Reward Rate Optimization in Two-Alternative Decision Making: Empirical Tests of Theoretical Predictions
The drift-diffusion model (DDM) implements an optimal decision procedure for stationary, 2-alternative forced-choice tasks. The height of a decision threshold applied to accumulating information on each trial determines a speed-accuracy tradeoff (SAT) for the DDM, thereby accounting for a ubiquitous...
Gespeichert in:
Veröffentlicht in: | Journal of experimental psychology. Human perception and performance 2009-12, Vol.35 (6), p.1865-1897 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1897 |
---|---|
container_issue | 6 |
container_start_page | 1865 |
container_title | Journal of experimental psychology. Human perception and performance |
container_volume | 35 |
creator | Simen, Patrick Contreras, David Buck, Cara Hu, Peter Holmes, Philip Cohen, Jonathan D |
description | The drift-diffusion model (DDM) implements an optimal decision procedure for stationary, 2-alternative forced-choice tasks. The height of a decision threshold applied to accumulating information on each trial determines a speed-accuracy tradeoff (SAT) for the DDM, thereby accounting for a ubiquitous feature of human performance in speeded response tasks. However, little is known about how participants settle on particular tradeoffs. One possibility is that they select SATs that maximize a subjective rate of reward earned for performance. For the DDM, there exist unique, reward-rate-maximizing values for its threshold and starting point parameters in free-response tasks that reward correct responses (
R. Bogacz, E. Brown, J. Moehlis, P. Holmes, & J. D. Cohen, 2006
). These optimal values vary as a function of response-stimulus interval, prior stimulus probability, and relative reward magnitude for correct responses. We tested the resulting quantitative predictions regarding response time, accuracy, and response bias under these task manipulations and found that grouped data conformed well to the predictions of an optimally parameterized DDM. |
doi_str_mv | 10.1037/a0016926 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2791916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ865281</ericid><sourcerecordid>733606345</sourcerecordid><originalsourceid>FETCH-LOGICAL-a577t-6664033f3648ce523a96ae88da44db00fcb99961d1a4ba561e90f70520936c503</originalsourceid><addsrcrecordid>eNqF0V1rFDEUBuAgit1WwR8gsghFb0bPyecEQSi1flEplHodzmYyberszJjMttZfb8qua_XG3AzkPLyczMvYE4RXCMK8JgDUlut7bIZW2Aq5MffZDMDqChUXO2w350soB2v1kO2gtbqWEmfszWm4ptTMT2kK85Nxisv4k6Y49PPYz8-uh-qgm0Lqy9VVmL8LPubb2Rf6FvvzR-xBS10OjzffPfb1_dHZ4cfq-OTDp8OD44qUMVOltZYgRCu0rH0o25DVFOq6ISmbBUDrF7bsgw2SXJDSGCy0BhQHK7RXIPbY23XuuFosQ-NDPyXq3JjiktKNGyi6vyd9vHDnw5XjxqJFXQJebALS8H0V8uSWMfvQddSHYZWdkdygNVz-XwqhQQupinz-j7wcVuVHddlplAq0VqKgl2vk05BzCu12aQR325z73Vyhz-4-8g_cVFXA_gZQ9tS1ifrSxtZxzkEi1MU9XbuQot-Ojz7XWvH6TgyN5MZ84ylN0Xchux8XoxPKaYeFil_24rQB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>614506653</pqid></control><display><type>article</type><title>Reward Rate Optimization in Two-Alternative Decision Making: Empirical Tests of Theoretical Predictions</title><source>MEDLINE</source><source>APA PsycARTICLES</source><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><creator>Simen, Patrick ; Contreras, David ; Buck, Cara ; Hu, Peter ; Holmes, Philip ; Cohen, Jonathan D</creator><creatorcontrib>Simen, Patrick ; Contreras, David ; Buck, Cara ; Hu, Peter ; Holmes, Philip ; Cohen, Jonathan D</creatorcontrib><description>The drift-diffusion model (DDM) implements an optimal decision procedure for stationary, 2-alternative forced-choice tasks. The height of a decision threshold applied to accumulating information on each trial determines a speed-accuracy tradeoff (SAT) for the DDM, thereby accounting for a ubiquitous feature of human performance in speeded response tasks. However, little is known about how participants settle on particular tradeoffs. One possibility is that they select SATs that maximize a subjective rate of reward earned for performance. For the DDM, there exist unique, reward-rate-maximizing values for its threshold and starting point parameters in free-response tasks that reward correct responses (
R. Bogacz, E. Brown, J. Moehlis, P. Holmes, & J. D. Cohen, 2006
). These optimal values vary as a function of response-stimulus interval, prior stimulus probability, and relative reward magnitude for correct responses. We tested the resulting quantitative predictions regarding response time, accuracy, and response bias under these task manipulations and found that grouped data conformed well to the predictions of an optimally parameterized DDM.