Reward Rate Optimization in Two-Alternative Decision Making: Empirical Tests of Theoretical Predictions

The drift-diffusion model (DDM) implements an optimal decision procedure for stationary, 2-alternative forced-choice tasks. The height of a decision threshold applied to accumulating information on each trial determines a speed-accuracy tradeoff (SAT) for the DDM, thereby accounting for a ubiquitous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental psychology. Human perception and performance 2009-12, Vol.35 (6), p.1865-1897
Hauptverfasser: Simen, Patrick, Contreras, David, Buck, Cara, Hu, Peter, Holmes, Philip, Cohen, Jonathan D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1897
container_issue 6
container_start_page 1865
container_title Journal of experimental psychology. Human perception and performance
container_volume 35
creator Simen, Patrick
Contreras, David
Buck, Cara
Hu, Peter
Holmes, Philip
Cohen, Jonathan D
description The drift-diffusion model (DDM) implements an optimal decision procedure for stationary, 2-alternative forced-choice tasks. The height of a decision threshold applied to accumulating information on each trial determines a speed-accuracy tradeoff (SAT) for the DDM, thereby accounting for a ubiquitous feature of human performance in speeded response tasks. However, little is known about how participants settle on particular tradeoffs. One possibility is that they select SATs that maximize a subjective rate of reward earned for performance. For the DDM, there exist unique, reward-rate-maximizing values for its threshold and starting point parameters in free-response tasks that reward correct responses ( R. Bogacz, E. Brown, J. Moehlis, P. Holmes, & J. D. Cohen, 2006 ). These optimal values vary as a function of response-stimulus interval, prior stimulus probability, and relative reward magnitude for correct responses. We tested the resulting quantitative predictions regarding response time, accuracy, and response bias under these task manipulations and found that grouped data conformed well to the predictions of an optimally parameterized DDM.
doi_str_mv 10.1037/a0016926
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2791916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ865281</ericid><sourcerecordid>733606345</sourcerecordid><originalsourceid>FETCH-LOGICAL-a577t-6664033f3648ce523a96ae88da44db00fcb99961d1a4ba561e90f70520936c503</originalsourceid><addsrcrecordid>eNqF0V1rFDEUBuAgit1WwR8gsghFb0bPyecEQSi1flEplHodzmYyberszJjMttZfb8qua_XG3AzkPLyczMvYE4RXCMK8JgDUlut7bIZW2Aq5MffZDMDqChUXO2w350soB2v1kO2gtbqWEmfszWm4ptTMT2kK85Nxisv4k6Y49PPYz8-uh-qgm0Lqy9VVmL8LPubb2Rf6FvvzR-xBS10OjzffPfb1_dHZ4cfq-OTDp8OD44qUMVOltZYgRCu0rH0o25DVFOq6ISmbBUDrF7bsgw2SXJDSGCy0BhQHK7RXIPbY23XuuFosQ-NDPyXq3JjiktKNGyi6vyd9vHDnw5XjxqJFXQJebALS8H0V8uSWMfvQddSHYZWdkdygNVz-XwqhQQupinz-j7wcVuVHddlplAq0VqKgl2vk05BzCu12aQR325z73Vyhz-4-8g_cVFXA_gZQ9tS1ifrSxtZxzkEi1MU9XbuQot-Ojz7XWvH6TgyN5MZ84ylN0Xchux8XoxPKaYeFil_24rQB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>614506653</pqid></control><display><type>article</type><title>Reward Rate Optimization in Two-Alternative Decision Making: Empirical Tests of Theoretical Predictions</title><source>MEDLINE</source><source>APA PsycARTICLES</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><creator>Simen, Patrick ; Contreras, David ; Buck, Cara ; Hu, Peter ; Holmes, Philip ; Cohen, Jonathan D</creator><creatorcontrib>Simen, Patrick ; Contreras, David ; Buck, Cara ; Hu, Peter ; Holmes, Philip ; Cohen, Jonathan D</creatorcontrib><description>The drift-diffusion model (DDM) implements an optimal decision procedure for stationary, 2-alternative forced-choice tasks. The height of a decision threshold applied to accumulating information on each trial determines a speed-accuracy tradeoff (SAT) for the DDM, thereby accounting for a ubiquitous feature of human performance in speeded response tasks. However, little is known about how participants settle on particular tradeoffs. One possibility is that they select SATs that maximize a subjective rate of reward earned for performance. For the DDM, there exist unique, reward-rate-maximizing values for its threshold and starting point parameters in free-response tasks that reward correct responses ( R. Bogacz, E. Brown, J. Moehlis, P. Holmes, &amp; J. D. Cohen, 2006 ). These optimal values vary as a function of response-stimulus interval, prior stimulus probability, and relative reward magnitude for correct responses. We tested the resulting quantitative predictions regarding response time, accuracy, and response bias under these task manipulations and found that grouped data conformed well to the predictions of an optimally parameterized DDM.