivo phosphorylation on 829 proteins in M. truncatula Jemalong A17 roots, identified using the complementary tandem mass spectrometry fragmentation methods electron transfer dissociation and collision-activated dissociation. With this being, to our knowledge, the first large-scale plant phosphoproteomic study to utilize electron transfer dissociation, analysis of the identified phosphorylation sites revealed phosphorylation motifs not previously observed in plants. Furthermore, several of the phosphorylation motifs, including LxKxxs and RxxSxxxs, have yet to be reported as kinase specificities for in vivo substrates in any species, to our knowledge. Multiple sites of phosphorylation were identified on several key proteins involved in initiating rhizobial symbiosis, including SICKLE, NUCLEOPORIN133, and INTERACTING PROTEIN OF DMI3. Finally, we used these data to create an open-access online database for M. truncatula phosphoproteomic data. |
doi_str_mv | 10.1104/pp.109.149625 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2799343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25680627</jstor_id><sourcerecordid>25680627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-184584974d560f0d0318a7b7fa4eb6bd4008315d0cfad8867384ae1210a006e63</originalsourceid><addsrcrecordid>eNpVks1v1DAQxSMEokvhyBHIBXHKMv5K7EulVUVLxSIqSrlas4mTdZWNg-2stP89XmXVwmme_H5-Y-k5y94SWBIC_PM4LgmoJeGqpOJZtiCC0YIKLp9nC4CkQUp1lr0K4QEACCP8ZXZGlKKMMrHIDmv0nSnuauxNfrt1Ydy60bto7JCvBuwPwYY86e-msTV2Lo9-GmqMU4_5T-diyG-929vGhPxmCLbbxkRHd7zy2-5d_s0OGEy-qqPd23g4nq9NN-1MeJ29aLEP5s1pnmf3V19-XX4t1j-uby5X66LmQsaCyDS4qngjSmihAUYkVpuqRW425abhAJIR0UDdYiNlWTHJ0RBKAAFKU7Lz7GLOHafNzjS1GaLHXo_e7tAftEOr_3cGu9Wd22taKcU4SwGfTgHe_ZlMiHpnQ236HgfjpqArxkpQUolEFjNZexeCN-3jFgL62JYexySVnttK_Pt_n_ZEn-pJwMcTgCE11HocahseOUq5oKKCxL2buYcQnX_yRSmhpFXyP8x-i05j51PG_R1NvwFIRUEIwf4Co5WxpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733609895</pqid></control><display><type>article</type><title>Large-Scale Phosphoprotein Analysis in Medicago truncatula Roots Provides Insight into in Vivo Kinase Activity in Legumes</title><source>MEDLINE</source><source>Oxford University Press Journals</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Grimsrud, Paul A ; den Os, Désirée ; Wenger, Craig D ; Swaney, Danielle L ; Schwartz, Daniel ; Sussman, Michael R ; Ané, Jean-Michel ; Coon, Joshua J</creator><creatorcontrib>Grimsrud, Paul A ; den Os, Désirée ; Wenger, Craig D ; Swaney, Danielle L ; Schwartz, Daniel ; Sussman, Michael R ; Ané, Jean-Michel ; Coon, Joshua J</creatorcontrib><description>Nitrogen fixation in legumes requires the development of root organs called nodules and their infection by symbiotic rhizobia. Over the last decade, Medicago truncatula has emerged as a major model plant for the analysis of plant-microbe symbioses and for addressing questions pertaining to legume biology. While the initiation of symbiosis and the development of nitrogen-fixing root nodules depend on the activation of a protein phosphorylation-mediated signal transduction cascade in response to symbiotic signals produced by the rhizobia, few sites of in vivo phosphorylation have previously been identified in M. truncatula. We have characterized sites of phosphorylation on proteins from M. truncatula roots, from both whole cell lysates and membrane-enriched fractions, using immobilized metal affinity chromatography and tandem mass spectrometry. Here, we report 3,457 unique phosphopeptides spanning 3,404 nonredundant sites of in vivo phosphorylation on 829 proteins in M. truncatula Jemalong A17 roots, identified using the complementary tandem mass spectrometry fragmentation methods electron transfer dissociation and collision-activated dissociation. With this being, to our knowledge, the first large-scale plant phosphoproteomic study to utilize electron transfer dissociation, analysis of the identified phosphorylation sites revealed phosphorylation motifs not previously observed in plants. Furthermore, several of the phosphorylation motifs, including LxKxxs and RxxSxxxs, have yet to be reported as kinase specificities for in vivo substrates in any species, to our knowledge. Multiple sites of phosphorylation were identified on several key proteins involved in initiating rhizobial symbiosis, including SICKLE, NUCLEOPORIN133, and INTERACTING PROTEIN OF DMI3. Finally, we used these data to create an open-access online database for M. truncatula phosphoproteomic data.