</description><identifier>ISSN: 0096-1523</identifier><identifier>EISSN: 1939-1277</identifier><identifier>DOI: 10.1037/a0016926</identifier><identifier>PMID: 19968441</identifier><identifier>CODEN: JPHPDH</identifier><language>eng</language><publisher>Washington, DC: American Psychological Association</publisher><subject>Accounting ; Bias ; Biological and medical sciences ; Cognition. Intelligence ; Decision Making ; Decision making. Choice ; Differential Threshold ; Experiments ; Fundamental and applied biological sciences. Psychology ; Human ; Humans ; Magnitude ; Models, Psychological ; New Jersey ; Optimization ; Perception ; Prediction ; Probability ; Probability Learning ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychomotor Performance ; Reaction Time ; Reinforcement Schedule ; Response bias ; Responses ; Reward ; Rewards ; Stimulus Intervals ; Thresholds ; Vision</subject><ispartof>Journal of experimental psychology. Human perception and performance, 2009-12, Vol.35 (6), p.1865-1897</ispartof><rights>2009 American Psychological Association</rights><rights>2015 INIST-CNRS</rights><rights>2009, American Psychological Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a577t-6664033f3648ce523a96ae88da44db00fcb99961d1a4ba561e90f70520936c503</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925,31000</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ865281$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22204108$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19968441$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simen, Patrick</creatorcontrib><creatorcontrib>Contreras, David</creatorcontrib><creatorcontrib>Buck, Cara</creatorcontrib><creatorcontrib>Hu, Peter</creatorcontrib><creatorcontrib>Holmes, Philip</creatorcontrib><creatorcontrib>Cohen, Jonathan D</creatorcontrib><title>Reward Rate Optimization in Two-Alternative Decision Making: Empirical Tests of Theoretical Predictions</title><title>Journal of experimental psychology. Human perception and performance</title><addtitle>J Exp Psychol Hum Percept Perform</addtitle><description>The drift-diffusion model (DDM) implements an optimal decision procedure for stationary, 2-alternative forced-choice tasks. The height of a decision threshold applied to accumulating information on each trial determines a speed-accuracy tradeoff (SAT) for the DDM, thereby accounting for a ubiquitous feature of human performance in speeded response tasks. However, little is known about how participants settle on particular tradeoffs. One possibility is that they select SATs that maximize a subjective rate of reward earned for performance. For the DDM, there exist unique, reward-rate-maximizing values for its threshold and starting point parameters in free-response tasks that reward correct responses (
R. Bogacz, E. Brown, J. Moehlis, P. Holmes, & J. D. Cohen, 2006
). These optimal values vary as a function of response-stimulus interval, prior stimulus probability, and relative reward magnitude for correct responses. We tested the resulting quantitative predictions regarding response time, accuracy, and response bias under these task manipulations and found that grouped data conformed well to the predictions of an optimally parameterized DDM.</description><subject>Accounting</subject><subject>Bias</subject><subject>Biological and medical sciences</subject><subject>Cognition. Intelligence</subject><subject>Decision Making</subject><subject>Decision making. Choice</subject><subject>Differential Threshold</subject><subject>Experiments</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Human</subject><subject>Humans</subject><subject>Magnitude</subject><subject>Models, Psychological</subject><subject>New Jersey</subject><subject>Optimization</subject><subject>Perception</subject><subject>Prediction</subject><subject>Probability</subject><subject>Probability Learning</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychomotor Performance</subject><subject>Reaction Time</subject><subject>Reinforcement Schedule</subject><subject>Response bias</subject><subject>Responses</subject><subject>Reward</subject><subject>Rewards</subject><subject>Stimulus Intervals</subject><subject>Thresholds</subject><subject>Vision</subject><issn>0096-1523</issn><issn>1939-1277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNqF0V1rFDEUBuAgit1WwR8gsghFb0bPyecEQSi1flEplHodzmYyberszJjMttZfb8qua_XG3AzkPLyczMvYE4RXCMK8JgDUlut7bIZW2Aq5MffZDMDqChUXO2w350soB2v1kO2gtbqWEmfszWm4ptTMT2kK85Nxisv4k6Y49PPYz8-uh-qgm0Lqy9VVmL8LPubb2Rf6FvvzR-xBS10OjzffPfb1_dHZ4cfq-OTDp8OD44qUMVOltZYgRCu0rH0o25DVFOq6ISmbBUDrF7bsgw2SXJDSGCy0BhQHK7RXIPbY23XuuFosQ-NDPyXq3JjiktKNGyi6vyd9vHDnw5XjxqJFXQJebALS8H0V8uSWMfvQddSHYZWdkdygNVz-XwqhQQupinz-j7wcVuVHddlplAq0VqKgl2vk05BzCu12aQR325z73Vyhz-4-8g_cVFXA_gZQ9tS1ifrSxtZxzkEi1MU9XbuQot-Ojz7XWvH6TgyN5MZ84ylN0Xchux8XoxPKaYeFil_24rQB</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Simen, Patrick</creator><creator>Contreras, David</creator><creator>Buck, Cara</creator><creator>Hu, Peter</creator><creator>Holmes, Philip</creator><creator>Cohen, Jonathan D</creator><general>American Psychological Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PSYQQ</scope><scope>7X8</scope><scope>7QJ</scope><scope>5PM</scope></search><sort><creationdate>20091201</creationdate><title>Reward Rate Optimization in Two-Alternative Decision Making</title><author>Simen, Patrick ; Contreras, David ; Buck, Cara ; Hu, Peter ; Holmes, Philip ; Cohen, Jonathan