</description><identifier>ISSN: 0096-1523</identifier><identifier>EISSN: 1939-1277</identifier><identifier>DOI: 10.1037/a0016926</identifier><identifier>PMID: 19968441</identifier><identifier>CODEN: JPHPDH</identifier><language>eng</language><publisher>Washington, DC: American Psychological Association</publisher><subject>Accounting ; Bias ; Biological and medical sciences ; Cognition. Intelligence ; Decision Making ; Decision making. Choice ; Differential Threshold ; Experiments ; Fundamental and applied biological sciences. Psychology ; Human ; Humans ; Magnitude ; Models, Psychological ; New Jersey ; Optimization ; Perception ; Prediction ; Probability ; Probability Learning ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychomotor Performance ; Reaction Time ; Reinforcement Schedule ; Response bias ; Responses ; Reward ; Rewards ; Stimulus Intervals ; Thresholds ; Vision</subject><ispartof>Journal of experimental psychology. Human perception and performance, 2009-12, Vol.35 (6), p.1865-1897</ispartof><rights>2009 American Psychological Association</rights><rights>2015 INIST-CNRS</rights><rights>2009, American Psychological Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a577t-6664033f3648ce523a96ae88da44db00fcb99961d1a4ba561e90f70520936c503</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925,31000</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ865281$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22204108$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19968441$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simen, Patrick</creatorcontrib><creatorcontrib>Contreras, David</creatorcontrib><creatorcontrib>Buck, Cara</creatorcontrib><creatorcontrib>Hu, Peter</creatorcontrib><creatorcontrib>Holmes, Philip</creatorcontrib><creatorcontrib>Cohen, Jonathan D</creatorcontrib><title>Reward Rate Optimization in Two-Alternative Decision Making: Empirical Tests of Theoretical Predictions</title><title>Journal of experimental psychology. Human perception and performance</title><addtitle>J Exp Psychol Hum Percept Perform</addtitle><description>The drift-diffusion model (DDM) implements an optimal decision procedure for stationary, 2-alternative forced-choice tasks. The height of a decision threshold applied to accumulating information on each trial determines a speed-accuracy tradeoff (SAT) for the DDM, thereby accounting for a ubiquitous feature of human performance in speeded response tasks. However, little is known about how participants settle on particular tradeoffs. One possibility is that they select SATs that maximize a subjective rate of reward earned for performance. For the DDM, there exist unique, reward-rate-maximizing values for its threshold and starting point parameters in free-response tasks that reward correct responses ( R. Bogacz, E. Brown, J. Moehlis, P. Holmes, &amp; J. D. Cohen, 2006 ). These optimal values vary as a function of response-stimulus interval, prior stimulus probability, and relative reward magnitude for correct responses. We tested the resulting quantitative predictions regarding response time, accuracy, and response bias under these task manipulations and found that grouped data conformed well to the predictions of an optimally parameterized DDM.</description><subject>Accounting</subject><subject>Bias</subject><subject>Biological and medical sciences</subject><subject>Cognition. Intelligence</subject><subject>Decision Making</subject><subject>Decision making. Choice</subject><subject>Differential Threshold</subject><subject>Experiments</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Human</subject><subject>Humans</subject><subject>Magnitude</subject><subject>Models, Psychological</subject><subject>New Jersey</subject><subject>Optimization</subject><subject>Perception</subject><subject>Prediction</subject><subject>Probability</subject><subject>Probability Learning</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychomotor Performance</subject><subject>Reaction Time</subject><subject>Reinforcement Schedule</subject><subject>Response bias</subject><subject>Responses</subject><subject>Reward</subject><subject>Rewards</subject><subject>Stimulus Intervals</subject><subject>Thresholds</subject><subject>Vision</subject><issn>0096-1523</issn><issn>1939-1277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNqF0V1rFDEUBuAgit1WwR8gsghFb0bPyecEQSi1flEplHodzmYyberszJjMttZfb8qua_XG3AzkPLyczMvYE4RXCMK8JgDUlut7bIZW2Aq5MffZDMDqChUXO2w350soB2v1kO2gtbqWEmfszWm4ptTMT2kK85Nxisv4k6Y49PPYz8-uh-qgm0Lqy9VVmL8LPubb2Rf6FvvzR-xBS10OjzffPfb1_dHZ4cfq-OTDp8OD44qUMVOltZYgRCu0rH0o25DVFOq6ISmbBUDrF7bsgw2SXJDSGCy0BhQHK7RXIPbY23XuuFosQ-NDPyXq3JjiktKNGyi6vyd9vHDnw5XjxqJFXQJebALS8H0V8uSWMfvQddSHYZWdkdygNVz-XwqhQQupinz-j7wcVuVHddlplAq0VqKgl2vk05BzCu12aQR325z73Vyhz-4-8g_cVFXA_gZQ9tS1ifrSxtZxzkEi1MU9XbuQot-Ojz7XWvH6TgyN5MZ84ylN0Xchux8XoxPKaYeFil_24rQB</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Simen, Patrick</creator><creator>Contreras, David</creator><creator>Buck, Cara</creator><creator>Hu, Peter</creator><creator>Holmes, Philip</creator><creator>Cohen, Jonathan D</creator><general>American Psychological Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PSYQQ</scope><scope>7X8</scope><scope>7QJ</scope><scope>5PM</scope></search><sort><creationdate>20091201</creationdate><title>Reward Rate Optimization in Two-Alternative Decision Making</title><author>Simen, Patrick ; Contreras, David ; Buck, Cara ; Hu, Peter ; Holmes, Philip ; Cohen, Jonathan