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.109.149625</identifier><identifier>PMID: 19923235</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Amino Acid Motifs ; Binding Sites ; Biological and medical sciences ; Breakthrough Technologies ; Datasets ; Electron transfer ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling ; Gene Expression Regulation, Plant - physiology ; Legumes ; Mass spectroscopy ; Medicago truncatula - genetics ; Medicago truncatula - metabolism ; Molecular Sequence Data ; Phosphoproteins ; Phosphoproteins - genetics ; Phosphoproteins - metabolism ; Phosphorylation ; Phosphotransferases - chemistry ; Phosphotransferases - genetics ; Phosphotransferases - metabolism ; Plant physiology and development ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant roots ; Plants ; Proteomics ; Species Specificity</subject><ispartof>Plant physiology (Bethesda), 2010-01, Vol.152 (1), p.19-28</ispartof><rights>2010 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010, American Society of Plant Biologists 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-184584974d560f0d0318a7b7fa4eb6bd4008315d0cfad8867384ae1210a006e63</citedby><cites>FETCH-LOGICAL-c458t-184584974d560f0d0318a7b7fa4eb6bd4008315d0cfad8867384ae1210a006e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25680627$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25680627$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22452570$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19923235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grimsrud, Paul A</creatorcontrib><creatorcontrib>den Os, Désirée</creatorcontrib><creatorcontrib>Wenger, Craig D</creatorcontrib><creatorcontrib>Swaney, Danielle L</creatorcontrib><creatorcontrib>Schwartz, Daniel</creatorcontrib><creatorcontrib>Sussman, Michael R</creatorcontrib><creatorcontrib>Ané, Jean-Michel</creatorcontrib><creatorcontrib>Coon, Joshua J</creatorcontrib><title>Large-Scale Phosphoprotein Analysis in Medicago truncatula Roots Provides Insight into in Vivo Kinase Activity in Legumes</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Nitrogen fixation in legumes requires the development of root organs called nodules and their infection by symbiotic rhizobia. Over the last decade, Medicago truncatula has emerged as a major model plant for the analysis of plant-microbe symbioses and for addressing questions pertaining to legume biology. While the initiation of symbiosis and the development of nitrogen-fixing root nodules depend on the activation of a protein phosphorylation-mediated signal transduction cascade in response to symbiotic signals produced by the rhizobia, few sites of in vivo phosphorylation have previously been identified in M. truncatula. We have characterized sites of phosphorylation on proteins from M. truncatula roots, from both whole cell lysates and membrane-enriched fractions, using immobilized metal affinity chromatography and tandem mass spectrometry. Here, we report 3,457 unique phosphopeptides spanning 3,404 nonredundant sites of in vivo phosphorylation on 829 proteins in M. truncatula Jemalong A17 roots, identified using the complementary tandem mass spectrometry fragmentation methods electron transfer dissociation and collision-activated dissociation. With this being, to our knowledge, the first large-scale plant phosphoproteomic study to utilize electron transfer dissociation, analysis of the identified phosphorylation sites revealed phosphorylation motifs not previously observed in plants. Furthermore, several of the phosphorylation motifs, including LxKxxs and RxxSxxxs, have yet to be reported as kinase specificities for in vivo substrates in any species, to our knowledge. Multiple sites of phosphorylation were identified on several key proteins involved in initiating rhizobial symbiosis, including SICKLE, NUCLEOPORIN133, and INTERACTING PROTEIN OF DMI3. Finally, we used these data to create an open-access online database for M. truncatula phosphoproteomic data.