D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a577t-6664033f3648ce523a96ae88da44db00fcb99961d1a4ba561e90f70520936c503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accounting</topic><topic>Bias</topic><topic>Biological and medical sciences</topic><topic>Cognition. Intelligence</topic><topic>Decision Making</topic><topic>Decision making. Choice</topic><topic>Differential Threshold</topic><topic>Experiments</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Human</topic><topic>Humans</topic><topic>Magnitude</topic><topic>Models, Psychological</topic><topic>New Jersey</topic><topic>Optimization</topic><topic>Perception</topic><topic>Prediction</topic><topic>Probability</topic><topic>Probability Learning</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychomotor Performance</topic><topic>Reaction Time</topic><topic>Reinforcement Schedule</topic><topic>Response bias</topic><topic>Responses</topic><topic>Reward</topic><topic>Rewards</topic><topic>Stimulus Intervals</topic><topic>Thresholds</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simen, Patrick</creatorcontrib><creatorcontrib>Contreras, David</creatorcontrib><creatorcontrib>Buck, Cara</creatorcontrib><creatorcontrib>Hu, Peter</creatorcontrib><creatorcontrib>Holmes, Philip</creatorcontrib><creatorcontrib>Cohen, Jonathan D</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>APA PsycArticles®</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of experimental psychology. Human perception and performance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simen, Patrick</au><au>Contreras, David</au><au>Buck, Cara</au><au>Hu, Peter</au><au>Holmes, Philip</au><au>Cohen, Jonathan D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ865281</ericid><atitle>Reward Rate Optimization in Two-Alternative Decision Making: Empirical Tests of Theoretical Predictions</atitle><jtitle>Journal of experimental psychology. Human perception and performance</jtitle><addtitle>J Exp Psychol Hum Percept Perform</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>35</volume><issue>6</issue><spage>1865</spage><epage>1897</epage><pages>1865-1897</pages><issn>0096-1523</issn><eissn>1939-1277</eissn><coden>JPHPDH</coden><abstract>The drift-diffusion model (DDM) implements an optimal decision procedure for stationary, 2-alternative forced-choice tasks. The height of a decision threshold applied to accumulating information on each trial determines a speed-accuracy tradeoff (SAT) for the DDM, thereby accounting for a ubiquitous feature of human performance in speeded response tasks. However, little is known about how participants settle on particular tradeoffs. One possibility is that they select SATs that maximize a subjective rate of reward earned for performance. For the DDM, there exist unique, reward-rate-maximizing values for its threshold and starting point parameters in free-response tasks that reward correct responses (
R. Bogacz, E. Brown, J. Moehlis, P. Holmes, & J. D. Cohen, 2006
). These optimal values vary as a function of response-stimulus interval, prior stimulus probability, and relative reward magnitude for correct responses. We tested the resulting quantitative predictions regarding response time, accuracy, and response bias under these task manipulations and found that grouped data conformed well to the predictions of an optimally parameterized DDM.</abstract><cop>Washington, DC</cop><pub>American Psychological Association</pub><pmid>19968441</pmid><doi>10.1037/a0016926</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-1523 |
ispartof | Journal of experimental psychology. Human perception and performance, 2009-12, Vol.35 (6), p.1865-1897 |
issn | 0096-1523 1939-1277 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2791916 |
source | MEDLINE; APA PsycARTICLES; Applied Social Sciences Index & Abstracts (ASSIA) |
subjects | Accounting Bias Biological and medical sciences Cognition. Intelligence Decision Making Decision making. Choice Differential Threshold Experiments Fundamental and applied biological sciences. Psychology Human Humans Magnitude Models, Psychological New Jersey Optimization Perception Prediction Probability Probability Learning Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Psychomotor Performance Reaction Time Reinforcement Schedule Response bias Responses Reward Rewards Stimulus Intervals Thresholds Vision |
title | Reward Rate Optimization in Two-Alternative Decision Making: Empirical Tests of Theoretical Predictions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reward%20Rate%20Optimization%20in%20Two-Alternative%20Decision%20Making:%20Empirical%20Tests%20of%20Theoretical%20Predictions&rft.jtitle=Journal%20of%20experimental%20psychology.%20Human%20perception%20and%20performance&rft.au=Simen,%20Patrick&rft.date=2009-12-01&rft.volume=35&rft.issue=6&rft.spage=1865&rft.epage=1897&rft.pages=1865-1897&rft.issn=0096-1523&rft.eissn=1939-1277&rft.coden=JPHPDH&rft_id=info:doi/10.1037/a0016926&rft_dat=%3Cproquest_pubme%3E733606345%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=614506653&rft_id=info:pmid/19968441&rft_ericid=EJ865281&rfr_iscdi=true |