Abrogation of ospAB constitutively activates the Rrp2-RpoN-RpoS pathway (sigmaN-sigmaS cascade) in Borrelia burgdorferi

Molecular mechanisms underlying the reciprocal regulation of the two major surface lipoproteins and virulence factors of Borrelia burgdorferi, OspA and OspC, are not fully understood. Herein, we report that inactivation of the ospAB operon resulted in overproduction of OspC and many other lipoprotei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2008-12, Vol.70 (6), p.1453-1464
Hauptverfasser: He, Ming, Oman, Tara, Xu, Haijun, Blevins, Jon, Norgard, Michael V, Yang, X. Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1464
container_issue 6
container_start_page 1453
container_title Molecular microbiology
container_volume 70
creator He, Ming
Oman, Tara
Xu, Haijun
Blevins, Jon
Norgard, Michael V
Yang, X. Frank
description Molecular mechanisms underlying the reciprocal regulation of the two major surface lipoproteins and virulence factors of Borrelia burgdorferi, OspA and OspC, are not fully understood. Herein, we report that inactivation of the ospAB operon resulted in overproduction of OspC and many other lipoproteins via the constitutive activation of the Rrp2-RpoN-RpoS pathway. Complementing the ospAB mutant with a wild-type copy of ospA, but not an ospA variant that lacks the lipoprotein signal sequence, restored normal regulation of the Rrp2-RpoN-RpoS pathway; these results indicate that the phenotype was not caused by spurious mutations. Interestingly, while most of the ospAB mutant clones displayed a constitutive ospC expression phenotype, some ospAB mutant clones showed little or no ospC expression. Further analyses revealed that this OspC-negative phenotype was independent of abrogation of ospAB. While activation of the Rrp2-RpoN-RpoS pathway was recently shown to downregulate ospA, our findings suggest that reduction of OspA can also activate this pathway. We postulate that the activation of the Rrp2-RpoN-RpoS pathway and downregulation of OspA form a positive feedback loop that allows spirochaetes to produce and maintain a constant high level of OspC and other lipoproteins during tick feeding, a strategy that is critical for spirochaetal transmission and mammalian infection.
doi_str_mv 10.1111/j.1365-2958.2008.06491.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2792205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69935473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5841-d625054300101686a546a9719b7c67f5a274c90a4256ea4f9e46f3926546b8bc3</originalsourceid><addsrcrecordid>eNqNkktvEzEQxy0EoiHwFcBCAsFhF793fQAprXhUaovUUImb5XW8iaPNerF3m-bb422i8LiAD56R5jfj8fwHAIhRjtN5t84xFTwjkpc5QajMkWAS53cPwOQYeAgmSHKU0ZJ8PwFPYlwjhCkS9DE4wRJhiVkxAdtZFfxS98630NfQx252Co1vY-_6oXe3ttlBbZKjexthv7LwOnQku-781XjNYaf71Vbv4Jvolht9ld2bOTQ6Gr2wb6Fr4akPwTZOw2oIy4UPtQ3uKXhU6ybaZwc7BTefPn47-5JdfP18fja7yAwvGc4WgnDEGU2tIyxKoTkTWhZYVoURRc01KZiRSDPChdWslpaJmkoiEleVlaFT8GFftxuqjV0Y2_ZBN6oLbqPDTnnt1J-R1q3U0t8qUkhCEE8FXh8KBP9jsLFXGxeNbRrdWj9EJaSknBX0nyCWXCQtUAJf_gWu_RDaNIXECE5owYsElXvIBB9jsPWxZYzUuANqrUap1Si1GndA3e-Aukupz3__8q_Eg-gJeHUARpGaOujWuHjkCCoLOg59Ct7vua1r7O6_G1CXl-ejl_Jf7PNr7ZVehvTGzZyMS4i5YIgK-hP2y9YE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196523757</pqid></control><display><type>article</type><title>Abrogation of ospAB constitutively activates the Rrp2-RpoN-RpoS pathway (sigmaN-sigmaS cascade) in Borrelia burgdorferi</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>He, Ming ; Oman, Tara ; Xu, Haijun ; Blevins, Jon ; Norgard, Michael V ; Yang, X. Frank</creator><creatorcontrib>He, Ming ; Oman, Tara ; Xu, Haijun ; Blevins, Jon ; Norgard, Michael V ; Yang, X. Frank</creatorcontrib><description>Molecular mechanisms underlying the reciprocal regulation of the two major surface lipoproteins and virulence factors of Borrelia burgdorferi, OspA and OspC, are not fully understood. Herein, we report that inactivation of the ospAB operon resulted in overproduction of OspC and many other lipoproteins via the constitutive activation of the Rrp2-RpoN-RpoS pathway. Complementing the ospAB