</description><subject>Amino Acid Motifs</subject><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>Breakthrough Technologies</subject><subject>Datasets</subject><subject>Electron transfer</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Legumes</subject><subject>Mass spectroscopy</subject><subject>Medicago truncatula - genetics</subject><subject>Medicago truncatula - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Phosphoproteins</subject><subject>Phosphoproteins - genetics</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphorylation</subject><subject>Phosphotransferases - chemistry</subject><subject>Phosphotransferases - genetics</subject><subject>Phosphotransferases - metabolism</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant roots</subject><subject>Plants</subject><subject>Proteomics</subject><subject>Species Specificity</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVks1v1DAQxSMEokvhyBHIBXHKMv5K7EulVUVLxSIqSrlas4mTdZWNg-2stP89XmXVwmme_H5-Y-k5y94SWBIC_PM4LgmoJeGqpOJZtiCC0YIKLp9nC4CkQUp1lr0K4QEACCP8ZXZGlKKMMrHIDmv0nSnuauxNfrt1Ydy60bto7JCvBuwPwYY86e-msTV2Lo9-GmqMU4_5T-diyG-929vGhPxmCLbbxkRHd7zy2-5d_s0OGEy-qqPd23g4nq9NN-1MeJ29aLEP5s1pnmf3V19-XX4t1j-uby5X66LmQsaCyDS4qngjSmihAUYkVpuqRW425abhAJIR0UDdYiNlWTHJ0RBKAAFKU7Lz7GLOHafNzjS1GaLHXo_e7tAftEOr_3cGu9Wd22taKcU4SwGfTgHe_ZlMiHpnQ236HgfjpqArxkpQUolEFjNZexeCN-3jFgL62JYexySVnttK_Pt_n_ZEn-pJwMcTgCE11HocahseOUq5oKKCxL2buYcQnX_yRSmhpFXyP8x-i05j51PG_R1NvwFIRUEIwf4Co5WxpA</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Grimsrud, Paul A</creator><creator>den Os, Désirée</creator><creator>Wenger, Craig D</creator><creator>Swaney, Danielle L</creator><creator>Schwartz, Daniel</creator><creator>Sussman, Michael R</creator><creator>Ané, Jean-Michel</creator><creator>Coon, Joshua J</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100101</creationdate><title>Large-Scale Phosphoprotein Analysis in Medicago truncatula Roots Provides Insight into in Vivo Kinase Activity in Legumes</title><author>Grimsrud, Paul A ; den Os, Désirée ; Wenger, Craig D ; Swaney, Danielle L ; Schwartz, Daniel ; Sussman, Michael R ; Ané, Jean-Michel ; Coon, Joshua J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-184584974d560f0d0318a7b7fa4eb6bd4008315d0cfad8867384ae1210a006e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino Acid Motifs</topic><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>Breakthrough Technologies</topic><topic>Datasets</topic><topic>Electron transfer</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Legumes</topic><topic>Mass spectroscopy</topic><topic>Medicago truncatula - genetics</topic><topic>Medicago truncatula - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Phosphoproteins</topic><topic>Phosphoproteins - genetics</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphorylation</topic><topic>Phosphotransferases - chemistry</topic><topic>Phosphotransferases - genetics</topic><topic>Phosphotransferases - metabolism</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant roots</topic><topic>Plants</topic><topic>Proteomics</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimsrud, Paul A</creatorcontrib><creatorcontrib>den Os, Désirée</creatorcontrib><creatorcontrib>Wenger, Craig D</creatorcontrib><creatorcontrib>Swaney, Danielle L</creatorcontrib><creatorcontrib>Schwartz, Daniel</creatorcontrib><creatorcontrib>Sussman, Michael R</creatorcontrib><creatorcontrib>Ané, Jean-Michel</creatorcontrib><creatorcontrib>Coon, Joshua J</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimsrud, Paul A</au><au>den Os, Désirée</au><au>Wenger, Craig D</au><au>Swaney, Danielle L</au><au>Schwartz, Daniel</au><au>Sussman, Michael