D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a577t-6664033f3648ce523a96ae88da44db00fcb99961d1a4ba561e90f70520936c503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accounting</topic><topic>Bias</topic><topic>Biological and medical sciences</topic><topic>Cognition. Intelligence</topic><topic>Decision Making</topic><topic>Decision making. Choice</topic><topic>Differential Threshold</topic><topic>Experiments</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Human</topic><topic>Humans</topic><topic>Magnitude</topic><topic>Models, Psychological</topic><topic>New Jersey</topic><topic>Optimization</topic><topic>Perception</topic><topic>Prediction</topic><topic>Probability</topic><topic>Probability Learning</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychomotor Performance</topic><topic>Reaction Time</topic><topic>Reinforcement Schedule</topic><topic>Response bias</topic><topic>Responses</topic><topic>Reward</topic><topic>Rewards</topic><topic>Stimulus Intervals</topic><topic>Thresholds</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simen, Patrick</creatorcontrib><creatorcontrib>Contreras, David</creatorcontrib><creatorcontrib>Buck, Cara</creatorcontrib><creatorcontrib>Hu, Peter</creatorcontrib><creatorcontrib>Holmes, Philip</creatorcontrib><creatorcontrib>Cohen, Jonathan D</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>APA PsycArticles®</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of experimental psychology. Human perception and performance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simen, Patrick</au><au>Contreras, David</au><au>Buck, Cara</au><au>Hu, Peter</au><au>Holmes, Philip</au><au>Cohen, Jonathan D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ865281</ericid><atitle>Reward Rate Optimization in Two-Alternative Decision Making: Empirical Tests of Theoretical Predictions</atitle><jtitle>Journal of experimental psychology. Human perception and performance</jtitle><addtitle>J Exp Psychol Hum Percept Perform</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>35</volume><issue>6</issue><spage>1865</spage><epage>1897</epage><pages>1865-1897</pages><issn>0096-1523</issn><eissn>1939-1277</eissn><coden>JPHPDH</coden><abstract>The drift-diffusion model (DDM) implements an optimal decision procedure for stationary, 2-alternative forced-choice tasks. The height of a decision threshold applied to accumulating information on each trial determines a speed-accuracy tradeoff (SAT) for the DDM, thereby accounting for a ubiquitous feature of human performance in speeded response tasks. However, little is known about how participants settle on particular tradeoffs. One possibility is that they select SATs that maximize a subjective rate of reward earned for performance. For the DDM, there exist unique, reward-rate-maximizing values for its threshold and starting point parameters in free-response tasks that reward correct responses ( R. Bogacz, E. Brown, J. Moehlis, P. Holmes, &amp; J. D. Cohen, 2006 ). These optimal values vary as a function of response-stimulus interval, prior stimulus probability, and relative reward magnitude for correct responses. We tested the resulting quantitative predictions regarding response time, accuracy, and response bias under these task manipulations and found that grouped data conformed well to the predictions of an optimally parameterized DDM.</abstract><cop>Washington, DC</cop><pub>American Psychological Association</pub><pmid>19968441</pmid><doi>10.1037/a0016926</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0096-1523
ispartof Journal of experimental psychology. Human perception and performance, 2009-12, Vol.35 (6), p.1865-1897
issn 0096-1523
1939-1277
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2791916
source MEDLINE; APA PsycARTICLES; Applied Social Sciences Index & Abstracts (ASSIA)
subjects Accounting
Bias
Biological and medical sciences
Cognition. Intelligence
Decision Making
Decision making. Choice
Differential Threshold
Experiments
Fundamental and applied biological sciences. Psychology
Human
Humans
Magnitude
Models, Psychological
New Jersey
Optimization
Perception
Prediction
Probability
Probability Learning
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Psychomotor Performance
Reaction Time
Reinforcement Schedule
Response bias
Responses
Reward
Rewards
Stimulus Intervals
Thresholds
Vision
title Reward Rate Optimization in Two-Alternative Decision Making: Empirical Tests of Theoretical Predictions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reward%20Rate%20Optimization%20in%20Two-Alternative%20Decision%20Making:%20Empirical%20Tests%20of%20Theoretical%20Predictions&rft.jtitle=Journal%20of%20experimental%20psychology.%20Human%20perception%20and%20performance&rft.au=Simen,%20Patrick&rft.date=2009-12-01&rft.volume=35&rft.issue=6&rft.spage=1865&rft.epage=1897&rft.pages=1865-1897&rft.issn=0096-1523&rft.eissn=1939-1277&rft.coden=JPHPDH&rft_id=info:doi/10.1037/a0016926&rft_dat=%3Cproquest_pubme%3E733606345%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=614506653&rft_id=info:pmid/19968441&rft_ericid=EJ865281&rfr_iscdi=true