mutant with a wild-type copy of ospA, but not an ospA variant that lacks the lipoprotein signal sequence, restored normal regulation of the Rrp2-RpoN-RpoS pathway; these results indicate that the phenotype was not caused by spurious mutations. Interestingly, while most of the ospAB mutant clones displayed a constitutive ospC expression phenotype, some ospAB mutant clones showed little or no ospC expression. Further analyses revealed that this OspC-negative phenotype was independent of abrogation of ospAB. While activation of the Rrp2-RpoN-RpoS pathway was recently shown to downregulate ospA, our findings suggest that reduction of OspA can also activate this pathway. We postulate that the activation of the Rrp2-RpoN-RpoS pathway and downregulation of OspA form a positive feedback loop that allows spirochaetes to produce and maintain a constant high level of OspC and other lipoproteins during tick feeding, a strategy that is critical for spirochaetal transmission and mammalian infection.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2008.06491.x</identifier><identifier>PMID: 19019147</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Antigens, Bacterial - biosynthesis ; Antigens, Bacterial - genetics ; Antigens, Bacterial - metabolism ; Antigens, Surface - genetics ; Antigens, Surface - metabolism ; Bacteria ; Bacterial Outer Membrane Proteins - biosynthesis ; Bacterial Outer Membrane Proteins - genetics ; Bacterial Outer Membrane Proteins - metabolism ; Bacterial Proteins - metabolism ; Bacterial Vaccines - genetics ; Bacterial Vaccines - metabolism ; Bacteriology ; Biological and medical sciences ; Borrelia burgdorferi ; Borrelia burgdorferi - genetics ; Borrelia burgdorferi - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Bacterial ; Ixodidae ; Lipoproteins - genetics ; Lipoproteins - metabolism ; Microbiology ; Miscellaneous ; Molecules ; Mutation ; Operon ; Sigma Factor - metabolism ; Signal transduction ; Virology ; Virulence Factors - genetics ; Virulence Factors - metabolism</subject><ispartof>Molecular microbiology, 2008-12, Vol.70 (6), p.1453-1464</ispartof><rights>2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Dec 2008</rights><rights>2008 The Authors Journal compilation © 2008 Blackwell Publishing Ltd 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5841-d625054300101686a546a9719b7c67f5a274c90a4256ea4f9e46f3926546b8bc3</citedby><cites>FETCH-LOGICAL-c5841-d625054300101686a546a9719b7c67f5a274c90a4256ea4f9e46f3926546b8bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2008.06491.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2008.06491.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20873054$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19019147$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Ming</creatorcontrib><creatorcontrib>Oman, Tara</creatorcontrib><creatorcontrib>Xu, Haijun</creatorcontrib><creatorcontrib>Blevins, Jon</creatorcontrib><creatorcontrib>Norgard, Michael V</creatorcontrib><creatorcontrib>Yang, X. Frank</creatorcontrib><title>Abrogation of ospAB constitutively activates the Rrp2-RpoN-RpoS pathway (sigmaN-sigmaS cascade) in Borrelia burgdorferi</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Molecular mechanisms underlying the reciprocal regulation of the two major surface lipoproteins and virulence factors of Borrelia burgdorferi, OspA and OspC, are not fully understood. Herein, we report that inactivation of the ospAB operon resulted in overproduction of OspC and many other lipoproteins via the constitutive activation of the Rrp2-RpoN-RpoS pathway. Complementing the ospAB mutant with a wild-type copy of ospA, but not an ospA variant that lacks the lipoprotein signal sequence, restored normal regulation of the Rrp2-RpoN-RpoS pathway; these results indicate that the phenotype was not caused by spurious mutations. Interestingly, while most of the ospAB mutant clones displayed a constitutive ospC expression phenotype, some ospAB mutant clones showed little or no ospC expression. Further analyses revealed that this OspC-negative phenotype was independent of abrogation of ospAB. While activation of the Rrp2-RpoN-RpoS pathway was recently shown to downregulate ospA, our findings suggest that reduction of OspA can also activate this pathway. We postulate that the activation of the Rrp2-RpoN-RpoS pathway and downregulation of OspA form a positive feedback loop that allows spirochaetes to produce and maintain a constant high level of OspC and other lipoproteins during tick feeding, a strategy that is critical for spirochaetal transmission and mammalian infection.