Common trends in mutualism revealed by model associations between invertebrates and bacteria
Mutually beneficial interactions between microorganisms and animals are a conserved and ubiquitous feature of biotic systems. In many instances animals, including humans, are dependent on their microbial associates for nutrition, defense, or development. To maintain these vital relationships, animal...
Gespeichert in:
Veröffentlicht in: | FEMS microbiology reviews 2010, Vol.34 (1), p.41-58 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 58 |
---|---|
container_issue | 1 |
container_start_page | 41 |
container_title | FEMS microbiology reviews |
container_volume | 34 |
creator | Chaston, John Goodrich-Blair, Heidi |
description | Mutually beneficial interactions between microorganisms and animals are a conserved and ubiquitous feature of biotic systems. In many instances animals, including humans, are dependent on their microbial associates for nutrition, defense, or development. To maintain these vital relationships, animals have evolved processes that ensure faithful transmission of specific microbial symbionts between generations. Elucidating mechanisms of transmission and symbiont specificity has been aided by the study of experimentally tractable invertebrate animals with diverse and highly evolved associations with microorganisms. Here, we review several invertebrate model systems that contribute to our current understanding of symbiont transmission, recognition, and specificity. Although the details of transmission and symbiont selection vary among associations, comparisons of diverse mutualistic associations are revealing a number of common themes, including restriction of symbiont diversity during transmission and glycan-lectin interactions during partner selection and recruitment. |
doi_str_mv | 10.1111/j.1574-6976.2009.00193.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2794943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1574-6976.2009.00193.x</oup_id><sourcerecordid>21261735</sourcerecordid><originalsourceid>FETCH-LOGICAL-f4753-67ed56bc3630f2f26feebc0477063dbc8cf5b92661d11094a9adfdad63c98ad53</originalsourceid><addsrcrecordid>eNp9km2L1DAUhYso7rj6F7Qg6qeOeU8DIsjgqrAiqPtNCGlyu2Zom9mknd3596bOOL6h-ZLAfc7hcHOKosRoifN5vl5iLlkllBRLgpBaIoQVXd7cKhbHwe1igbCoK8EYPynupbRGCHHF-d3iBCuFFGVyUXxZhb4PQzlGGFwq_VD20ziZzqe-jLAF04Erm13ZBwddaVIK1pvRhyGVDYzXAEPWbCGO0EQzQirNkHljR4je3C_utKZL8OBwnxYXZ68_r95W5x_evFu9Oq9aJjmthATHRWOpoKglLREtQGMRkxIJ6hpb25Y3igiBHcZIMaOMa51xglpVG8fpafFy77uZmh6chWGMptOb6HsTdzoYr3-fDP6rvgxbTaRiitFs8OxgEMPVBGnUvU8Wus4MEKakJaWUEU5wJp_-lySYCCzpnOnxH-A6THHIa9CEUoJqUQuWqYe_Jj9G_vFBGXhyAEyypmujGaxPR44QkvdU15l7seeufQe7nz5Iz4XRaz33Qs-90HNh9PfC6Bt99v5jfmQ53cvDtPmHuPpLnFWP9qrWBG0uYw528YkgTBGWGDHB6TfpYM1K</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332086864</pqid></control><display><type>article</type><title>Common trends in mutualism revealed by model associations between invertebrates and bacteria</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Wiley Online Library Journals</source><source>EZB Electronic Journals Library</source><creator>Chaston, John ; Goodrich-Blair, Heidi</creator><creatorcontrib>Chaston, John ; Goodrich-Blair, Heidi</creatorcontrib><description>Mutually beneficial interactions between microorganisms and animals are a conserved and ubiquitous feature of biotic systems. In many instances animals, including humans, are dependent on their microbial associates for nutrition, defense, or development. To maintain these vital relationships, animals have evolved processes that ensure faithful transmission of specific microbial symbionts between generations. Elucidating mechanisms of transmission and symbiont specificity has been aided by the study of experimentally tractable invertebrate animals with diverse and highly evolved associations with microorganisms. Here, we review several invertebrate model systems that contribute to our current understanding of symbiont transmission, recognition, and specificity. Although the details of transmission and symbiont selection vary among associations, comparisons of diverse mutualistic associations are revealing a number of common themes, including restriction of symbiont diversity during transmission and glycan-lectin interactions during partner selection and recruitment.