R</au><au>Ané, Jean-Michel</au><au>Coon, Joshua J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Scale Phosphoprotein Analysis in Medicago truncatula Roots Provides Insight into in Vivo Kinase Activity in Legumes</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>152</volume><issue>1</issue><spage>19</spage><epage>28</epage><pages>19-28</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Nitrogen fixation in legumes requires the development of root organs called nodules and their infection by symbiotic rhizobia. Over the last decade, Medicago truncatula has emerged as a major model plant for the analysis of plant-microbe symbioses and for addressing questions pertaining to legume biology. While the initiation of symbiosis and the development of nitrogen-fixing root nodules depend on the activation of a protein phosphorylation-mediated signal transduction cascade in response to symbiotic signals produced by the rhizobia, few sites of in vivo phosphorylation have previously been identified in M. truncatula. We have characterized sites of phosphorylation on proteins from M. truncatula roots, from both whole cell lysates and membrane-enriched fractions, using immobilized metal affinity chromatography and tandem mass spectrometry. Here, we report 3,457 unique phosphopeptides spanning 3,404 nonredundant sites of in vivo phosphorylation on 829 proteins in M. truncatula Jemalong A17 roots, identified using the complementary tandem mass spectrometry fragmentation methods electron transfer dissociation and collision-activated dissociation. With this being, to our knowledge, the first large-scale plant phosphoproteomic study to utilize electron transfer dissociation, analysis of the identified phosphorylation sites revealed phosphorylation motifs not previously observed in plants. Furthermore, several of the phosphorylation motifs, including LxKxxs and RxxSxxxs, have yet to be reported as kinase specificities for in vivo substrates in any species, to our knowledge. Multiple sites of phosphorylation were identified on several key proteins involved in initiating rhizobial symbiosis, including SICKLE, NUCLEOPORIN133, and INTERACTING PROTEIN OF DMI3. Finally, we used these data to create an open-access online database for M. truncatula phosphoproteomic data.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>19923235</pmid><doi>10.1104/pp.109.149625</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2010-01, Vol.152 (1), p.19-28 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2799343 |
source | MEDLINE; Oxford University Press Journals; JSTOR; EZB Electronic Journals Library |
subjects | Amino Acid Motifs Binding Sites Biological and medical sciences Breakthrough Technologies Datasets Electron transfer Fundamental and applied biological sciences. Psychology Gene Expression Profiling Gene Expression Regulation, Plant - physiology Legumes Mass spectroscopy Medicago truncatula - genetics Medicago truncatula - metabolism Molecular Sequence Data Phosphoproteins Phosphoproteins - genetics Phosphoproteins - metabolism Phosphorylation Phosphotransferases - chemistry Phosphotransferases - genetics Phosphotransferases - metabolism Plant physiology and development Plant Proteins - genetics Plant Proteins - metabolism Plant roots Plants Proteomics Species Specificity |
title | Large-Scale Phosphoprotein Analysis in Medicago truncatula Roots Provides Insight into in Vivo Kinase Activity in Legumes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Scale%20Phosphoprotein%20Analysis%20in%20Medicago%20truncatula%20Roots%20Provides%20Insight%20into%20in%20Vivo%20Kinase%20Activity%20in%20Legumes&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Grimsrud,%20Paul%20A&rft.date=2010-01-01&rft.volume=152&rft.issue=1&rft.spage=19&rft.epage=28&rft.pages=19-28&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.109.149625&rft_dat=%3Cjstor_pubme%3E25680627%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733609895&rft_id=info:pmid/19923235&rft_jstor_id=25680627&rfr_iscdi=true |