</description><subject>Antigens, Bacterial - biosynthesis</subject><subject>Antigens, Bacterial - genetics</subject><subject>Antigens, Bacterial - metabolism</subject><subject>Antigens, Surface - genetics</subject><subject>Antigens, Surface - metabolism</subject><subject>Bacteria</subject><subject>Bacterial Outer Membrane Proteins - biosynthesis</subject><subject>Bacterial Outer Membrane Proteins - genetics</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Vaccines - genetics</subject><subject>Bacterial Vaccines - metabolism</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Borrelia burgdorferi</subject><subject>Borrelia burgdorferi - genetics</subject><subject>Borrelia burgdorferi - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Ixodidae</subject><subject>Lipoproteins - genetics</subject><subject>Lipoproteins - metabolism</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Molecules</subject><subject>Mutation</subject><subject>Operon</subject><subject>Sigma Factor - metabolism</subject><subject>Signal transduction</subject><subject>Virology</subject><subject>Virulence Factors - genetics</subject><subject>Virulence Factors - metabolism</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkktvEzEQxy0EoiHwFcBCAsFhF793fQAprXhUaovUUImb5XW8iaPNerF3m-bb422i8LiAD56R5jfj8fwHAIhRjtN5t84xFTwjkpc5QajMkWAS53cPwOQYeAgmSHKU0ZJ8PwFPYlwjhCkS9DE4wRJhiVkxAdtZFfxS98630NfQx252Co1vY-_6oXe3ttlBbZKjexthv7LwOnQku-781XjNYaf71Vbv4Jvolht9ld2bOTQ6Gr2wb6Fr4akPwTZOw2oIy4UPtQ3uKXhU6ybaZwc7BTefPn47-5JdfP18fja7yAwvGc4WgnDEGU2tIyxKoTkTWhZYVoURRc01KZiRSDPChdWslpaJmkoiEleVlaFT8GFftxuqjV0Y2_ZBN6oLbqPDTnnt1J-R1q3U0t8qUkhCEE8FXh8KBP9jsLFXGxeNbRrdWj9EJaSknBX0nyCWXCQtUAJf_gWu_RDaNIXECE5owYsElXvIBB9jsPWxZYzUuANqrUap1Si1GndA3e-Aukupz3__8q_Eg-gJeHUARpGaOujWuHjkCCoLOg59Ct7vua1r7O6_G1CXl-ejl_Jf7PNr7ZVehvTGzZyMS4i5YIgK-hP2y9YE</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>He, Ming</creator><creator>Oman, Tara</creator><creator>Xu, Haijun</creator><creator>Blevins, Jon</creator><creator>Norgard, Michael V</creator><creator>Yang, X. Frank</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200812</creationdate><title>Abrogation of ospAB constitutively activates the Rrp2-RpoN-RpoS pathway (sigmaN-sigmaS cascade) in Borrelia burgdorferi</title><author>He, Ming ; Oman, Tara ; Xu, Haijun ; Blevins, Jon ; Norgard, Michael V ; Yang, X. Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5841-d625054300101686a546a9719b7c67f5a274c90a4256ea4f9e46f3926546b8bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Antigens, Bacterial - biosynthesis</topic><topic>Antigens, Bacterial - genetics</topic><topic>Antigens, Bacterial - metabolism</topic><topic>Antigens, Surface - genetics</topic><topic>Antigens, Surface - metabolism</topic><topic>Bacteria</topic><topic>Bacterial Outer Membrane Proteins - biosynthesis</topic><topic>Bacterial Outer Membrane Proteins - genetics</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Vaccines - genetics</topic><topic>Bacterial Vaccines - metabolism</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Borrelia burgdorferi</topic><topic>Borrelia burgdorferi - genetics</topic><topic>Borrelia burgdorferi - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Ixodidae</topic><topic>Lipoproteins - genetics</topic><topic>Lipoproteins - metabolism</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Molecules</topic><topic>Mutation</topic><topic>Operon</topic><topic>Sigma Factor - metabolism</topic><topic>Signal transduction</topic><topic>Virology</topic><topic>Virulence Factors - genetics</topic><topic>Virulence Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Ming</creatorcontrib><creatorcontrib>Oman, Tara</creatorcontrib><creatorcontrib>Xu, Haijun</creatorcontrib><creatorcontrib>Blevins, Jon</creatorcontrib><creatorcontrib>Norgard, Michael V</creatorcontrib><creatorcontrib>Yang, X. Frank</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Ming</au><au>Oman, Tara</au><au>Xu, Haijun</au><au>Blevins, Jon</au><au>Norgard, Michael V</au><au>Yang, X. Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abrogation of ospAB constitutively activates the Rrp2-RpoN-RpoS pathway (sigmaN-sigmaS cascade) in Borrelia burgdorferi</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2008-12</date><risdate>2008</risdate><volume>70</volume><issue>6</issue><spage>1453</spage><epage>1464</epage><pages>1453-1464</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Molecular mechanisms underlying the reciprocal regulation of the two major surface lipoproteins and virulence factors of Borrelia burgdorferi, OspA and OspC, are not fully understood. Herein, we report that inactivation of the ospAB operon resulted in overproduction of OspC and many other lipoproteins via the constitutive activation of the Rrp2-RpoN-RpoS pathway. Complementing the ospAB mutant with a wild-type copy of ospA, but not an ospA variant that lacks the lipoprotein signal sequence, restored normal regulation of the Rrp2-RpoN-RpoS pathway; these results indicate that the phenotype was not caused by spurious mutations. Interestingly, while most of the ospAB mutant clones displayed a constitutive ospC expression phenotype, some ospAB mutant clones showed little or no ospC expression. Further analyses revealed that this OspC-negative phenotype was independent of abrogation of ospAB. While activation of the Rrp2-RpoN-RpoS pathway was recently shown to downregulate ospA, our findings suggest that reduction of OspA can also activate this pathway. We postulate that the activation of the Rrp2-RpoN-RpoS pathway and downregulation of OspA form a positive feedback loop that allows spirochaetes to produce and maintain a constant high level of OspC and other lipoproteins during tick feeding, a strategy that is critical for spirochaetal transmission and mammalian infection.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>19019147</pmid><doi>10.1111/j.1365-2958.2008.06491.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2008-12, Vol.70 (6), p.1453-1464
issn 0950-382X
1365-2958
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2792205
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Antigens, Bacterial - biosynthesis
Antigens, Bacterial - genetics
Antigens, Bacterial - metabolism
Antigens, Surface - genetics
Antigens, Surface - metabolism
Bacteria
Bacterial Outer Membrane Proteins - biosynthesis
Bacterial Outer Membrane Proteins - genetics
Bacterial Outer Membrane Proteins - metabolism
Bacterial Proteins - metabolism
Bacterial Vaccines - genetics
Bacterial Vaccines - metabolism
Bacteriology
Biological and medical sciences
Borrelia burgdorferi
Borrelia burgdorferi - genetics
Borrelia burgdorferi - metabolism
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Bacterial
Ixodidae
Lipoproteins - genetics
Lipoproteins - metabolism
Microbiology
Miscellaneous
Molecules
Mutation
Operon
Sigma Factor - metabolism
Signal transduction
Virology
Virulence Factors - genetics
Virulence Factors - metabolism
title Abrogation of ospAB constitutively activates the Rrp2-RpoN-RpoS pathway (sigmaN-sigmaS cascade) in Borrelia burgdorferi
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abrogation%20of%20ospAB%20constitutively%20activates%20the%20Rrp2-RpoN-RpoS%20pathway%20(sigmaN-sigmaS%20cascade)%20in%20Borrelia%20burgdorferi&rft.jtitle=Molecular%20microbiology&rft.au=He,%20Ming&rft.date=2008-12&rft.volume=70&rft.issue=6&rft.spage=1453&rft.epage=1464&rft.pages=1453-1464&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2008.06491.x&rft_dat=%3Cproquest_pubme%3E69935473%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196523757&rft_id=info:pmid/19019147&rfr_iscdi=true