</description><identifier>ISSN: 0168-6445</identifier><identifier>EISSN: 1574-6976</identifier><identifier>DOI: 10.1111/j.1574-6976.2009.00193.x</identifier><identifier>PMID: 19909347</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Animals ; Bacteria ; Bacterial Physiological Phenomena ; Biological and medical sciences ; bottleneck ; chitin ; cooperation ; Fundamental and applied biological sciences. Psychology ; Glycan ; Invertebrata ; Invertebrates ; Invertebrates - microbiology ; lectin ; Mate selection ; Microbiology ; Microorganisms ; Models, Biological ; Mutualism ; Nutrition ; Species Specificity ; Symbionts ; Symbiosis</subject><ispartof>FEMS microbiology reviews, 2010, Vol.34 (1), p.41-58</ispartof><rights>2009 Federation of European Microbiological Societies. 2009</rights><rights>2009 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved</rights><rights>2015 INIST-CNRS</rights><rights>2009 Federation of European Microbiological Societies.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1574-6976.2009.00193.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1574-6976.2009.00193.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,4009,27902,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22204788$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19909347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaston, John</creatorcontrib><creatorcontrib>Goodrich-Blair, Heidi</creatorcontrib><title>Common trends in mutualism revealed by model associations between invertebrates and bacteria</title><title>FEMS microbiology reviews</title><addtitle>FEMS Microbiol Rev</addtitle><description>Mutually beneficial interactions between microorganisms and animals are a conserved and ubiquitous feature of biotic systems. In many instances animals, including humans, are dependent on their microbial associates for nutrition, defense, or development. To maintain these vital relationships, animals have evolved processes that ensure faithful transmission of specific microbial symbionts between generations. Elucidating mechanisms of transmission and symbiont specificity has been aided by the study of experimentally tractable invertebrate animals with diverse and highly evolved associations with microorganisms. Here, we review several invertebrate model systems that contribute to our current understanding of symbiont transmission, recognition, and specificity. Although the details of transmission and symbiont selection vary among associations, comparisons of diverse mutualistic associations are revealing a number of common themes, including restriction of symbiont diversity during transmission and glycan-lectin interactions during partner selection and recruitment.</description><subject>Animals</subject><subject>Bacteria</subject><subject>Bacterial Physiological Phenomena</subject><subject>Biological and medical sciences</subject><subject>bottleneck</subject><subject>chitin</subject><subject>cooperation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycan</subject><subject>Invertebrata</subject><subject>Invertebrates</subject><subject>Invertebrates - microbiology</subject><subject>lectin</subject><subject>Mate selection</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Models, Biological</subject><subject>Mutualism</subject><subject>Nutrition</subject><subject>Species Specificity</subject><subject>Symbionts</subject><subject>Symbiosis</subject><issn>0168-6445</issn><issn>1574-6976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9km2L1DAUhYso7rj6F7Qg6qeOeU8DIsjgqrAiqPtNCGlyu2Zom9mknd3596bOOL6h-ZLAfc7hcHOKosRoifN5vl5iLlkllBRLgpBaIoQVXd7cKhbHwe1igbCoK8EYPynupbRGCHHF-d3iBCuFFGVyUXxZhb4PQzlGGFwq_VD20ziZzqe-jLAF04Erm13ZBwddaVIK1pvRhyGVDYzXAEPWbCGO0EQzQirNkHljR4je3C_utKZL8OBwnxYXZ68_r95W5x_evFu9Oq9aJjmthATHRWOpoKglLREtQGMRkxIJ6hpb25Y3igiBHcZIMaOMa51xglpVG8fpafFy77uZmh6chWGMptOb6HsTdzoYr3-fDP6rvgxbTaRiitFs8OxgEMPVBGnUvU8Wus4MEKakJaWUEU5wJp_-lySYCCzpnOnxH-A6THHIa9CEUoJqUQuWqYe_Jj9G_vFBGXhyAEyypmujGaxPR44QkvdU15l7seeufQe7nz5Iz4XRaz33Qs-90HNh9PfC6Bt99v5jfmQ53cvDtPmHuPpLnFWP9qrWBG0uYw528YkgTBGWGDHB6TfpYM1K</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Chaston, John</creator><creator>Goodrich-Blair, Heidi</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Oxford University Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7ST</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2010</creationdate><title>Common trends in mutualism revealed by model associations between invertebrates and bacteria</title><author>Chaston, John ; Goodrich-Blair, Heidi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f4753-67ed56bc3630f2f26feebc0477063dbc8cf5b92661d11094a9adfdad63c98ad53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Bacteria</topic><topic>Bacterial Physiological Phenomena</topic><topic>Biological and medical sciences</topic><topic>bottleneck</topic><topic>chitin</topic><topic>cooperation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycan</topic><topic>Invertebrata</topic><topic>Invertebrates</topic><topic>Invertebrates - microbiology</topic><topic>lectin</topic><topic>Mate selection</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Models, Biological</topic><topic>Mutualism</topic><topic>Nutrition</topic><topic>Species Specificity</topic><topic>Symbionts</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaston, John</creatorcontrib><creatorcontrib>Goodrich-Blair, Heidi</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>FEMS microbiology reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaston, John</au><au>Goodrich-Blair, Heidi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Common trends in mutualism revealed by model associations between invertebrates and bacteria</atitle><jtitle>FEMS microbiology reviews</jtitle><addtitle>FEMS Microbiol Rev</addtitle><date>2010</date><risdate>2010</risdate><volume>34</volume><issue>1</issue><spage>41</spage><epage>58</epage><pages>41-58</pages><issn>0168-6445</issn><eissn>1574-6976</eissn><abstract>Mutually beneficial interactions between microorganisms and animals are a conserved and ubiquitous feature of biotic systems. In many instances animals, including humans, are dependent on their microbial associates for nutrition, defense, or development. To maintain these vital relationships, animals have evolved processes that ensure faithful transmission of specific microbial symbionts between generations. Elucidating mechanisms of transmission and symbiont specificity has been aided by the study of experimentally tractable invertebrate animals with diverse and highly evolved associations with microorganisms. Here, we review several invertebrate model systems that contribute to our current understanding of symbiont transmission, recognition, and specificity. Although the details of transmission and symbiont selection vary among associations, comparisons of diverse mutualistic associations are revealing a number of common themes, including restriction of symbiont diversity during transmission and glycan-lectin interactions during partner selection and recruitment.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>19909347</pmid><doi>10.1111/j.1574-6976.2009.00193.x</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-6445 |
ispartof | FEMS microbiology reviews, 2010, Vol.34 (1), p.41-58 |
issn | 0168-6445 1574-6976 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2794943 |
source | Oxford Journals Open Access Collection; MEDLINE; Wiley Online Library Journals; EZB Electronic Journals Library |
subjects | Animals Bacteria Bacterial Physiological Phenomena Biological and medical sciences bottleneck chitin cooperation Fundamental and applied biological sciences. Psychology Glycan Invertebrata Invertebrates Invertebrates - microbiology lectin Mate selection Microbiology Microorganisms Models, Biological Mutualism Nutrition Species Specificity Symbionts Symbiosis |
title | Common trends in mutualism revealed by model associations between invertebrates and bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Common%20trends%20in%20mutualism%20revealed%20by%20model%20associations%20between%20invertebrates%20and%20bacteria&rft.jtitle=FEMS%20microbiology%20reviews&rft.au=Chaston,%20John&rft.date=2010&rft.volume=34&rft.issue=1&rft.spage=41&rft.epage=58&rft.pages=41-58&rft.issn=0168-6445&rft.eissn=1574-6976&rft_id=info:doi/10.1111/j.1574-6976.2009.00193.x&rft_dat=%3Cproquest_pubme%3E21261735%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2332086864&rft_id=info:pmid/19909347&rft_oup_id=10.1111/j.1574-6976.2009.00193.x&rfr_iscdi=true |